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Intimal sarcomas and undifferentiated cardiac sarcomas carry
mutually exclusive MDM2, MDM4, and CDK6 amplifications and
share a common DNA methylation signature
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Undifferentiated mesenchymal tumors arising from the inner lining (intima) of large arteries are classified as intimal sarcomas (ISA)
with MDM2 amplification as their molecular hallmark. Interestingly, undifferentiated pleomorphic sarcomas (UPS) of the heart have
recently been suggested to represent the cardiac analog of ISA due to morphological overlap and high prevalence of MDM2
amplifications in both neoplasms. However, little is known about ISAs and cardiac UPS without MDM2 amplifications and molecular
data supporting their common classification is sparse. Here, we report a series of 35 cases comprising 25 ISAs of the pulmonary
artery, one ISA of the renal artery and 9 UPS of the left atrium. Tumors were analyzed utilizing the Illumina Infinium MethylationEPIC
BeadChip array, enabling copy number profile generation and unsupervised DNA methylation analysis. DNA methylation patterns
were investigated using t-distributed stochastic neighbor embedding (t-SNE) analysis. Histologically, all ISAs and UPS of the left
atrium resembled extra-cardiac UPS. All cases exhibited highly complex karyotypes with overlapping patterns between ISA and
UPS. 29/35 cases showed mutually exclusive amplifications in the cell-cycle associated oncogenes MDM2 (25/35), MDM4 (2/35), and
CDK6 (2/35). We further observed recurrent co-amplifications in PDGFRA (21/35), CDK4 (15/35), TERT (11/35), HDAC9 (9/35), and
CCND1 (4/35). Sporadic co-amplifications occurred in MYC, MYCN, and MET (each 1/35). The tumor suppressor CDKN2A/B was
frequently deleted (10/35). Interestingly, DNA methylation profiling (t-SNE) revealed an overlap of ISA and cardiac UPS. This “ISA”
methylation signature was distinct from potential histologic and molecular mimics. In conclusion, our data reveal MDM4 and CDK6
amplifications in ISAs and UPS of the left atrium, lacking MDM2 amplification. We further report novel co-amplifications of various
oncogenes, which may have therapeutic implications. Finally, the genetic and epigenetic concordance of ISAs and UPS of the left
atrium further supports a shared pathogenesis and common classification.
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INTRODUCTION
Intimal sarcoma (ISA) is an exceedingly rare undifferentiated
sarcoma that arises in the pulmonary artery and less frequently in
the aorta or its branches [1]. ISAs behave highly aggressive with a
mean patients’ survival ranging from 5 to 18 months [1]. Patients
with ISA are mostly of middle age at diagnosis and typically
present with non-specific symptoms, which sometimes masquer-
ades as thromboembolic disease. Thus, patients are often

diagnosed in an advanced disease stage. Furthermore, ISAs are
often reported to be resistant to conventional chemotherapy [2].
First recognized by Mandelstamm as pulmonary artery sarcoma

from an autopsy in 1923, case reports and small case series have
been published for the following decades [3]. The term “intimal”
was coined with reference to the attributes that these sarcomas
arise from the subendothelial space of arteries, form polypoidal
and endoluminal protrusions and spread laterally along the intima
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of large arteries before they infiltrate beyond the adventitia.
However, it has also been noted that sarcomas other than ISA may
occasionally exhibit such “intimal” growth pattern [4, 5].
Histologically, ISAs are composed of spindle shaped, pleo-

morphic or epithelioid cells often resembling soft tissue correlates
like undifferentiated pleomorphic sarcoma (UPS), myxofibrosar-
coma or epithelioid angiosarcoma. By definition, ISAs lack specific
lineage differentiation, although myofibroblastic and rarely
osteogenic or chondroid differentiation may occur [5–7].
Molecular studies on pulmonary artery ISAs revealed a high

frequency of MDM2 amplifications, accompanied by co-
amplifications of CDK4 and PDGFRA [8–15]. In 2014, Neuville
et al. discovered MDM2 amplifications in a large proportion of UPS
of the heart. Interestingly, many of the MDM2 amplified cardiac
UPS presented with histologic features resembling ISA [13]. The
authors proposed the concept that these cardiac UPS may
represent ISA [16]. However, concerns rose with regards to the
non-specific occurrence of MDM2 amplifications in a broad range
of tumor types [10]. Moreover, genome-wide copy number
analysis has been performed only in a few pulmonary artery ISAs,
whereas ISAs of more uncommon sites such as the aorta have not
been analyzed to date (Table 1). It was concluded that
reclassifying these cardiac UPS as ISA could be premature, besides
that fact that the term “intima” would be inappropriate for these
tumors from an anatomic point of view [17, 18]. Thus, the 4th

edition of the WHO classification of tumors of the heart
differentiates the multiple subtypes of cardiac UPS by histopathol-
ogy, but mentions ISA as a synonym or alternative designation
[19, 20]. Thus, the relationship between arterial and cardiac ISAs
remains incompletely understood.
High density DNA methylation arrays provide a powerful tool

for robust molecular tumor classification [21, 22]. DNA methylation
profiling in sarcomas has defined subtype-specific sarcoma
signatures, even within seemingly morphological homogenous
entities that would otherwise evade a definite histologic diagnosis.
Likewise, DNA methylation profiling has shown morphological
heterogeneous tumors to constitute a single molecular subtype
[23–29]. Furthermore, data of these high-density DNA methylation
arrays allow genome-wide mapping of copy number variations.
Herein, we comprehensively characterize a cohort of 26 ISAs

and 9 UPS of the left atrium by genome-wide copy number
analysis and DNA methylation profiling. We sought to further
define their molecular alterations and determine whether they
share a DNA methylation signature that segregates them from
potential histologic mimics.

MATERIAL AND METHODS
Sample selection
We collected a cohort of 26 ISAs and 9 UPS of the left atrium from different
patients, containing 10 previously published cases [8, 9]. Samples were
retrieved from the Institute of Pathology of the University Zürich

(Switzerland), from the Department of Pathology of the St Antonius
Hospital Nieuwegein (the Netherlands), the Institute of Pathology of the
University Hospital Heidelberg (Germany), the Department of Pathology of
the Memorial Sloan Kettering Cancer Center in New York (United States of
America), the Department of Pathology of the Radboud University Medical
Center in Nijmegen (the Netherlands), the Dermatopathology Bodensee in
Friedrichshafen (Germany) and the Institute of Pathology of the
Sozialstiftung Hospital in Bamberg (Germany). Basic clinical information
of the investigated cases is provided in Supplementary Table 1.
Diagnoses were established according to the guidelines of the WHO

classification for soft tissue and bone tumors (5th edition) and for tumors of
the lung, pleura, thymus and heart (4th edition) [1, 19]. Accordingly, none
of the study cases showed a definable line of differentiation. The study was
performed in concordance with the guidelines set forth by the local ethics
committee of the University of Heidelberg and in accordance with the
Declaration of Helsinki.

DNA extraction and quantification
DNA of all tumors was extracted from formalin-fixed paraffin-embedded
(FFPE) tissue samples. All tumors included in this study had sufficient
tumor material available to prevent extraction of neighboring benign
tissue. Areas with highest available tumor content (≥70%) were chosen for
extraction of DNA. The Maxwell® 16 FFPE Plus LEV DNA Kit was applied on
the automated Maxwell device (Promega, Madison, WI, USA) according to
the manufacturer’s instructions. Extracted DNA was quantified using the
QuantiFast SYBR Green PCR Kit (Qiagen, Duesseldorf, NW, Germany). A
minimum of 100 ng DNA was extracted in every case and provided for
subsequent array-based DNA methylation analysis.

Genome-wide DNA methylation data generation and pre-
processing
The total DNA input suitable for DNA methylation profiling ranges from a
minimum of 10 ng to 500 ng [30]. In this study, all 35 samples reached a
total DNA input of ≥100 ng and therefore were subjected to the Illumina
Infinium MethylationEPIC BeadChip array (Illumina, San Diego, USA)
analysis at the Genomics and Proteomics Core Facility of the German
Cancer Research Center (DKFZ) Heidelberg. To exclude low-quality samples
from the cohort, the on-chip quality metrics of all samples were checked
and compared to a set of 7,500 pairs of IDAT-files [22]. All 35 samples
passed this quality control check. DNA methylation data were normalized
by performing background correction and dye bias correction (shifting of
negative control probe mean intensity to zero and scaling of normalization
control probe mean intensity to 20000, respectively). Probes targeting sex
chromosomes, probes containing multiple single nucleotide polymorph-
isms and those that could not be uniquely mapped were removed. Human
reference genome (hg19) was used for the analysis of multi-site mapping.
Probes from the EPIC array were excluded if the predecessor Illumina
Infinium 450k BeadChip did not cover them, thereby making data
generated by both 450k and EPIC feasible for subsequent analyses. In
total, 438370 probes were kept for analysis.

Copy number analysis
Copy number plots were generated on methylation array data using the R
package ‘conumee’ after additional baseline correction (https://github.
com/dstichel/conumee). Copy number variants were identified by manual

Table 1. Studies applying genome-wide copy number variation analysis in intimal sarcomas.

Study Year Analyzed cases Location Method Relevant findings

Bode-Lesniewska et al. 2001 8 Pulmonary artery CGH MDM2 amp

Zhao et al. 2002 8 Pulmonary artery aCGH MDM2 amp, PDGFRA amp

Sebenik et al. 2005 12/14 Aorta and branches CGH Complex karyotyp

Zhang et al. 2007 1 Heart Karyotyping MDM2 amp, CDK4 amp

Dewaele et al. 2010 8/21 Pulmonary artery (n= 5) and heart (n= 3) aCGH MDM2 amp, PDGFRA amp

Neuville et al. 2014 5/100 Heart aCGH MDM2 amp

Ito et al. 2017 1 Heart aCGH MDM2 amp, PDGFRA amp

Roszik et al. 2019 13 Unknown GENIE database MDM2 amp, TERT amp

aCGH microarray-based comparative genomic hybridization, amp amplified.
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inspection as previously described [31]. Thresholds for the identification of
amplifications and homozygous deletions were derived from the
difference of the baseline. Gains/amplifications usually are above a log2
value of 0.4 and losses/deletions usually are below a log2 value of 0.4. Low
tumor cell content or subclonal alterations may reduce the amplitude
deviation.

Fluorescence In Situ Hybridization
Additional FISH assays were performed for assessing gene copy alterations.
FISH on interphase nuclei from FFPE 4 μm sections was performed using
custom-designed probes of bacterial artificial chromosomes flanking the
target genes CDK6 (7q21.2) and MDM4 (1q32.1). An amplification was
defined as the presence of >10 signals (ratio to control probe >10) or tight
clustered signals characteristic of homogeneous staining regions.

Unsupervised DNA methylation analysis
We used t-distributed stochastic neighbor embedding (t-SNE) analysis, a
method enabling dimensionality reduction and visualization of clusters to
detect methylation clusters. The algorithm was performed using the 10,000
most variable probes with a perplexity of 10 and 3000 iterations.
Methylation groups were tested for stability by varying the number of
the most variable probes and perplexities. Methylation data from

78 samples previously published in part comprising non-radiation /–UV
induced angiosarcomas of soft tissue or viscera (n= 6), inflammatory
myofibroblastic tumors (n= 7), leiomyosarcomas of (venous) vessels (n=
12), conventional high grade osteosarcomas (n= 13), low grade osteo-
sarcomas, MDM2 amplified (n= 6), extraskeletal osteosarcomas (n= 4),
retroperitoneal well-/de-differentiated liposarcomas, MDM2 amplified (n=
13), angiomatoid fibrous histiocytomas (n= 9) and extra-cardiac UPS (n=
8) were used for comparison [23–29].

RESULTS
Study cohort and histopathology
The study included 25 cases with ISAs arising in the pulmonary
artery and one case with an ISA of the renal artery. The sex ratio
was balanced (male-female ratio, 13:13). Patient’s age at
presentation ranged from 30 to 83 years, with a median age of
58 years. Furthermore, the study included 5 female and 4 male
patients with UPS of the left atrium, among them one young
patient with a metastatic bone lesion in the humerus, which was
analyzed here. Their age at presentation ranged from 18 to 67
years, with a median age of 38 years. The patient’s characteristics
are summarized in Table 2.
Morphologically, all 35 cases, some at least focally, showed ISA

features characterized by endoluminal growth, fibrin layering with
tumor overgrowth and intimal spread (Fig. 1). Overall, the
cellularity was variable within tumors. The predominant tumor
architecture was loose and pattern-less, although storiform areas
and collagenized stroma were recognizable in some cases. The
tumor cells appeared mostly spindle shaped (Fig. 2a) and rarely
epithelioid (Fig. 2b). Nuclear pleomorphism was evident in all
cases. Some case showed prominent bleeding residues and two
cases presented with dystrophic calcifications (Fig. 2c). Three cases
exhibited patterns reminiscent of distinct soft tissue sarcoma
subtypes other than undifferentiated (pleomorphic) sarcoma. One
case (ID 141642) presented with myxoid areas with low cellularity,
but tumor cell condensation around vessels, resembling myxofi-
brosarcoma (Fig. 2d). One case (ID 141634) showed

Table 2. Patient characteristics and histologic features.

Variables Artery (n= 26) Heart (n= 9)

Sex

Male 13 4

Female 13 5

Median Age in years (range) 58 (30–83) 38 (18–67)

Histological subtype

UPS-like 23 9

Malignant IMT-like 1 0

AFH-like 1 0

Myxofibrosarcoma 1 0

a b

dc

Fig. 1 Examples of characteristic architectural patterns in intimal sarcomas. At low magnification this case illustrates the endoluminal
growth of a polypoid tumor within an artery (a). Intimal sarcomas typically overgrow fibrin layers attached at the vessel wall (b). Tumor cells
spread lateral within the intimal space (c). Some cases show focal infiltration and penetration of the tunica media (d). Scale bars equal 200 µm.
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a b

dc

e f

Fig. 2 Histologic features in intimal sarcomas. Intimal sarcomas often exhibited a loose storiform growth pattern (a). Single cases showed an
epithelioid cytomorphology with tumor cells focally forming diffuse sheets and solid areas (b). Some cases showed focal stromal sclerosis,
hemosiderin deposits and dystrophic calcifications (c). Case 141642 exhibited a prominent myxoid stroma with elongated, thin-walled vessels
and increased perivascular tumor cell density (d). Case 141634 showed variable-sized pseudocystic spaces containing homogeneous
eosinophilic material or blood. These spaces are lined by tumor cells. Hemosiderin is present (e). Case 129604 showed a prominent
component of aggregating plasma cells (f). Scale bars equal 100 µm.
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MDM2 + CDK4 CDK4

TERT

PDGFRA TERTPDGFRA

MDM4

PDGFRA TERT

CDKN2A/B

CDK6

PDGFRA

HDAC9

Fig. 3 Copy number profiles in intimal sarcomas. Exemplary copy number profiles of intimal sarcomas carrying a 12q14-q15 amplification
including MDM2 and CDK4 (upper left), carrying a 1q32.1 amplification including MDM4 (upper right), carrying a 7q21.2 amplification including
CDK6 (lower left) and one example case lacking one of these gene amplifications (lower right).
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pseudoangiomatous spaces filled with blood and surrounded by
tumor cells, a pattern that to some extend resembled an
angiomatoid fibrous histiocytoma (Fig. 2e). Another case (ID
129604) showed prominent plasma cell aggregates and scattered
eosinophils within an otherwise hypocellular tumor stroma,
resembling inflammatory myofibroblastic tumor (Fig. 2f).

Recurrent gene amplifications beyond MDM2 and PDGFRα
We next analyzed the copy number profiles for amplifications and
deletions (Fig. 3). ISAs and UPS of the left atrium showed complex
karyotypes with overlapping patterns. Copy number analysis
unveiled mutually exclusive amplifications in the cell cycle
regulating genes MDM2 (25/35), MDM4 (2/35), and CDK6 (2/35).
MDM4 and CDK6 amplifications, where possible, were confirmed
by FISH analysis (Fig. 4). Copy number variations in these
pathways included co-amplifications of CDK4 (15/35) and CCND1
(4/35) and recurrent homozygous deletions in CDKN2A/B (10/35).
Amplifications in signaling pathways most frequently involved

receptor tyrosine kinase (RTK) PDGFRA (21/35) followed by MET,
MYC, and MYCN (each 1/35). Furthermore, we observed recurrent
amplifications in TERT (12/35) and HDAC9 (9/35). The copy number
variations are summarized in Fig. 5.

Common DNA methylation signature in intimal sarcomas and
undifferentiated pleomorphic sarcomas of the left atrium
We next analyzed DNA methylation profiles by t-SNE analysis
(Fig. 6). ISAs and UPS of the left atrium formed a unique
methylation cluster when compared to potential histopathologic
and molecular mimics, thereby demonstrating a distinct “ISA”
methylation signature. Interestingly, the sample of a bone
metastasis of an ISA overlaid with primary ISA samples, which
illustrates the stability of this “ISA”methylation signature. Finally, it
is important to note that the aforementioned mimics also
constituted subtype specific clusters in the t-SNE plot.

DISCUSSION
In this study we assessed the molecular profiles of ISAs and UPS of
the left atrium using genome-wide copy number profiling and
unsupervised DNA methylation analysis. ISAs and UPS of the left
atrium showed highly complex karyotypes. Our analysis revealed
MDM4 and CDK6 amplifications in ISAs and cardiac UPS lacking
MDM2 amplifications. Furthermore, their epigenetic patterns were
highly overlapping. Thus, our data argue in favor for the proposed
concept by Neuville and colleagues that ISAs and UPS of the left
atrium may constitute a common entity [13, 16].
Previous studies on ISAs and cardiac sarcomas have used array-

CGH analysis only in a small number of samples and tested their
findings on larger cohorts by fluorescence in situ hybridization
analysis. These studies revealed complex karyotypes with highly
recurrent amplifications of MDM2 [8–15]. With this approach,
however, there is a risk that less frequent copy number variations
can be missed. In our study, all 35 cases were tested for genome-
wide copy number variations. We could confirm MDM2 amplifica-
tions in the vast majority of ISAs and additionally identified
previously unreported, mutually exclusive MDM4 and CDK6
amplifications in ISAs and UPS of the left atrium. MDM4 and
CDK6 immunohistochemistry were strongly positive in cases with
such amplifications (data not shown). However, we also noticed a
marked MDM4 and CDK6 expression in cases with balanced
MDM4 and CDK6 locus. Therefore, we consider MDM4/CDK6
immunohistochemistry not suitable as surrogate for detecting
MDM4/CDK6 amplifications.
MDM2 and CDK6 are critical components in the p53 and RB

signaling pathway, respectively. These pathways are frequently
disrupted in sarcomas with complex karyotypes, probably because
subunits of those pathways are also involved in maintaining
chromosome integrity [32]. CDK6 and CDK4 form a complex that
suppresses RB1, a key element in the RB pathway. Notably, the co-
amplification of CCND1 and the recurrent deletion of CDKN2A/B
also contribute to the disruption of the RB pathway [33]. MDM4 is
best characterized for repressing p53 transactivation activity and
p53 translational regulation in normal cells under stress [34].
Because of the high frequency of amplifications in these cell cycle
pathways, they appear to contribute to the pathogenesis in ISA
and UPS of the left atrium.
We also observed highly recurrent amplifications of PDGFRA, as

previously reported [12]. Other RTKs were only rarely amplified,
e.g., MET. Copy number alterations were rarely observed in the
oncogenes MYC and MYCN. Furthermore, we observed frequent
TERT amplifications, which confer unlimited proliferation potential
to cancer cells through telomere length maintenance. TERT
amplifications have been shown to confer the highest telomerase
activity among tumors [35]. Finally, we detected HDAC9

Case 163852

Red signal: MDM4
Green signal: CDK6

Red signal: MDM4
Green signal: CDK6

Case 129602

Fig. 4 MDM4 and CDK6 amplifications demonstrated by FISH. 2-
color FISH for CDK6 (green signal) or MDM4 (red signal) in MDM2
balanced intimal sarcomas. The upper image (case 163852) shows
tight clustered green signals (CDK6) and almost balanced red signals
(MDM4). The lower image (case 129602) shows the opposite
constellation with abundant red signals (MDM4) and almost
balanced green signals (CDK6).
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amplifications in ISAs. Higher expression of HDAC9 has been
associated with poor prognosis in different cancer types [36].
These oncogene amplifications in ISAs and UPS of the left atrium
may qualify patients for targeted therapies [37, 38]. However, it
remains to be determined whether targeted therapies can lead to
a treatment response in ISAs [2].
Some cases lacking MDM2, MDM4, or CDK6 amplifications

remain ambiguous by copy number profiling. It is conceivable that
these cases harbor alternative driver mutations, although ISAs
show a relative low mutation rate overall [15]. In our study, cases
lacking MDM2, MDM4, or CDK6 amplifications often carried
PDGFRA amplifications. However, PDGFRA amplifications are
among the most common genetic alterations in cancer.

Accordingly, we observed PDGFRA amplifications also in 5/12
leiomyosarcomas (data not shown). Hence, the detection of
PDGFRA amplifications alone is non-specific for diagnosing ISA
[39]. To some extent, the same concerns apply for MDM2/4
amplifications. ISAs of uncommon sites such as the retroperito-
neum, where dedifferentiated liposarcoma is always a strong
consideration, are prone to be misdiagnosed, especially in
conjunction with an underlying MDM2 amplification [40–42].
Thus, clinical correlation is paramount for the diagnosis of ISAs
and the isolated use of established molecular markers alone may
not be helpful in this context.
We provide evidence that DNA methylation profiling may be

valuable in increasing the diagnostic accuracy of these rare
tumors. Our methylation analysis led to the identification of a
common methylation fingerprint in ISAs and cardiac UPS. We
assume this “ISA” methylation signature to be specific. Accord-
ingly, relevant differential diagnoses, e.g., dedifferentiated lipo-
sarcomas and extra-cardiac UPS showed distinct methylation
signatures compared to ISA [43, 44]. Notably, these methylation
signatures remain stable over the timeline of the disease, as
previously reported in other tumor entities [45]. We could detect
the ISA methylation signature even in the bone metastasis of a
cardiac UPS. In view of the specificity and stability of this “ISA”
DNA methylation signature, DNA methylation profiling may be a
valuable ancillary biomarker in ISAs and UPS of the left atrium,
especially in cases lacking MDM2, MDM4 or CDK6 amplifications or
occurring at unusual sites.

DATA AVAILABILITY
The data are available from the corresponding author upon request.
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