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Digital pathology provides a possibility for computational analysis of histological slides and automatization of routine pathological
tasks. Histological slides are very heterogeneous concerning staining, sections’ thickness, and artifacts arising during tissue
processing, cutting, staining, and digitization. In this study, we digitally reproduce major types of artifacts. Using six datasets from
four different institutions digitized by different scanner systems, we systematically explore artifacts’ influence on the accuracy of the
pre-trained, validated, deep learning-based model for prostate cancer detection in histological slides. We provide evidence that any
histological artifact dependent on severity can lead to a substantial loss in model performance. Strategies for the prevention of
diagnostic model accuracy losses in the context of artifacts are warranted. Stress-testing of diagnostic models using synthetically
generated artifacts might be an essential step during clinical validation of deep learning-based algorithms.

Modern Pathology (2021) 34:2098–2108; https://doi.org/10.1038/s41379-021-00859-x

INTRODUCTION
Digital pathology is an emerging transformation of diagnostic
pathology [1]. At that, histological slides can be digitized using
histological scanner and reviewed on the monitor without a
microscope. One of the promises of digital pathology is an
automated analysis of pathological specimens using deep
learning-based models [2, 3]. Deep learning (DL) is a powerful
technology for image analysis based on convolutional neural
networks [3]. The latter use unsupervised feature generation
by convolving images using multiple different filters and
aggregate the corresponding representations in different ways
to achieve a prediction. Many studies to date addressed the
feasibility of DL for diagnostic applications with high accuracy
[4–16] resulting in several commercial diagnostic products that
are being developed for prostate cancer, breast cancer, skin
diseases, and in other medical domains. However, this is still a
work in progress.
Importantly, histological slides may be very heterogeneous

with regard to staining, thickness of sections, and are especially
prone to artifacts during tissue processing, cutting, staining, and
digitization. Such heterogeneity is prominent among different
institutions and even within the same laboratory. The aim of the
pathologist and of any assisting system (e.g., DL-based) is to
provide top diagnostic accuracy irrespective of pre-analytical
issues and artifacts. Only few studies investigate how DL-based
models will operate in case of artifacts [17–19]. Generalization
of this information is difficult for models from different domains,
tasks (classification, segmentation, detection), different neural
network architectures, and models using different ground truth.

However, this knowledge is of utmost importance for assisting
systems to be implemented in the routine diagnostic workflow.
In this work we attempt to digitally reproduce major types of

histological artifacts and perform a systematic stress test for a DL-
based tool for prostate cancer (PCA) detection in histological slides
which previously showed high accuracy (>98%) using external
validation sets [4]. We investigate mechanism of misclassification in
different types of artifacts and discuss strategies of how to prevent
negative effects of artifacts on model accuracy during development
and implementation of algorithm.

MATERIALS AND METHODS
Model description
The DL-based patch-level classification model for PCA detection used in the
study was previously trained using a large-high-quality dataset based on the
histological slides from The Cancer Genome Atlas (TCGA) PCA cohort
containing ~1.5 million patches [4]. Several convolutional network architec-
tures were tested with NASNetLarge and InceptionResNetV2 showing similar
highest accuracy. In current implementation the model is based on the
completely retrained InceptionResNetV2 architecture with fully connected
layer containing 256 units and classification layer for three classes (prostate
glandular tissue, nonglandular tissue, and tumor tissue). The patch size is
300 × 300 pixels (px) corresponding to the whole slide image (WSI) region
size of ~150 × 150 µm at ×20 objective magnification (accounting for µm/px
parameter of different scanning systems). For further details see ref. [4].

Patient cases
Three independent patient cohorts and the original training cohort for
control purposes were included in the study. Patients in all cohorts
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represented the full spectrum of PCA stages and Gleason grades from
routine practice [4, 20]. Detailed characteristics of cohorts are outlined in
Table 1.

Digitization and datasets
Six datasets (DS1-6) were generated (Table 1). One cohort consisting of 51
patients (1 slide/patient) was digitized using three different scanners resulting
in three datasets. For the final analysis, given very high computational costs, a
random crop of each dataset with 120,000 patches was generated containing
50,000 patches with tumor tissue, 50,000 patches with nonneoplastic
glandular prostate tissue, and 20,000 patches with nonglandular tissue (all
properly classified by model at baseline, corresponding to reference F1 Score
1.0 for comparison with analysis in presence of artifacts). Generation of
subsets was carried out randomly taking care for roughly similar number of
patches per WSI for all three tissue classes.

Artifacts
Nine different types of artifacts common for routine histopathology
practice were computationally generated. These artifacts included focus,
elastic deformation, brightness, contrast, dark spots (e.g., dust, cover glass
scratches, and other kinds of contamination), synthetic threads overlying
tissue, contaminating squamous epithelia, greasy fingerprints on the slide
surface, and hematoxylin-eosin (HE) staining scheme (Fig. 1). Some of the
artefacts (focus, JPEG compression, elastic deformation, brightness, and
contrast) were generated through corresponding changes of the image
patch at a pixel level, while others (dark spots, synthetic threads, squamous
epithelia, and fingerprints) were synthetized through overlaying of the
corresponding artifact on the original pixel content, leaving the latter
intact. In addition, three image parameters, potentially affecting perfor-
mance of DL algorithm, such as jpeg compression, rotation of patch, and
flipping of patch, were tested (Fig. 2). Three types of dark spots, ten
variants of synthetic thread location, 20 variants of squamous epithelia,
and a sample of oil drop (greasy fingerprints) were extracted from
independent representative routine slides to be later overlaid on the single
patches. Focus artifacts were generated using Gaussian blur with levels
corresponding to 2 px increases in kernel size. Nine different staining
schemes (Fig. 2, Supplementary Fig. 1) with different visual perception of
staining quality (from poor to good) were saved as representative images
from routine slides for stain transfer using Macenko algorithm [21].
Brightness normalization was routinely performed as the initial step of
stain transfer. Representative images are provided in Fig. 2.

Pipeline, software
The model was initially trained to work with stain normalization via
Macenko stain transfer [21] from one standard staining scheme outlined in
Supplementary Fig. 1 [4]. Therefore, stain-normalized versions of datasets
were used in all analyses with exception of those used for HE-staining
analysis (where nine other staining schemes were used for tests, Fig. 2,
Supplementary Fig. 1). In a test pipeline, single artifacts were generated on
every single patch of a corresponding dataset, and model classification
was carried out on these modified patches to estimate model accuracy in
presence of artifacts. Python (version 3.7.7) and Tensorflow (version 2.3)
was used for model implementation. Staintools package was used for
brightness standardization and Macenko stain transfer. Opencv-python
and Pillow packages were used for image manipulations. Monai package
(instrument: Rand2DElastic) was used for elastic deformations.
Principle component analysis and t-distributed stochastic neighbor

embedding (t-SNE) modules from scikit-learn package for Python were
used for analysis of similarity of image patch content. For this purpose,
convolutional base of the model was disconnected from classification head
and connected to three consecutive global average pooling layers to
reduce the dimensions of output vector; output of the last convolutional
layer with dimensions (8,8,1536) was therefore transformed to a vector
(1,1,1536). Principal component analysis was performed using 700
components as first step with further t-SNE using 2 components and
3000 iterations. Visualization was performed using matplotlib package.
Gradient-weighted Class Activation Mapping (GradCAM) was implemen-

ted as described in [22] with outputs captured from activations of the last
convolutional layer and opencv-python library for heatmap visualization.

Hardware
Experiments were performed in parallel on two workstations with 2x GPU
Nvidia RTX 2080 Ti 11 Gb and 1x GPU Quatro P6000 24 Gb, respectively, as Ta
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Fig. 2 Twelve types of artifacts or analytical situations reproduced computationally in the study and their levels of severity. Flips and
rotations are not typical artifacts, however, deep learning-based models were shown to be sensitive to context presentation in a patch,
therefore these two analytical situations were included. Focus levels (L) represent consecutive increases of 2 px in kernel size of Gaussian filter
with L1 corresponding to kernel size of 1 px. Grid size for elastic deformation is specified. Five levels were used with produced deformations
visually staying in realistic range. Examples of synthetic thread, squamous epithelial cells, and fat vacuole resulting from fingerprints were
extracted from routine whole slide images. Synthetic threads usually produce local focus deterioration and squamous cells, fingerprints, and
dark spots usually do not affect focus. Representative images with staining schemes used for stain transfer in course of experiments as well as
standard staining scheme used by model for stain normalization are presented in Supplementary Fig. 1.

Fig. 1 Common histological artifacts in digital pathology and study design. A Some of the common artifacts in digital pathology. B Study
design. A pre-trained and validated model for prostate cancer detection [4] based on InceptionResNetV2 convolutional architecture was used
in this study providing classification among benign glandular, benign nonglandular, and tumor tissue. Step 1: six test datasets were created
(Supplementary Table 1 for characteristics) containing a random selection of only true positive (tumor class, 50,000 patches) and true negative
patches (benign glandular class, 50,000 patches, and benign nonglandular class, 20,000 patches), correctly recognized by the model at
baseline. Step 2: every of 12 studied artifacts or analytical situations were computationally generated for every single patch in six test datasets
to test model accuracy in presence of these artifacts.
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well as using a high performing computing cluster of the University of
Cologne equipped with 12 Nvidia V100 32 Gb GPU cards.

Statistical analysis
Statistical analysis was performed using R version 4.0.3 (The R Foundation
for Statistical Computing). Accuracy of the models was estimated using
precision, recall, and F1 score metrics. Precision for tumor detection was
calculated as TP/(TP+ FP), recall as TP/(TP+ FN) and F1 score as 2 ×
Precision × Recall/(Precision+ Recall), where TP, FP, and FN are true
positive, false positive and false negative patch classification results
through model, respectively. Plots were created using ggplot2 and
VennDiagram libraries for R.

RESULTS
Dependence of model accuracy on the presence of artifacts
Six test datasets were used in this study, each containing 50,000
patches from tumor, 50,000 patches from benign glandular, and
20,000 patches from benign nonglandular prostate tissue classes
(fat, stroma, muscle, vessels, etc.), all properly classified by model
at baseline. Of those, Dataset 1 (details in Table 1) is composed of
training dataset patches and included for control purposes. All
studied artifacts reduced the accuracy of the pre-trained deep
learning model for PCA detection [4] used in this study (Figs. 3, 4,
and 5).

Focus
Sixteen focus levels were tested corresponding to increments of 2
pixels in Gaussian blur kernel filter (Fig. 2). Even minimal focus

deteriorations led to negative changes in model accuracy. Thus,
with kernel sizes 1 px (level 1) and 3 px (level 2), still visually
percepted as tolerable by pathologists, the number of false
negative (FN) tumor patches was 372/50,000 (0.7%) and 2476/
50,000 (4.95%), respectively, with progressive fall in accuracy
thereafter (Fig. 3).

JPEG compression
JPEG compression of 80% or equivalent is used by many scanner
systems as a standard; therefore we used 80% as a baseline
reference (F1 score= 1.0) and tested accuracy of the model at a
range of compressions (Fig. 3B). We observed a slight fall in
accuracy starting from 75% JPEG compression. However, rather
high levels of accuracy (F1 score >0.95) were evident down to 15%
compression level with sudden fall thereafter.

Flip and rotation
Deep learning-based models are known to be sensitive to
presentation of information in the image patch. Although not a
typical histological artifact, we aimed to test the model classifica-
tion consistency in case of simple flips and rotations in random
directions. These led to minor losses of accuracy compared to
baseline, with F1 score >0.98 for flips and >0.976 for random
rotations in tested datasets (Fig. 3C).

Elastic deformation
Elastic deformation of cells and tissue fibers has a mechanical
distortion in its nature. It is a common artifact resulting from tissue

Fig. 3 Systematic tests of model accuracy in six test datasets with computationally generated artifacts. F1-Score is used as accuracy
metrics in all plots. All test dataset patches are properly classified by the model at baseline (baseline F1-Score is 1.0). Line colors correspond to
test datasets (see legend). Note, that test dataset 1 stems from training dataset and serves as control measure. In all types of analysis, it
demonstrates higher accuracy implying that model still remembers features inherent to this dataset. A Focus (x-axis represents levels of focus
deterioration, corresponding to Fig. 2). B JPEG compression. C Four types of artifacts summarized in one plot: fat from fingerprints, flips,
rotations of patch, and synthetic thread overlaying tissue. D Elastic deformations using different grid sizes. E Squamous epithelia: one, two,
and three complexes (random selection of epithelial complex and location in patch; see Fig. 2) overlying tissue patch. F Dark spots: three types
of dark spots with 1, 2, and 3 dark spots overlying tissue in patch at random location (e.g., 2 × 2 means that two dark spots of second type are
overlaid on tissue in patch).
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Fig. 4 Systematic tests of model accuracy in six test datasets with computationally generated artifacts. F1-Score is used as accuracy
metrics in all plots and is 1.0 at baseline for all patches in all datasets. Colors of lines correspond to test datasets (see legend). A Upregulated
brightness. B Downregulated brightness. C Upregulated contrast. D Downregulated contrast. E Hematoxylin-eosin (HE) staining. NAT—native
representation of the patch. S01-S09: stain transfer from one of the 9 staining schemes using Macenko algorithm (staining schemes presented
Fig. 2, Supplementary Fig. 1).

Fig. 5 Analysis of artifact-induced misclassifications. A Summary of misclassification effects for twelve types of artifacts (all datasets)
with regard to false positive (benign tissue classified as tumor) and false negative results (tumor tissue classified as benign); summary
from Supplementary Figs. 2 and 3. Virtually all false-positive misclassification stem from benign glandular tissue with benign
nonglandular tissue (fat, stroma, muscles, vessels, nerves, etc.) being resistant to misclassifications. B–E Venn diagrams of the misclassified
patches (false-negative misclassifications of tumor tissue as benign) from Dataset 3. Following artifact severity levels were used
for this representation: Focus level 4, JPEG compression 40%, elastic deformation with grid size 70 px, dark spot of third type with
2 spots overlying image patch, synthetic thread with random location, two random squamous epithelial cell complexes overlying
image patch at random location, and native HE-staining scheme and stain transfer using S08 scheme (see Fig. 2). Venn diagrams
demonstrate unique and intersecting misclassified patches among different types of artifacts. For false-positive misclassifications
see Supplementary Fig. 4.
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cutting and tissue harvesting. We imitated elastic deformations
using five sizes of grid cell staying in the visually realistic range of
deformation. All types of deformation produced losses of accuracy
with resulting F1 score ranging 0.959–0.980 and larger grid cell
sizes associated with higher losses (Fig. 3D).

Contrast and brightness
Different scanner systems provide a very different quality of the
resulting images with regard to color scheme, brightness and
contrast. Analysis of patch content similarity shows scanner-
related clustering even when the same slides are scanned by
different systems (Supplementary Fig. 5A). Negative and positive
ranges of brightness and contrast were tested, with increments/
decrements of 0.1 (10%), respectively (Fig. 4A–D). Notably, even
small changes in contrast and brightness produced losses in
accuracy which became more prominent by further relaxation.
Upregulation of brightness and contrast had prominent effects in
Dataset 5. Further investigation of this unexpected finding
revealed that the WSI scanner was calibrated by the operator
according to own visual perception of good contrast and
brightness of scanned slides. All other datasets were scanned
using calibrated manufacturer setup.

Dark spots
Dark spots are probably the most common artifacts seen in digital
pathology. They usually result from dust, scratches, and foreign
objects on the surface of the histological slides or under the
coverslip. These dark spots are often transparent and usually do
not alter the focus. We reproduced 3 types of dark spots (Fig. 2).
Placement of these artifacts on the tested images was generated
randomly. For every type of spot one, two, and three spots
overlying original patch were tested. Number of spots was
positively correlated with losses of accuracy (Fig. 3F). Most
prominent losses were evident for spot type 3 (the biggest one),
especially with several such spots overlying single patches at the
same time reducing transparency.

Threads
Elongated subjects like synthetic threads are occasionally seen in
digitized histological slides, usually accompanied by focal focus
distortion. We reproduced 10 different positions of a thread/focus
distortion with random selection of the position for single patches
during tests (Fig. 2). This produced severe accuracy losses with
F1 score dropped down to 0.92 from the baseline F1 score of 1.0
(Fig. 3C).

Squamous epithelia
Squamous epithelia are one of the commonest artifacts resulting
from contamination of the prostate biopsy specimen during tissue
processing. They lie on the tissue’s surface, are to large extent
transparent, and usually do not impair focus quality during
scanning (Fig. 1). We extracted 20 templates of squamous
epithelia consisting of one or more epithelial cells (Fig. 2). For
each patch, one, two, or three random epithelial templates were
overlaid before classification with position selected randomly.
Accuracy loss was correlated with the number of overlaid
epithelial complexes (Fig. 3E). We found that even a single
squamous cell cluster produced small but non-negligible losses in
accuracy in all datasets.

Fingerprints (oil drops)
Fingerprints are common and appear as small transparent fat
drops in digitized histological slides. We extracted a representative
fat drop from WSI and overlaid it on original patches during
experiments to see how it can affect the classification (Fig. 2). The
classification accuracy was still high due to transparency of fat
drops, however, non-negligible losses were evident (F1 score
<0.98; Fig. 3C).

Staining
HE-staining heterogeneity or just a visually “bad” staining (too
intensive or too weak) is a prominent source of inter- and intra-
institutional heterogeneity in histological slides. Our PCA detec-
tion model was developed to work with brightness standardiza-
tion and stain normalization using a reference staining scheme
and Macenko algorithm [21] (Supplementary Fig. 1). Baseline
F1 score using this scheme is 1.0 in all datasets. We carried out
model accuracy tests of native staining (without any normal-
ization) as well as using a stain transfer from 9 visually different
staining schemes including strong and weak staining for every
single patch from test datasets (Fig. 2, Supplementary Fig. 1).
Substantial losses of accuracy were observed in case of staining
scheme visually interpreted as “poor” (Fig. 4E).
Additional level of color heterogeneity originates from the fact

that every scanning system has a special color “touch” affecting
original staining (Supplementary Fig. 5A). The similarity analysis of
image patch content shows that even after Macenko stain transfer
the clustering of image patches from different datasets is defined
by the scanner system used (Supplementary Fig. 5B), even if this
type of stain normalization allows for high model classification
accuracy. Only style/stain transfer using generative adversarial
network (GAN) (Supplementary Methods; Supplementary Fig. 5C)
is able to override scanner-specific features and allow similarity
clustering of single patches based on the histological content.

Artifacts and tissue type
The artifacts affect the model accuracy through false positive (FP)
or false negative (FN) results. Thus, nonglandular tissue (stroma,
fat, muscle, nerves, vessels, etc.) is a nonsignificant source of FP
patches, i.e., benign classified as tumor. The greatest number of FP
patches in this tissue class was 138/20,000 (0.69%) in Dataset 6 at
the 5% JPEG compression level; while in all other scenarios it was
<0.08%. Therefore, misclassification occurs mostly in tumor (FN)
and benign glandular (FP) classes which were, however, affected
in different ways (Fig. 5A, detailed information in Supplementary
Figs. 2 and 3). JPEG compression and fingerprints resulted in the
similar numbers of FP and FN. Elastic deformation and HE staining
produced both types of misclassification, however, predilection to
FP and FN was depending on grid size and staining scheme used,
respectively. Other artifacts also showed some propensity to
certain types of misclassifications (Fig. 5A).

Dataset-related heterogeneity
Dataset 1 composed of patches from training dataset provided
better accuracy in presence of all artifacts, implying that the
model still remembers some features inherent for this particular
dataset. The trends of misclassification were in general similar for
all datasets.
Importantly, during flips, rotations, elastic deformation, squa-

mous epithelia, and upregulated contrast artifacts, Datasets 3–5
belonging to the same cohort, but scanned by different systems,
showed slightly larger accuracy losses compared to Datasets 2 and
6. Deeper analysis of this phenomenon revealed that Datasets
3–5 showed up to 4 times more false-positive misclassifications
compared to Datasets 2 and 6 with approximately the same
number of false negative patches. Morphological analysis provides
some clues and allows to attribute this to the fact that all benign
patches in Datasets 3–5 were from regions immediately adjacent
to tumor areas often carrying preneoplastic lesions (high-grade
prostatic intraepithelial neoplasia, HGPIN) which contain cytologi-
cal features of tumor tissue and, apparently, have lower threshold
for misclassification. Benign class patches in Dataset 6 and,
especially, dataset 2 stemmed to a large extent from completely
“benign” slides or slides with a small amount of tumor. This is
supported by the fact that baseline probability of being a tumor in
glandular tissue class was statistically significant different between
Datasets (DS) 2/6 and DS 3–5 (mean probability of being tumor for
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DS1 0.019, DS3 0.04, DS4 0.045, DS5 0.032, DS6 0.023; for any
comparison: paired t-test < 1e−10). Moreover, F1 accuracy curves
for single artifacts were often visually stratified by this baseline
probability of being a tumor for benign patches.

Misclassified patches
As all studied datasets demonstrated the same patterns of model
accuracy behavior in presence of artifacts, we selected a
representative dataset (Dataset 3) for detailed investigation of
misclassified patches. In this dataset intersections were evident
among misclassified patches for different artifacts (Fig. 5B–E). The
artifacts that act randomly and generate principally new content
in patch (squamous epithelial cell, threads, dark spots) or
substantially reduce the amount of existing information (focus,
threads, dark spots) tend to show larger numbers of unique
misclassified patches (Fig. 5B–E). GradCAM-powered analysis of
class activation maps showed, however, that this new content is
not being used for classification (new features) but rather
obfuscating the existing features (Fig. 6). However, some artifacts
seem to genuinely change the feature constellation or feature
prominence in a patch (elastic deformation, HE-staining; Figs. 6
and 7). This is supported by the fact that elastic deformations
produce the highest numbers of false positive results (Supple-
mentary Fig. 4).
Focus artifacts are probably the most important artifacts in

digital pathology. We carried out similarity analysis using our
model as encoder (see Methods) for focus quality-related
misclassified patches. The latter were clustered using t-SNE
principle and analyzed by the expert genitourinary pathologist
(YT) to identify the morphological descriptive features. False
negative tumor patches built following recognizable clusters
(Fig. 8A): (1) very low tumor content in patch (single gland or less),
(2) well differentiated tumor or carcinoma with pseudohyperplas-
tic features. Among false positive classified benign patches several
clusters were evident (Fig. 8B): (1) inflammation, (2) luminal

content of glands, (3) preneoplastic changes (HGPIN), and (4)
retraction artifacts (commonly seen in tumor tissue).

DISCUSSION
Emerging digital transformation of diagnostic pathology provides
a possibility for automatization of some pathological tasks [1].
Histological slides, digitized with high resolution, can be
effectively analyzed using different computer vision algorithms
[1, 2]. DL-based algorithms are especially accurate in this setting
and were successfully implemented for tumor recognition, tumor
grading, and extracting prognostic and predictive information
from histological slides of patients with different types of cancer
[4, 5, 7, 9–16, 23, 24]. In the real world setting histological slides
are extremely heterogeneous even within single pathological
laboratory and often contain multiple artifacts which can stem
from natural reasons (mechanical or cauterization artifacts related
to tissue sampling), preprocessing (embedding, fixation, cutting,
staining) and digitization steps (focus, foreign objects, color
scheme/brightness/contrast, level of image compression etc.)
(Fig. 1). Most DL algorithms published to date did not explicitly
control for effects of artifacts and, therefore, might be biased
through the initial selection of higher quality slides for training
and testing phases. High accuracy of DL-based algorithms in the
presence of artifacts is of utmost importance for their implemen-
tation in the clinical workflow.
In this study, we employed a recently published DL-based

model for PCA detection in histological slides developed on
large-high-quality training dataset and validated on two external
datasets with high overall accuracy of >98% [4]. We reproduced
12 types of common histological artifacts or situations (Fig. 2)
and systematically tested how model accuracy may depend on
their presence and severity using 6 datasets representing
different institutes and different scanning systems (Table 1). As
it was anticipated, all tested artifacts indeed affected model

Fig. 6 Gradient-weighted class activation mapping (GradCAM) analysis for different types of artifacts with model “attention” heatmaps
(yellow and red representing areas in patch used by model for classification): one representative patch with from a tumor class (Dataset
3) is shown. Dark spots, fingerprints, synthetic threads and squamous epithelia in general do not generate new features and act by
obfuscating patch content and existing features. During focus deterioration, even after misclassification (starting from focus level 4) to false
negative benign category, roughly same regions are used for classification. On contrary, elastic deformations produce visible feature instability
and volatility of patch regions used for classification implying potential of elastic deformations to generate new features.
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Fig. 7 Gradient-weighted class activation mapping (GradCAM) analysis for hematoxylin-eosin staining as artifact. GradCAM “attention”
heatmaps (yellow and red representing areas in patch used by model for classification) are presented: two representative patches from the tumor
class (containing small benign gland as well) (above) and benign glandular class (below) are presented (Dataset 3). Analogous to elastic deformation
(Fig. 6) different staining schemes seem to activate/deactivate different features (volatility of GradCAM heatmaps) which affect classification in these
two patches. Model probability for classes [benign, tumor] is presented under every patch. Green color of font corresponds to proper classification,
red—to misclassification. S01-S09 correspond to different staining schemes used for stain transfer in this study (Fig. 2, Supplementary Fig. 1).

Fig. 8 Similarity analysis for misclassified patches resulting from focus quality deterioration up to a level 4 (kernel size of 7 px for
Gaussian blur filter). A False negative misclassifications of tumor tissue as benign (Dataset 3). B False-positive misclassifications of benign
glandular tissue as tumor (Dataset 3). Several morphological clusters are evident for false negative results (A): orange—patches corresponding
to well differentiated tumors with Gleason score 3+ 3= 6 as well as tumors with pseudohyperplastic features, both naturally very similar to
benign tissue; green—tumor patches with very low tumor content of few tumor glands or less. Four main morphological clusters can be
identified for false positive results (B): dark blue—luminal content more typical for tumor tissue (necrotic debris, coarse eosinophilic material),
yellow—retraction artifacts more typical for tumor tissue, red—preneoplastic changes (high-grade prostatic intraepithelial neoplasia), green—
benign patches with inflammation infiltrate.
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accuracy as they reduced the amount of information or distorted
the information within an image (Figs. 3 and 4). Noteworthy,
glandular tissue classes (tumor and benign) were the main
source of artifacts, while nonglandular tissue contributed much
less significantly.
Two main misclassification mechanisms (false positive tumor

classification for benign tissue and false negative benign
classification for tumor regions) differed among tested artifacts
(Fig. 5) with a slight predominance of false negatives, which
are naturally worse and can have poor diagnostic consequences
as model fails silently. False-positive misclassifications will
be normally highlighted by model and reviewed/controlled by
pathologist operator.
Several published studies systematically addressed the influ-

ence of histological artifacts on performance of DL-based models
in diagnostic pathology. A solid basis of evidence is related to
focus problem in digital pathology [17, 25–28]. Most of the
studies, however, concentrate on quantitative detection of out-of-
focus regions using simple DL-based models trained on synthetic
data [17, 25–28] or other principles [29, 30]. Kohlberger et al. [25]
investigated accuracy losses of breast cancer metastasis detection
model based on publicly available dataset and produced
conclusions concordant with the results of our study. The
advantage of our study is that we employed a validated model
with high accuracy and were able to test it using 6 different
datasets digitized with different WSI scanners. Wrong focus is an
artifact with a clear mechanism of action through degradation of
image features primarily associated with false-negative misclassi-
fications of tumor regions which are dangerous as model fails
silently (Fig. 5, Supplementary Fig. 5). Therefore, major digital
pathology guidelines (The Royal College of Pathologists [31],
College of American Pathologists [32]) require no objective
threshold for focus quality, and pathologists decide whether the
image sharpness is sufficient for unequivocal diagnosis. Our
results show that substantial losses of accuracy can occur when
the focus quality levels are still visually perceptible as adequate by
pathologists (Fig. 3). We also provide morphological classification
of image regions most susceptible to misclassification in case of
focus artifacts (Fig. 7).
Image compression effects were investigated by several groups

showing accuracy deterioration of models for metastatic cancer
detection and segmentation, nuclei segmentation, and lympho-
cyte detection [17, 19]. Image compression is a fully controllable
parameter set up manually during scanning (usually at a level of
80% or more). It normally does not undergo any changes after
complete and successful validation of digital pathology system.
However, lower levels of JPEG compression can be manually set
up by WSI operator to reduce needs for a storage space or in
research setting. Interestingly, the human eye does not recognize
image alteration within a wide range of compression levels
(30–90%). The results of the current study and other published
studies [17, 33] show that this might have potential consequences
for accuracy of analytical models trained on datasets with lower
compression levels, should they be applied to such images. Our
findings show that any compression levels under 80% can result in
accuracy deterioration and should be avoided.
Hematoxylin-eosin staining is a factor which is extremely

difficult (or even impossible) to standardize at pre-analytical
stage. WSIs from the single laboratory and, especially, from
different institutions have very different HE-staining schemes due
to multitude of factors, such as variation of stains, reagents and
manufacturers, protocols, room conditions, and many more [34]
(Supplementary Fig. 1). Additional layer of heterogeneity are color
schemes of WSI scanners from different manufactures which
imprint every scanned slide [35, 36]. The same slides from one
institution digitized by three different scanners (Datasets 3–5) in
our study are highly heterogenous in terms of color scheme,
brightness and contrast (Supplementary Fig. 4A), corroborating

the results of the recent study by Schmitt et al. [34]. Obviously,
staining is a parameter that should be controlled for at time of WSI
analysis by diagnostic models. Substantial losses in accuracy
dependent on HE-staining quality, brightness, and contrast were
evident in our study (Fig. 4). Many methods were suggested for
stain and color normalization with some of the most popular
being Macenko [21], Vahadane [37], Bejnordi [38], and sparse
autoencoder-based algorithms [39]. Also, DL-based pix2pix GANs
have been extensively studied most recently providing not only
stain normalization, but also style transfer [40–42]. Style transfer
using GANs might be a promising approach to tailor model
performance to single institutions where it should be implemen-
ted. In comparison to stain vector transfer using Macenko
principle, pix2pix GANs can allow for a more advanced adaptation
to the target domain and elimination of scanner-specific features
[35] (see comparison in Supplementary Fig. 4B, C). Other
approaches to address this problem are using extensive augmen-
tation of training dataset via color/staining changes [18, 43, 44],
using staining invariant features for model training [42, 45, 46],
and using large training datasets from different institutions to
compensate for the necessity of augmentation [13].
To the best of our knowledge, other artifacts investigated in our

study (dark spots, overlying squamous epithelia, synthetic threads,
elastic deformations, fingerprints) were not addressed system-
atically in the pathology domain and, therefore, represent the
novelty of this study. All these artifacts might result in accuracy
deterioration and warrant quality control measures.
Several strategies might be implemented to sustain accuracy of

DL-based models in context of artifacts. Firstly, implementation of
pre-analytical quality control tools (e.g. HistoQC [47]) is of utmost
importance before models are even being applied to WSIs.
Secondly, “knowing own models” principle is important to predict
in which situations the former can fail and to achieve a balance
between additional QC-related computational load and inference
speed. Next, augmentation of training dataset using generation of
synthetic artifacts can be a reasonable strategy to improve model
accuracy. In addition, uncertainty measurements for a model
classification might help to identify visual contexts to which the
model was not exposed during training, such as artifacts [24]. And
lastly, more standardization is warranted for digital pathology
systems, particularly in terms of color calibration and image
compression levels [48].
This study had certain limitations that require further elabora-

tion. Although our model was trained using high-quality dataset, it
is used only for detection of PCA. Generalizability of the results to
other tumor types and DL models warrant additional investiga-
tions. We used the lowest levels of JPEG compression of 80% as
reference. Some authors show that even lower compression levels
(>90%) might be necessary for higher accuracy [17], although, we
believe that it is a matter of compression level of images in
training dataset (80% in our case). We do not reproduce certain
types of artifacts like tissue folds (because of the technical
difficulty of generation) and pen marks as the latter are basically
not present in diagnostic setting (slides are being scanned before
pathologists receive them) and can be easily avoided through
slide cleaning before scanning in other situations. While our
results are important for DL-based classification algorithms, it is
not clear what impact the artifacts will have on non-DL-based
computer vision algorithms (not addressed in this work).
We believe that our stress-testing pipeline might be a necessary

step for any diagnostic model/algorithm in course of clinical
validation. While our study was performed entirely on HE-stained
slides, we may predict that histological artifacts play the similar
detrimental role in more advanced staining techniques, such as
histochemistry, immunohistochemistry, and immunofluorescence,
particularly multiplexed. Immunostaining and immunofluorescence
are widely utilized as objects for DL in pathology and impact of
tissue artifacts should be investigated in future studies.

B. Schömig-Markiefka et al.

2106

Modern Pathology (2021) 34:2098 – 2108



In our study, we reproduced twelve types of common
histological artifacts or analytical situations. We systematically
tested the effects of these artifacts and revealed mechanisms of
misclassification using 6 datasets from several institutions,
digitized by different scanning systems, using a validated pre-
trained model for PCA detection with high accuracy. We here
provide evidence that any histological artifact can lead to
substantial loss of accuracy in DL model performance. We
discuss the strategies for prevention of model accuracy losses in
context of the artifacts. Stress-testing of diagnostic models using
synthetically generated artifacts might be an important step
during clinical validation of DL algorithms.

DATA AVAILABILITY
Six generated datasets are available for download and academic usage at Zenodo
(http://zenodo.org), Deposits: 4789576 (Dataset 1–4) and 4904569 (Datasets 5–6). The
code used for artifact generation and dataset processing with model predictions is
available for download at https://github.com/cpath-ukk/Artifact. The original whole
slide images are available from corresponding authors on request.
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