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Abstract
The classification of adenohypophysial neoplasms as “pituitary neuroendocrine tumors” (PitNETs) was proposed in 2017 to
reflect their characteristics as epithelial neuroendocrine neoplasms with a spectrum of clinical behaviors ranging from small
indolent lesions to large, locally invasive, unresectable tumors. Tumor growth and hormone hypersecretion cause significant
morbidity and mortality in a subset of patients. The proposal was endorsed by a WHO working group that sought to provide
a unified approach to neuroendocrine neoplasia in all body sites. We review the features that are characteristic of
neuroendocrine cells, the epidemiology and prognosis of these tumors, as well as further refinements in terms used for other
pituitary tumors to ensure consistency with the WHO framework. The intense study of PitNETs has provided information
about the importance of cellular differentiation in tumor prognosis as a model for neuroendocrine tumors in different
locations.

Introduction

Pituitary tumors include neoplasms that arise in and
around the sella turcica [1, 2]. The majority arise from the
hormone-secreting adenohypophysial cells that are
members of the family of neuroendocrine epithelial cells.
Other tumors include those arising from pituicytes (the
modified glia of the posterior lobe), tumors that arise
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from the meninges, stromal elements, and adjacent
hypothalamus, as well as craniopharyngiomas and many
others [3].

Tumors of adenohypophysial cells exhibit a wide
spectrum of hormonal and proliferative characteristics;
small tumors may be incidental findings [4] or may be the
cause of significant morbidity and even mortality, as in
the case of untreated Cushing disease [5]. A large number
of tumors are prolactinomas (functional lactotroph
tumors) that respond to medical therapy with normal-
ization of hormone levels and tumor shrinkage in the
majority of cases. However, a significant proportion,
estimated to be more than half of all patients with clini-
cally diagnosed anterior pituitary tumors [6], require
surgical intervention, some with curative intent, others for
debulking and avoidance of compressive effects. Up to
one quarter of patients who undergo surgery have residual
and persistent disease that may entail complex manage-
ment for hormone regulation as well as additional surgical
intervention, radiotherapy, and chemotherapeutic attempts
to restrain tumor growth.

In this review, we summarize the features of adeno-
hypophysial hormone-producing cells that represent
neuroendocrine cells, we discuss the terminologies that
are relevant for the classification of the neoplasms that
arise from these cells, and we document the epidemiol-
ogy of these lesions. The large body of work reviewing
prognostic features of the various tumor types is sum-
marized and the importance of tumor subtyping is dis-
cussed as a model for other neuroendocrine tumors
(NETs).

Hormone-secreting pituitary adenohypophysial
cells are neuroendocrine cells

Endocrine cells that produce hormones are found through-
out the body, both in endocrine glands and dispersed among
other cells of non-endocrine organs. They fall into three
categories based on cell differentiation and the biochemical
features of the hormone(s) they produce [7]:

(1) Steroid hormone-producing cells are found mainly in
the adrenal cortex and gonads. They are thought to be
of mesodermal embryonic origin and their biochem-
istry involves the uptake of cholesterol for conversion
by complex enzymatic processes into glucocorticoid,
mineralocorticoid, and sex steroid hormones. They are
characterized structurally by an abundance of smooth
endoplasmic reticulum and fat globules.

(2) Thyroid follicular cells, of endodermal origin, are
epithelial cells that synthesize thyroglobulin, store it
in sequestered follicles, and resorb it for iodination
and cleavage into thyroid hormones. They have
extremely well-developed intercellular junctions,
rough endoplasmic reticulum, and complex microvilli
at the apical lumen that are critical for resorption of
thyroglobulin.

(3) The largest family of endocrine cells have neuroendo-
crine differentiation and are known as neuroendocrine
cells (Fig. 1). These cells all are involved in the
production of peptide hormones that are produced in
the rough endoplasmic reticulum, processed in the
Golgi complex and packaged into membrane-bound

Fig. 1 The Families of Neuroendocrine Cells. These highly specialized hormone-secreting cells are divided into two families, the epithelial group
that usually express keratins and the paraganglia that derive from the sympathetic and parasympathetic autonomic nervous system and usually do
not express keratins. Epithelial neuroendocrine cells can comprise a neuroendocrine organ, such as the pituitary or parathyroid, or they can be
dispersed throughout non-endocrine or non-neuroendocrine tissues. Each group of epithelial neuroendocrine cells is composed of specific cell
types that have distinct structure and function.
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neurosecretory granules where they are stored until
hormone regulatory signals cause them to move to the
cell membrane for exocytosis-mediated release into
the bloodstream (Fig. 2A). Their common structural
and functional features gave rise to the APUD (amine
precursor uptake and decarboxylation) theory by
Pearse in 1974 [8]. There are two subfamilies of
neuroendocrine cells: epithelial neuroendocrine cells,
derived mainly from the embryonic endoderm, and
non-epithelial neuroendocrine cells (paraganglia, also
called “paraneurons”), derived from the embryonic
neuroectoderm. Epithelial neuroendocrine cells
include pituitary adenohypophysial cells, parathyroid
cells, parafollicular C-cells, pancreatic islet cells, and
the cells of the so-called “dispersed neuroendocrine

system” that populate the mucosa of the respiratory
and gastrointestinal tracts from the nose and mouth to
the rectum, as well as the genitourinary system [7];
these cells are also present in the skin where they are
known as Merkel cells. Paraganglia are present in soft
tissue from the base of the skull to the bottom of the
vertebral column; the largest form the adrenal medulla
bilaterally, and they include the para-aortic paragan-
glia, the carotid body, the jugulotympanic paragan-
glion (also called “glomus jugulare”), the organ of
Zuckerkandl, and paraganglia of the lungs and porta
hepatis [9]. All neuroendocrine cells express a number
of proteins that are characteristic of their differentia-
tion, including neural cell adhesion molecule that is
recognized by the antibody CD56, neuron-specific
enolase, synaptophysin, PGP 9.5, chromogranins, and
the transcription factor insulinoma-associated protein-
1 (INSM1); several of these are not specific for
neuroendocrine cells and only chromogranins and
INSM1 represent specific biomarkers of neuroendo-
crine differentiation (Fig. 2B, C) [10] as they are only
also expressed by neural tumors [11]. In addition to
these common biomarkers, most epithelial neuroendo-
crine cells express keratins (that are not present in
paraganglia) and specific transcription factors and
hormones that allow cell type characterization,
whereas paraganglia express the transcription factor
GATA3 and tyrosine hydroxylase, a critical enzyme
early in the biosynthetic pathway of catecholamines.

Pituitary adenohypophysial cells are a complex family of
neuroendocrine cells that, like other related cells, express
transcription factors that determine their ability to synthe-
size specific hormones [12]. Studies of cytodifferentiation
have demonstrated three major families of pituitary adeno-
hypophysial cells, with six terminally differentiated cell
types (Fig. 3). In the mature gland, there is evidence to
suggest that transdifferentiation occurs physiologically
between the four cell types of the PIT1 family; it is unclear
if transdifferentiation occurs between corticotrophs, gona-
dotrophs and the PIT1-lineage somatotrophs, lactotrophs,
mammosomatotrophs, and thyrotrophs. In general, PitNETs
are classified as originating from these various cell types,
but in addition, morphologic variants of these mature cells
have different patterns of granulation, and some tumors
show differentiation along a lineage without the features of
terminally differentiated mature cell phenotypes (Fig. 3).
Null cell tumors do not show evidence of adenohypophysial
lineage differentiation; with improved techniques they
represent as low as 0.6% of all adenohypophysial tumors
[13], consistent with the initial proposal that with advances
in knowledge, they would all but disappear [14] and now
their continued existence has been questioned [15]. Mixed

Fig. 2 Neuroendocrine features of pituitary neuroendocrine
tumors. A The ultrastructure of this PitNET from a patient with
acromegaly illustrates the neuroendocrine features of adenohypophy-
sial cells. The tumor cell cytoplasm contains rough endoplasmic reti-
culum (*) for hormone synthesis, a prominent Golgi complex (G)
where hormone is packaged into forming secretory granules, and
numerous membrane-bound secretory granules that store hormone for
release into the extracellular space. B The tumor cells show cyto-
plasmic chromogranin reactivity. C Nuclear INSM1 positivity is a
feature of pituitary neuroendocrine tumors.
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tumors also occur; they may be of a single lineage, such as
the mixed tumors of somatotrophs and lactotrophs that may
represent divergent differentiation of a single cell type, or
they may be synchronous distinct tumors of different
lineages [16]. There are also unusual plurihormonal tumors
that show mixed lineage [1, 17]. Very rare and unusual
pituitary tumors of primitive adenohypophysial cells
(composed of a mixture of adenohypophysial neuroendo-
crine cells, primitive Rathke’s cleft cells, and primitive
folliculostellate cells) are known as pituitary blastomas [18].

Terminologies in classification of pituitary
NETs

Tumors composed of adenohypophysial hormone-secreting
cells have been classified as “adenomas” since their early
descriptions in the late 19th century and early 20th century.
This terminology has been applied even to tumors that
extend upwards to compress the optic chiasm and brain, and
to those that infiltrate dura and invade laterally to involve
the cavernous sinuses, as well as to tumors that penetrate the
sphenoid bone, clivus, and/or paranasal sinuses. The term
“carcinoma” has been restricted to PitNETs that show evi-
dence of distant metastasis to cervical lymph nodes, lung,
liver and bone, and/or discontinuous cerebrospinal fluid
dissemination within the cranium or spinal canal [1, 2]. This
represents a divergence from some other tumor classifica-
tion schemes in which invasion represents the defining

characteristic of a malignancy, for example, epithelial
neoplasms including squamous and basal cell carcinomas,
breast carcinomas, and intestinal malignancies.

By definition, an “adenoma” is a “benign tumor of
glandular epithelial cells.” The definition of “benign” is “a
disease that is not harmful in effect.” The Merriam-Webster
dictionary defines benign as “of a mild type or character that
does not threaten health or life,” as “having no significant
effect.”

To address the discrepancy between benign behavior and
the morbidity of patients with invasive tumors that cannot
be resected surgically, efforts were made to classify some
tumors as “atypical adenomas” [19]. However, the criteria
for this diagnosis suffered from a lack of reproducibility,
and this terminology has since been abandoned [2].

In other sites, tumors of neuroendocrine cells have had
varying terminologies applied and they have undergone
changes over time. In the pancreas, “islet cell adenoma” was
replaced by “islet cell tumor” when it became clear that they
can behave aggressively; subsequent studies that showed
origin of some of these tumors from neuroendocrine cell
precursors in pancreatic ducts rather than in islets resulted in
a further change to “pancreatic neuroendocrine tumors”
(pNETs or PanNETs) [19, 20]. Oberndorfer initially clas-
sified small bowel NETs as “carcinoid” tumors because they
looked “carcinoma-like” [21]; once their behavior was
clarified as potentially malignant, the term “carcinoid” was
mostly restricted to the clinical syndrome of serotonin
excess that is a feature of the enterochromaffin (EC) cell

Fig. 3 Pituitary neuroendocrine cells and their tumors. Adenohypophysial hormone-secreting cells differentiate along three lineages to form
multiple mature cell types. Each mature cell type is associated with at least one tumor type, but several cell types give rise to multiple tumor
variants. In addition, there are tumors composed of cells that lack terminal differentiation; some of these show lineage differentiation but others,
most commonly those classified as null cell tumors, lack evidence of any lineage specificity.
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neoplasms, and these tumors assumed the terminology of
intestinal NETs along with their counterparts, gastric, and
rectal NETs. In the lung, the terminology of “typical and
atypical carcinoid tumors” remains embedded in the litera-
ture [22], but is likely to change over time [23].

Molecular analysis combined with careful clinical studies
have shown that well-differentiated NETs have unique
genetic and epigenetic alterations that are not infrequently
germline, giving rise to familial syndromes such as multiple
endocrine neoplasia types 1, 2, 4, and 5, von Hippel Lindau
syndrome, tuberous sclerosis, neurofibromatosis syn-
dromes, and the succinate dehydrogenase (SDH)-related
[24–27]. In contrast, poorly differentiated neuroendocrine
neoplasms (NENs), including high-grade malignancies in
the lung and upper respiratory tract, pancreas and gut,
breast, and genitourinary system, are more closely related to
non-endocrine carcinomas, both genetically and clinically
[28, 29] with some exceptions in the lung [30].

To address the issues of terminology, the World Health
Organization (WHO) proposed the implementation of a
unified approach to the classification of neuroendocrine
neoplasia at all body sites. The proposal includes the use of
the term “NEN” to describe all members of this large family
of proliferative lesions of neuroendocrine cells [23]. The
term “neuroendocrine carcinoma” (NEC) was proposed for
the aggressive poorly differentiated high-grade malig-
nancies; in contrast, the well-differentiated and generally
low-grade neoplasms were classified as “NETs” in keeping
with the terms in place for gastro-entero-pancreatic lesions.

The term “tumor” is indeed problematic. Etymologically
derived from the Latin words “tumere,” meaning “to swell”
and/or “tumor,” meaning “swelling,” this word has been
used since the 16th century to mean a mass that can be
inflammatory, neoplastic, or vascular. However, in modern
medical vernacular, it has taken on the context of neoplasia,
and in the case of “NET,” it has a specific connotation,
implying a neoplasm composed of well-differentiated neu-
roendocrine cells, usually with low proliferative activity
[23]. There is no specific indication of benign or malignant
classification, as it is recognized that these lesions may
show a wide spectrum of behaviors, including a potential
for local invasion and metastasis.

In 2016, to address the clinical need for recognition of
the morbidity caused by invasive and aggressive pituitary
“adenomas” and their metabolic disturbances, and antici-
pating a convergence of classifications of NETs at various
body sites, the International Pituitary Pathology Club pro-
posed a change in nomenclature for tumors of hormone-
secreting adenohypophysial cells from “adenoma” to
“NET” [31]; in parallel with the pancreatic abbreviation
“PanNETs,” the term was abbreviated to “PitNETs.” This
terminology is consistent with the WHO proposal. It
recognizes these pituitary neoplasms as members of the

neuroendocrine family. The term “tumor” replacing ade-
noma provides for the spectrum of behavior from indolent
lesions to those with significant hormonal impact and/or
invasive growth, thus recognizing the morbidity of
aggressive tumors without implying overt malignancy. It
also avoids the contradiction when a pituitary tumor
develops a metastasis, which, although rare, usually follows
a prior diagnosis of “adenoma.”

Another important aspect related to terminology and
tumor classification is the categorization of histological
tumor subtypes based on clinical and biochemical features.
The term “pituitary NET” is a classification for the family of
tumors, and each tumor subtype should be classified based
on cell type, e.g., corticotroph, lactotroph, somatotroph,
mammosomatotroph, thyrotroph, or gonadotroph tumor
(Fig. 3). The clinical presentation is important. Most
somatotroph and lactotroph tumors are clinically function-
ing and the classical presentation of a corticotroph tumor is
Cushing disease; however, some of these differentiated
hormone-producing tumors are clinically “silent.” In con-
trast, the vast majority of gonadotroph tumors are clinically
silent. Clinicians should be aware that among tumors that
are clinically classified as nonfunctioning, the majority are
gonadotroph tumors that tend to be indolent, but there are
also tumors that are morphologically classified as silent
corticotroph, silent somatotroph, and other silent tumors of
PIT1 lineage, and very rarely they can be classified as true
null cell tumors with no evidence of pituitary lineage
differentiation.

Unlike in other sites, detailed structure–function corre-
lations in pituitary tumors have shown that there are
structural variants of hormone-producing cell types that are
clinically relevant. For instance, the clinical entity known as
acromegaly is not a single disease [32]; densely and spar-
sely granulated variants of somatotroph tumors have distinct
clinical and radiologic features and different responses to
therapy, and several other tumors of PIT1 lineage can also
manifest with acromegaly. Similarly, a TSH-producing
PitNET is not always a thyrotroph tumor, since both mature
and poorly differentiated plurihormonal PIT1-lineage
tumors can also result in central hyperthyroidism [33, 34].
A substantial advance in knowledge has been achieved in
PitNETs by clinicopathologic and genomic studies that
have applied rigid criteria to distinguish histological tumor
subtypes.

Epidemiology

Like other NETs that have been increasing in incidence
[35], PitNETs that were once considered to be rare are
increasingly diagnosed. They are frequently identified
incidentally at autopsy or on routine radiologic examination
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for other reasons. Autopsy studies have reported a pre-
valence as high as 22.5 [36] and 27% [37] of cases.
Approximately 20% of “normal” pituitary glands harbor an
incidental radiologically detectable lesion measuring 3 mm
or more in diameter [4, 38]. The majority of these incidental
findings are clinically nonfunctioning pituitary tumors, but
even these “asymptomatic” tumors can cause hypopituitar-
ism [39] while others are prolactinomas that cause
undiagnosed clinical symptomatology [40, 41]; occasion-
ally they are somatotroph or corticotroph tumors causing
clinically undiagnosed acromegaly and Cushing disease,
respectively.

In several population studies from the last 15 years, the
prevalence of clinically diagnosed pituitary tumors ranges
from ~78 to 116 cases per 100,000 people [6, 42–44]; one
study from a Swedish group reported an incidence of 3.9/
100,000 people [45]. Data from the Central Brain Tumor
Registry of the United States from 2011 to 2015 show
pituitary tumors as 17.5% of reported brain tumors; they
estimate an incidence rate of 4.12 sellar tumors/100,000
population per year, but this figure is clearly low, since
these statistics are based only on surgically resected tumors
[46]. In a recent Korean nationwide population-based study,
the annual incidences per 100,000 population were esti-
mated to be 3.5 for nonfunctioning pituitary tumors, 1.6 for
lactotroph tumors, 0.5 for somatotroph tumors, and 0.2 for
corticotroph or thyrotroph tumors [47]. Independent of
country-specific differences, epidemiologic studies con-
sidered together show that clinically apparent PitNETs are
increasing in both annual incidence (between 3.9 and 7.4
cases per 100,000) and prevalence (76–116 cases per
100,000 population), the latter corresponding roughly to 1
case per 1000 people, with nonfunctioning tumors and
prolactinomas as the most frequent subtypes [48].

Prolactinomas are consistently the most common type of
PitNET [4, 6, 42–45, 48]; they are usually treated medically
[49–52] and most are therefore not captured in cancer or
surgical statistics, so their exact incidence is unknown. In
one prevalence study, surgical resection was performed for
56% of patients with clinically diagnosed PitNETs [6]. The
relative frequency of the various tumor types resected sur-
gically shows that more than a third are hormonally inactive
mass lesions of SF1 lineage [53, 54]. About 30% are of
PIT1 lineage and more than half of those give rise to growth
hormone excess, while ~15% are TPIT lineage tumors
[6, 42, 49, 52, 54, 55].

Prognostic biomarkers in pituitary NETs

The prognosis of a patient with a PitNET depends on
multiple factors, which are collectively described as
“aggressiveness.” The relevant parameters that define

aggressiveness include hormone secretory activity, tumor
size, site, extent of invasiveness, and rate of growth into
surrounding structures as well as refractoriness to therapy.
Together, these parameters influence the success of surgical
resection, metabolic disorders caused by the tumor, along
with other intrinsic tumor characteristics that collectively
impact disease-specific morbidity.

While the vast majority of prolactinomas are clearly not
aggressive, some are resistant to dopamine agonist therapy
and the rare very large tumors in men, can be more
aggressive, not only because they are larger at presentation
but possibly because of altered expression of genes that are
mediated by estrogen receptor signaling [56]. In the fol-
lowing paragraphs, we review the evidence that is available
to help define aggressiveness based on the extent of disease
and tumor type.

Of patients who undergo surgery, the percent that have
persistent disease varies depending on the size, invasiveness
of the tumor, and extent of resection [57]. Recurrence after
surgery has been reported to vary from 0 to 40% in those
with 5 or more years of follow-up; the variability is often
due to the duration of follow-up. In one series, progression
occurred in 27.8% of patients and the mean time to pro-
gression was 23.7 months (range, 3.7–52.4 months), both
associated with tumor size and extent of resection [58].
Neurosurgeons have defined the extension of tumors into
adjacent neuroanatomical regions (Fig. 4) such as the
degree of lateral extension into the cavernous sinus (Knosp
classification) [59] and also the degree of extra-sellar and
vertical extension into suprasellar regions (Hardy classifi-
cation) [60]. Many patients with Knosp grade 3 or higher
cavernous sinus invasion eventually require multimodal
therapies including repeat operations and/or radiotherapy
[61]. Despite efforts to predict cavernous sinus invasion on
magnetic resonance imaging (MRI), the precise confirma-
tion of invasion frequently requires surgical and/or histo-
logical examination. Clearly there is a need for better
biomarkers to help predict invasiveness [62].

Surgical remission varies by tumor type [1, 63]. In a
surgical series that included multiple hormonally active
tumor types, at a median follow-up of 56 months, tumor
recurrence was 0, 11, and 14% for GH-, ACTH-, and PRL-
secreting tumors [64]. In another study, the recurrence-free
survival at 10 years was 78.2% in acromegalic patients,
68.1% in prolactinomas, 74.3% in Cushing disease, 70.3%
in TSH-secreting tumors and 75.3% in clinically hormon-
ally inactive tumors [65]. In yet another series, corticotroph
tumors had a higher risk of recurrence than other tumor
types [66].

The Knosp classification has been reported to correlate
with surgical outcomes in GH tumors [67]. When surgery is
performed by an experienced surgeon, remission is >85%
for microtumors <1 cm [68–70] but only 40–66% for
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macrotumors [69–72]. Because GH-secreting tumors can
invade into sellar dura and/or the cavernous sinus at the
time of diagnosis, the overall control rate with strict hor-
monal criteria is 50–80% [67, 73–75]. Occult dural foci of
tumor may provide the basis for persistent acromegaly after
gross total resection and a clear postoperative MRI. Many
studies report the outcome of transsphenoidal surgery as the
first-line treatment; the impact of preoperative medical
therapy for GH-secreting tumors to address comorbidities
and reduce soft tissue swelling to facilitate the operative
approach remains the subject of debate.

For ACTH-secreting tumors, reported remission rates
vary from 60 to 90%, but up to 15–20% eventually recur
[76–79]. Pivonello et al. [80] reviewed 74 studies published
between 1976 and 2014 involving 6134 patients with
Cushing disease and a mean follow-up duration of
64.3 months. In their review, they found that the overall
initial remission rate ranged from 25 to 100%, with a mean
remission rate of 77.8% (median, 78.7%); the recurrence
rate ranged from 0 to 65.6%, with a mean recurrence rate of

13.2% (median, 10.6%). The remission rates in micro-
tumors ranged from 48.7 to 100% (mean, 82.1%; median,
85.7%), whereas in macrotumors, they ranged from 30.8 to
100% (mean, 62.3%; median, 64.1%). The recurrence rates
in patients with microtumors and macrotumors were
0–36.4% (mean, 11.7%; median, 10.9%) and 0–59% (mean,
18.8%; median, 13.9%), respectively. Although en bloc
resection achieves the best rates of remission (98.5%), it
applies only to smaller tumors not invading dura or other
parasellar structures [81]. Dickerman and Oldfield noted the
clinical importance of occult dural invasion, i.e., invasion of
the dura or cavernous sinus that is not evident on imaging
studies and is not obvious to the surgeon, as the basis of
recurrence or persistent tumor and endocrinopathy in their
series of Cushing disease [82].

After surgery, the probability of recurrence of apparently
completely resected tumors and the time to clinically rele-
vant regrowth of known residual tumor correlate with
radiologic tumor doubling-time [83]. However, there is
controversy about the role of proliferation markers includ-
ing mitoses (conventional or phosphohistone-H3-assisted
count), Ki-67 labeling index, and p53 staining [84, 85].

While transsphenoidal surgery is the initial treatment of
choice for the great majority of large pituitary tumors, many
cases of functional tumors cannot be hormonally controlled,
and the recurrence rate of nonfunctioning tumors is high. In
tumors that cannot be fully resected, the prognosis depends on
multiple factors that mediate tumor responsiveness to other
therapeutic modalities. These include therapies used to control
hormone hypersecretion as well as those intended to target
structural tumor growth. Patients with acromegaly and resi-
dual tumor postoperatively are more likely to respond to first-
generation somatostatin analogues if their disease is due to a
densely granulated somatotroph or mammosomatotroph
tumor than if they have a sparsely granulated somatotroph
tumor [86–90]. It has been reported that patients with per-
sistent or recurrent Cushing disease are more likely to respond
to pasireotide if they have a tumor with a USP8mutation [91],
a molecular alteration that is more frequent in densely
granulated microtumors [91, 92], again emphasizing the
importance of tumor histotype in determining therapeutic
responsiveness.

Among patients with clinically nonfunctioning tumors,
classification by cell type is equally important [13]. Among
clinically nonfunctioning tumors, gonadotroph tumors are
more indolent whereas true null cell tumors and silent
corticotroph tumors are more likely to behave aggressively
[13, 93–95]. For example, in one report of silent cortico-
troph tumors with a follow-up longer than 5 years, 31%
recur (CI 13–38%) [96]. Approximately 50% of patients
with detectable postoperative residual tumor develop pro-
gression within a 5-year period [97–99]; however, the most
common gonadotroph tumors tend to grow slowly, whereas

Fig. 4 Magnetic resonance imaging of an aggressive pituitary
neuroendocrine tumor. Contrast enhanced T1-weighted MRI of sella
of a locally invasive macrotumor that was associated with visual loss
and weight gain. On investigation, the ACTH level was 237 pg/mL
(normal, <50) and morning cortisol 28 μg/dL (normal, 4–22), pro-
viding a biochemical diagnosis of Cushing disease. The tumor sur-
rounds the pituitary gland, which is seen as an ill-defined focus of
enhancement in the middle of the sella, and fills both cavernous
sinuses (both Knosp grade 4), with suprasellar extension through the
oculomotor triangle into the basal cistern just above the right caver-
nous sinus, involvement of the clivus, and invasion into the sphenoid
sinus. A diagnosis of pituitary carcinoma cannot be assigned because
of the absence of any noncontiguous metastatic tumor. This highly
invasive tumor shows the incoherence of diagnosis as a grade I
“adenoma” in the face of such aggressive clinical behavior.
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silent corticotroph tumors, while not always reported to
have a higher recurrence rate [96], have been shown in most
studies to be more proliferative and invasive, resulting in
relatively more frequent compressive features with visual
field loss, hypopituitarism, and other symptoms and signs of
tumor progression [100–104].

Certain tumor types are considered to be inherently
aggressive. The so-called “poorly differentiated” PIT1-
lineage tumors (formerly known as “silent subtype 3
pituitary adenomas”), which are thought to lack terminal
PIT1-directed cell maturation, have been associated with
frequent disease progression in three clinical series
[33, 105, 106]. Crooke cell tumors have been well-
recognized for their adverse biology [107–109]. In the
group of somatotroph tumors, sparsely granulated tumors
are more aggressive than densely granulated tumors; they
present with larger and more invasive lesions
[87, 89, 110–112]. Among prolactin-producing tumors,
acidophil stem cell tumors have a higher risk of aggressive
disease [113, 114] and are often resistant to medical therapy
[115]. TSH-secreting tumors historically showed more
invasive behavior and were more difficult to fully resect
[116]; however, this may relate to delays in diagnosis, and
inappropriate treatment with thyroid ablation that resulted
from misdiagnosis as primary hyperthyroidism.

It has been estimated that of pituitary tumors requiring
surgery, some 15% can be considered as highly aggressive
based on their surgical, radiological, and pathological
characteristics [117, 118]. Such patients may be resistant to
both conventional radiotherapy and radiosurgery. Newer
medical agents adopted in the broader field of NETs are
beginning to make their way into the therapeutic arma-
mentarium for a subset of unresectable or especially
aggressive PitNETs. These include the mTOR inhibitor
everolimus [119, 120] as well as the DNA methylation
inhibitor temozolomide [121–124]. In other tissues,
responsiveness to temozolomide has been shown to be
predicted by the level of expression of O6-methylguanine-
DNA methyltransferase but it is unclear if this is useful in
the case of PitNETs [122, 123, 125, 126]. Equally as
important, the optimization of therapeutic responsiveness of
temozolomide-based therapy through the combined use
with capecitabine has resulted in the now widely adopted
CAP/TEM regimen in NET management [127, 128]; it
is expected that CAP/TEM will similarly be used for
temozolomide monotherapy escape or resistant PitNETs
[128–130]. Peptide radio-receptor therapy with 177lutetium
(177Lu)-based protocols represents another major advance in
NET management that will likely extend to use in PitNETs
[129, 131]. Such NET management strategies, alone or in
sequence, will prove to be critically important in directing
their extended use for aggressive PitNETs.

These data show the importance of determining a
dynamic multifactorial clinicopathologic risk stratification.
This has been attempted [57]; however, it is important to
distinguish tumor grade from risk score and tumor stage. It
is important to apply grading based not only on proliferation
but also on differentiation, and there is clearly a need for
appropriate staging of PitNETs to allow the determination
of prognosis based on surgical resectability. The prognosis
for patients with inoperable disease is dependent on
response to medical therapy that is mainly a reflection of
cell type and subtype.

Genetic predisposition and pathogenesis-
related biomarkers

Like other NETs, PitNETs are members of several families of
tumors associated with a genetic predisposition. They form
one of the three “P”s of multiple endocrine neoplasia type 1
(MEN1), originally described by Wermer [132]. This auto-
somal dominant disorder with incomplete penetrance is due to
inheritance of a mutant copy of the MEN1 gene that encodes
menin. Approximately half of the affected patients develop a
PitNET; the most common types produce prolactin and/or GH
[4, 133–135] and poorly differentiated tumors of PIT1 lineage
have been reported in patients with MEN1 [33]. The tumors
may be multiple and multicentric [134, 136], but this can be
hard to prove. Patients with MEN1 generally present at a
younger age than those with sporadic tumors [135]. Other
manifestations of MEN1 include parathyroid and pancreatic
neoplasms as well as frequent adrenal cortical tumors [137]
and, more recently, breast cancer has been shown to be more
frequent in patients with MEN1 [138].

Defects in CDKI genes are responsible for an MEN1-like
syndrome known as MEN4. Patients have mutations in the
CDKN1B/p27Kip1 gene [139, 140] and the CDKN2C/
p18INK4c gene [141, 142]. MEN4 is characterized by para-
thyroid proliferations, PitNETs, and pNETs as well as small
intestinal NETs, lymphoma, and breast cancer [143].

Cases of MEN1-like acromegaly associated with hyper-
parathyroidism and pNETs have been described in patients
with germline mutation of CDC73 [144, 145]. Germline
pathogenic MAX variants have been associated with PIT1-
lineage tumors along with other endocrine and non-
endocrine tumors in a syndrome proposed as MEN5 [27].

A small number of patients with pituitary GH-secreting
tumors, most often those presenting at a young age and
associated with gigantism, have Carney’s complex [146], an
autosomal dominant disorder associated in around 50% of
cases with germline mutations in the PRKAR1Aα gene that
encodes the PKA regulatory subunit 1Aα, causing unrest-
rained cAMP signaling [147, 148]. The syndrome is
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characterized by spotty pigmentation due to nevi affecting
mucosal surfaces and the lips, malignant melanotic nerve
sheath tumors, cardiac and other myxomas, and endocrine
tumors including not only pituitary tumors but also bilateral
pigmented nodular adrenocortical disease and testicular
tumors [146].

Mutations in genes encoding the various components of
the SDH complex are implicated in several types of familial
neoplasia [149] including pheochromocytomas and para-
gangliomas, gastrointestinal stromal tumors, and renal car-
cinomas as well as rare pituitary tumors [150].

Lynch syndrome is a well-recognized autosomal domi-
nant familial cancer predisposition syndrome that increases
the risk of many types of cancer, mainly colorectal carci-
nomas but also tumors of the stomach, small intestine, liver,
gallbladder, upper urinary tract, brain, skin, and adrenal
cortex; women with this disorder have a high risk of ovarian
and endometrial carcinomas. It is due to mutation in one of
the genes encoding mismatch repair proteins (MLH1,
MSH2, MSH6, or PMS2). However, recently NETs,
including pancreatic and pituitary tumors, have also been
reported in patients with this disorder [151, 152].

In some cases, familial transmission is unique to pituitary
tumors without other associated NETs. Predisposition to
develop pituitary GH-producing tumors without other
endocrine tumors was originally described as the isolated
familial somatotropinoma syndrome [153]. Subsequent
studies identified predisposition for other types of pituitary
tumors as well, and the nomenclature was altered to the
familial isolated pituitary adenoma syndrome [154]. The
pituitary tumors in these families arise at a younger age and
are larger than tumors in matched sporadic pituitary tumor
cohorts. This syndrome is associated in around 20% of
cases with germline mutations in the AIP gene that encodes
aryl hydrocarbon-interacting protein (AIP), which functions
as a tumor suppressor [154–156]. AIP is a chaperone pro-
tein that modulates transcription of the aryl hydrocarbon
receptor, which was originally described to mediate tox-
icological and carcinogenic dioxin effects [157, 158].

A rare form of early childhood X-linked acrogigantism
attributed to Xq26 microduplications and GPR101 mutation
[159] may primarily predispose to hyperplasia but soma-
totroph and/or mammosomatotroph PitNETs have also been
described [160].

Sporadic tumors rarely have mutations in the genes that
are implicated in these familial syndromes [1, 161]. Instead,
mutations have only been identified only in small subsets of
tumors. For example, a subset of somatotroph tumors have
activating mutations of GNAS resulting in tumors that have
high cyclic AMP levels and responsiveness to somatostatin
analogues; several studies have shown that this mutation is
most often seen in tumors with a densely granulated soma-
totroph phenotype [32, 162] but not all densely granulated

tumors harbor GNAS mutations and the correlation is not
perfect [110, 111]; histopathology remains the best predictor
of therapeutic responsiveness [90]. Some corticotroph
tumors have mutations of USP8, a gene encoding a member
of the ubiquitin protease family and is thought to alter EGFR
signaling; this feature is predictive of pasireotide response
[91] and tends to be identified in small densely granulated
corticotroph tumors [91, 92, 163, 164]. Interestingly, a
recent study has identified ATRX mutations in aggressive
pituitary tumors, mostly of corticotroph type, including
those with metastases [165], similar to pNETs [166] and
paragangliomas [167]. Nevertheless, the majority of spora-
dic PitNETs lack recurrent mutations, showing only variable
genomic instability with copy-number variations [168–172],
and like small bowel NETs [173], epigenetic dysregulation
has been implicated in their pathogenesis [174].

Clinical management: the need for centers
with sustained experience

Endocrine tumors are complex and require broad multi-
disciplinary expertise. Unlike other solid tumors, they
produce a number of hormonal disturbances that have
significant importance to the patient and that often are as
important or perhaps more so than tumor growth. In the
case of PitNETs, the clinical team includes endocrinolo-
gists, neuroradiologists, neurosurgeons, pathologists,
medical and radiation oncologists, specialized nurses, and
psychosocial experts who are knowledgeable about the
emotional disorders that are common in patients with
these tumors [175–177]. The need for psychosocial care
in oncology is now becoming widely recognised, but the
recognition of the hormonal aspects of endocrine neo-
plasia adds another dimension to this problem. A
strong and integrated multidisciplinary team is required to
allow for personalized approaches to care and ongoing
support.

Throughout the various areas of medicine, sub-
specialisation has been proven to result in significant quality
improvement, error reduction, and cost avoidance
[178–190]. Data show consistently that all members of the
care team have better outcomes with increasing numbers of
patients. Experts are able to create standards based on evi-
dence from their practices. For example, pathologists who
see many cases of pituitary tumors each year have for-
mulated a synoptic report that provides a standard approach
to morphologic diagnosis and structure–function correla-
tions [191]. Although the designation of high-volume cen-
ters as “Centers of Excellence” has been proposed [192], as
yet no criteria have been created for such a designation, nor
any external assessment protocols that provide objective
measures of “excellence.”
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PitNETs as a model for other NETs

As we have shown in the previous paragraphs, the careful
categorization of PitNETs into different morpho-functional
subtypes according to cell lineage and specific structural
properties of neoplastic cells leads to a classification with
important predictive and prognostic implications. In fact,
such a degree of insight into structure–function–behavior
relationships has not been reached for NETs arising in other
organs. Nevertheless, it should be recognized that, in almost
every anatomical site in which neuroendocrine cells occur,
except for thyroid and parathyroid where only a single
neuroendocrine cell type is recognized, NENs exhibit a
wide morpho-functional spectrum, reflecting and sometimes
amplifying the diversity of normal neuroendocrine cells to
which they are related.

In particular, it is known that gastrointestinal and pNETs
include many different subtypes, defined according to cell
morphology and hormone production [193]. However, in the
current WHO classifications, these features are only taken into
account for functioning PanNETs [2, 194], mainly in relation
to the clinical syndromes associated with these neoplasms,
whereas the core of the classification is based on the degree of
histological differentiation and the proliferative grade. In the
small bowel, the pioneering work of Swedish investigators
identified more than 20 different cell types with distinct hor-
mone products and ultrastructure in the late 1970s and early
1980s [195]; this work has been largely ignored, likely
because the vast majority of tumors are EC cell serotonin-
producing lesions that can potentially cause the carcinoid
syndrome and its sequelae. It is unclear why EC cells alone,
from among the many others scattered throughout the ileum,
give rise to tumors. The lungs have at least three neuroendo-
crine cell types known to produce several peptides, including
bombesin, calcitonin, and calcitonin-gene-related peptide, as
well as serotonin, and although the hormonal profiles of pul-
monary NETs have been investigated [196], this subject has
been disregarded, possibly because of a suggested lack of
clinical impact. The same is true also for other rare anatomical
sites including the upper respiratory tract, genitourinary tract,
and others. In general, the field of NETs seems to suffer from
an under-appreciation of the clinical significance of the cells of
origin and their specific alterations in tumors. The very few
exceptions are represented by the work identifying the four
cell types in duodenal NETs [197], publications showing that
L cell rectal NETs have a distinct morphology and more
indolent behavior than non-L cell rectal NETs [198–200], and
data reporting ectopic hormone secretion in lung [201, 202]
and pNETs [201, 203–205]. Lessons learned from PitNETs
should prompt a re-evaluation of the significance of hormone
profiles and careful morphological examination of specific cell
types in NETs of other body sites. Documentation of tissue-
specific transcription factors and hormone profiles can

advance the diagnostic management of NETs, improve the
diagnosis of metastatic disease from an unknown primary site
[206] and provide biomarkers for clinical surveillance.
Moreover, this information can also provide useful tools for
the therapeutic choices and prognostic evaluation of patients
with these tumors [207, 208].

If the pituitary is to be used as the paradigm of neu-
roendocrine neoplasia, the field must also align with other
NETs in more than just nomenclature. Indeed, the concept
of pituitary carcinoma, traditionally applied to metastatic
lesions, should be relinquished in light of two important
considerations. First, the term NEC is a highly specific term,
which is applied only to high-grade neoplasms with distinct
genetic alterations more akin to those of other epithelial
malignancies [23]. Curiously, there are almost no examples
of such lesions in the pituitary with the possible exception
of rare TP53-mutant carcinomas. Even the so-called “poorly
differentiated” tumors are only considered to be poorly
differentiated in the context of the complex and elegant
system of cytodifferentiation of adenohypophysial cells, but
not in the context of high-grade histopathology; this ter-
minology should be reconsidered in light of the WHO
classification and perhaps warrants alternate terminology,
such as “immature” rather than “poorly differentiated.” The
second consideration is that the term PitNET, in analogy
with NETs of other anatomical sites, implies a spectrum of
behaviors including potential metastatic spread and, as such,
does not require a specific term to distinguish locally
aggressive and/or metastatic lesions.

Building on the WHO proposal for a common classifi-
cation for NENs, we propose a common approach to the
investigation of structure–function correlations in the
endocrinology and pathology of NETs at all body sites as
has been done in the pituitary gland.

Conclusions

● Pituitary adenohypophysial neoplasms are epithelial
and neuroendocrine in nature, thus are fully embedded
in the concept of neuroendocrine neoplasm.

● The vast majority are well-differentiated and fall into
the category of NETs, which show a spectrum of
behavior from indolent to locally and hormonally
aggressive, and occasionally metastatic.

● Recognition of adenohypophysial cell differentiation
provides meaningful biological, clinical, prognostic,
and predictive information that informs appropriate
management.

● Dynamic risk stratification for patients with PitNETs
currently relies on the tumor cell type and subtype,
proliferative activity and invasiveness; there is a need
to implement grading and staging for these
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neoplasms to provide a predictive model of tumor
behavior.

● Standardized data collection and synoptic reporting
are strongly recommended.

● A multidisciplinary approach is essential for optimal
outcomes.

● PitNETs represent an advanced model of
structure–function correlations that can be used for
research in other NETs.
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