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Abstract
Breast fibroepithelial lesions are biphasic tumors which comprise the common benign fibroadenomas (FAs) and the rarer
phyllodes tumors (PTs). This study analyzed 262 (42%) conventional FAs, 45 (7%) cellular FAs, and 321 (51%) benign PTs
contributed by the International Fibroepithelial Consortium, using a previously curated 16 gene panel. Benign PTs were
found to possess a higher number of mutations, and higher rates of cancer driver gene alterations than both groups of FAs, in
particular MED12, TERT promoter, RARA, FLNA, SETD2, RB1, and EGFR. Cases with MED12 mutations were also more
likely to have TERT promoter, RARA, SETD2, and EGFR. There were no significant differences detected between
conventional FAs and cellular FAs, except for PIK3CA and MAP3K1. TERT promoter alterations were most optimal in
discriminating between FAs and benign PTs. Our study affirms the role of sequencing and key mutations that may assist in
refining diagnoses of these lesions.

Introduction

Breast fibroepithelial lesions comprise a family of biphasic
tumors that display variations in their biology and clinical
management. They include the common benign fibroade-
nomas, as well as the rarer phyllodes tumors, which can be
benign, borderline, or malignant [1, 2]. The pathogenesis of
breast fibroepithelial lesions is not completely understood,
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with a paucity of studies outlining their developmental
mechanisms [3, 4]. In recent years, there have been new
findings from genomic studies of these tumors [5–10], with
MED12 being the most frequently aberrant gene, where the
majority of mutations occur in codon 44 of exon 2
[5, 11, 12]. Genomic features have also suggested that
fibroadenomas may be non-obligate precursors of phyllodes
tumors [6, 13].

Histologically, fibroadenomas exhibit biphasic pro-
liferation of stromal and epithelial compartments. The cel-
lular variant of the fibroadenoma is characterized by mild to
moderately increased stromal cellularity (Fig. 1). Phyllodes
tumors also exhibit increased stromal cellularity but are
accompanied by an exaggerated intracanalicular growth
pattern with leaf-like stromal proliferations often referred to
as fronds [14, 15]. Periductal stromal condensation may be
observed. Between 60 and 75% of phyllodes tumors are
diagnosed as benign, with borderline and malignant vari-
eties at 15–20% and 10–20%, respectively [16, 17]. Phyl-
lodes tumors may grow more rapidly than fibroadenomas on
follow-up ultrasonography [18], but they cannot be reliably
differentiated by imaging [19–22].

On histology, the differential diagnosis between cellular
fibroadenomas and benign phyllodes tumors can prove
challenging [3]. This was highlighted in an interobserver

study involving ten breast pathologists evaluating 21 his-
tologically challenging fibroepithelial lesions. Individual
diagnoses varied from fibroadenoma to borderline phyl-
lodes tumor in 9 (43%) of 21 cases. Of note, diagnoses were
split equally (5/5) or nearly equally (6/4) between cellular
fibroadenoma and benign phyllodes tumor in four cases
[23].

While proliferative parameters such as mitotic activity
and Ki67 labeling index have been applied in evaluating
cellular fibroepithelial lesions, no consistent thresholds can
be used for individual cases. This may restrict the value of
such an approach to differentiating lesions within the
fibroepithelial spectrum [24–27]. We have previously
described a 5-gene RT-PCR signature that can distinguish
between fibroadenoma and phyllodes tumor on core needle
biopsies. However, the study evaluated mostly conventional
fibroadenomas and further investigations into cellular
fibroadenomas are needed [28]. We recently published the
genomic characterization of an international series of breast
fibroepithelial lesions [29]. Here, we delve deeper into
specific comparisons among conventional fibroadenomas,
cellular fibroadenomas, and benign phyllodes tumors
derived from the cohort, to determine key mutations that
may assist in refining their diagnoses.

Fig. 1 Histological images of fibroepithelial lesions and our study
cohort. A Light microscopy image at low magnification displaying a
conventional fibroadenoma with intracanalicular patterns. B Cellular
fibroadenoma shows slightly increased cellularity. C Benign phyllodes

tumor with prominent fronds at ×50 magnification. D Change in
diagnoses after genomic analysis. FA: conventional fibroadenoma,
CFA: cellular fibroadenoma, BPT: benign phyllodes tumor.
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Materials and methods

Formalin-fixed paraffin-embedded (FFPE) samples for a
total of 628 adult fibroepithelial tumors [262 (42%) con-
ventional fibroadenomas, 45 (7%) cellular fibroadenomas,
and 321 (51%) benign phyllodes tumors] were obtained
from institutions within the International Fibroepithelial
Consortium in our initial study cohort.

DNA extraction and targeted next generation
sequencing

One representative paraffin block of the tumor was selected
from each case and eight sections of FFPE tissue, each
measuring ten microns thick, were cut from the selected
blocks. Genomic DNA was then extracted with the QIAamp
DNA FFPE extraction kit (Qiagen, Valencia, CA, USA).
The DNA yield and quality were determined using the
PicoGreen® dsDNA quantitation assay (Thermofisher,
Waltham, MA, USA).

The extracted DNA was then subjected to ultra-deep
amplicon-based sequencing using the Illumina HiSeq 4000
platform. The assay encompasses a concise curated panel of
16 genes (Table 1) that was established based on the
information derived from our group’s earlier studies [5, 6].
Sequencing was performed at a depth of at least 100× of the
target regions for all samples.

Low-pass copy number variation (CNV) analysis

In total, 45 FFPE tissues comprising 15 conventional
fibroadenomas, 15 cellular fibroadenomas, and 15 benign
phyllodes tumors were selected for low-pass whole genome
sequencing (WGS) to a depth of 5–10×. An additional ten
blood samples were chosen as a panel of normal for this
experiment. Sequencing was performed on the Illumina
HiSeq platform with a paired end configuration of 150
base pairs.

Biocomputational analysis

Biocomputational analysis was done according to methods
described in our previous study [29]. The FastQC
software package (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) was utilized to perform quality

checking of the FASTQ sequence files. After removing
adapters, trimmed paired reads were mapped to hg19
(hs37d5) [30] using BWA-MEM (v0.7.15-r1140) [31] and
sorted/indexed with samtools [32]. FreeBayes (v1.1.0-4-
gb6041c6, settings: -m 30 -q 30 -F 0.01 -u) [33] and
wANNOVA [34] were applied to call and annotate variants,
respectively. Annotated variants were first filtered according
to a few criteria: (1) only variants with more than 100X
coverage and variant allele frequency of at least 5% were
retained; (2) minor allele frequency of the variant in the
normal population must be zero; (3) synonymous and non-
exonic variants were also excluded, and (4) variants in
dbSNP [35] were excluded, unless they are in COSMIC
[36] or ClinVar [37, 38]. Manual curation of variants pas-
sing these filters was done on the Integrative Genomics
Viewer [39] to remove any sequencing artefacts. R (R
Foundation for Statistical Computing, Vienna, Austria) and
the statistical software SPSS for Windows, version 25
(SPSS, Inc., Chicago, IL, USA) were used for statistical
analysis. The relationship between the variant frequencies
and the different FEL subgroups was analyzed using the χ2

and Fisher’s exact tests. A p value of < 0.05 was considered
to be significant.

For the low-pass CNV, sequencing reads were aligned to
human reference genome NCBI GRC Build 37 using BWA-
MEM followed by duplicate marking and base-score reca-
libration using GATK version 4.14 for post alignment data
processing.

ichorCNA was used as the method of estimating and
accessing copy number alterations in this experiment.
Firstly, a panel of normal was generated using the chosen
germline samples which were identically processed and
sequenced as the FFPE tissues to improve accuracy for
estimating copy number alteration while correcting for
systematic biases. This was performed with the help of an
Rscript included with ichorCNA package. Once a panel of
normal was generated copy number alterations were then
identified using a bin size of 1 Mb. Downstream processes
and illustrations were then analyzed using R.

Measuring sensitivity and specificity of the assay

Mutations of fibroadenomas and benign phyllodes tumors
were compared to evaluate the assay’s performance. We
classified the status of true- and false-positive and true- and
false-negative categories based on the comparison groups.
We calculated per cent sensitivity as 100 × [true positive/
(true positive+ false negative)], and specificity as 100 ×
[true negative/(true negative+ false positive)]. Receiver-
operating characteristic curves (ROC) and areas under the
curve (AUC) were plotted to derive the mutation that could
give optimal discrimination.

Table 1 Panel of 16 genes interrogated in the study cohort.

MED12 RARA EGFR PTEN

TERT promoter FLNA RB1 ERBB4

SETD2 NF1 BCOR IGF1R

KMT2D PIK3CA TP53 MAP3K1
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Histological review of cases

After genomic analysis, cases with available haematoxylin
and eosin (H&E) slides and found to harbor unusual gen-
otypes such as presence of cancer driver mutations (TP53,
RB1, NF1, PTEN, PIK3CA, EGFR, BCOR, ERBB4,
MAP3K1, IGF1R), or those with more than two mutations
in non-cancer driver genes were histologically reviewed.

Results

Clinicopathological correlations

Our study cohort initially consisted of 628 cases of con-
ventional fibroadenomas, cellular fibroadenomas, and
benign phyllodes tumors. Ethnicity data were available for
605 cases. There were 517 (82%), 88 (14%), and 23 (4%)
cases of Asian, Caucasian, or unknown descent, respec-
tively. Three cases were re-diagnosed after histological
review as borderline/malignant phyllodes tumors, thus
excluding them from this study (Fig. 1). The following
calculations for mutation rates are thereby based on the
remaining 625 cases.

One hundred and fifty-eight (25%) cases showed no
mutations, with 213 (34%), 150 (24%), 66 (11%), 24 (4%),
9 (1%), and 5 (1%) showing 1, 2, 3, 4, 5, or 6 mutations
accordingly (Table 2). Benign phyllodes tumors harbored
more mutations (mean 1.79), compared to cellular fibroa-
denomas (mean 1.18) and conventional fibroadenomas
(mean 1.03) (p < 0.001). No significant differences were

found between fibroadenomas and cellular fibroadenomas
in terms of the number of mutations (p= 0.247). Benign
phyllodes tumors were more likely to have a higher number
of alterations in cancer driver genes than both groups of
fibroadenomas (p= 0.008).

Fibroadenomas and benign phyllodes tumors
possess distinct mutations

MED12 mutations were observed in 334 (53%) cases, fol-
lowed by the TERT promoter, KMT2D, and RARA with
aberrations in 122 (20%), 89 (14%), and 82 (13%) cases,
respectively (Table 3 and Fig. 2). Benign phyllodes tumors
showed the highest MED12 mutation rate with 199/322
(62%) cases harboring alterations in this gene, compared to
113/258 (44%) conventional fibroadenomas and 22/45
(49%) cellular fibroadenomas (p < 0.001). Further analysis
revealed significant differences in mutation rates for six
other genes in benign phyllodes tumors compared to con-
ventional and cellular fibroadenomas (Table 3). These were
TERT promoter (32 vs 6 vs 4%, p < 0.001), RARA (17 vs 8
vs 13%, p= 0.001), FLNA (13 vs 6 vs 4%, p= 0.002),
SETD2 (12 vs 4 vs 7%, p < 0.001), RB1 (3 vs 1 vs 0%, p=
0.025), and EGFR (5 vs 2 vs 4%, p= 0.027). Conventional
and cellular fibroadenomas did not differ significantly in
their mutation spectrum except for PIK3CA (2 vs 9%, p=
0.011) andMAP3K1 (1 vs 4%, p= 0.047). Across our study
cohort, we found MED12 mutations to be significantly
associated with mutations in TERT (p < 0.001), RARA (p <
0.001), SETD2 (p= 0.012), and EGFR (p= 0.022)
(Table 4).

Table 2 Number of mutations and cancer driver mutations in each of the three tumor types.

Total
(n= 625)

Conventional
FA (n= 258)

Cellular
FA
(n= 45)

Conventional FA
and cellular FA
(n= 303)

Benign PT
(n= 322)

p value FA vs
CFA vs BPT

p value FA and
CFA vs BPT

p value
CFA vs BPT

p value
FA vs CFA

No. of mutations

0 158 (25%) 91 (35%) 13 (29%) 104 (34%) 54 (17%) <0.001* <0.001* 0.004* 0.247

1 213 (34%) 102 (40%) 18 (40%) 120 (40%) 93 (29%)

2 150 (24%) 45 (17%) 10 (22%) 55 (18%) 95 (30%)

3 66 (11%) 16 (6%) 3 (7%) 19 (6%) 47 (15%)

4 24 (4%) 4 (2%) 0 (0%) 4 (1%) 20 (6%)

5 9 (1%) 0 (0%) 0 (0%) 0 (0%) 9 (3%)

6 5 (1%) 0 (0%) 1 (2%) 1 (0%) 4 (1%)

No. of cancer driver mutations

0 503 (80%) 219 (85%) 35 (78%) 254 (84%) 249 (77%) 0.008* 0.016* 0.886 0.155

1 101 (16%) 35 (14%) 8 (18%) 43 (14%) 58 (18%)

2 19 (3%) 4 (2%) 2 (4%) 6 (2%) 13 (4%)

3 2 (0.3%) 0 (0%) 0 (0%) 0 (0%) 2 (1%)

FA conventional fibroadenoma, CFA cellular fibroadenoma, BPT benign phyllodes tumor.

*Statistically significant with p value of < 0.05.
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Adjunctive value of genomic analysis in refining
diagnosis

Histological review was performed for a subset of cases
after genomic analysis of our initial study cohort of 628
fibroepithelial lesions, based on the criteria above. Numbers
of cases here for each disease entity are reflective of what
was known before the review. Out of 128 cases that
underwent review, 6 (4.7%) had their diagnosis changed
(Figs. 1 and 3).

Of these six cases, three were revised from the original
diagnosis of conventional fibroadenoma to benign phyl-
lodes tumor. The first (FEB551) had missense mutations in
MED12, FLNA, RARA, and ERBB4. The second (FEB851)
had a frameshift mutation in KMT2D and a missense
mutation in ERBB4, while the other (FEB858) had a mis-
sense mutation in MED12, a nonsense mutation in RARA,
and a missense mutation in NF1.

Two cases of benign phyllodes tumor were re-
diagnosed to borderline phyllodes tumor. The first
(FEB589) harbored a promoter mutation in TERT and a
missense mutation in TP53, while the other (FEB1476)
displayed missense mutations in MED12, FLNA, and
IGF1R. The last case (FEB941) was reclassified from
conventional fibroadenoma to a spindle cell tumor with
necrosis consistent with borderline or malignant phyllodes
tumor. It disclosed mutations in MED12, TERT promoter,
RARA, and EGFR.

Copy number variation analysis

CNVs were noted across all three subtypes in chromosomes
1–3, 7, 9–12, 15–16, 18–22, and X; and recurrent chro-
mosomal alterations (occurring in at least two cases) were
presented in this study (see Supplementary material,
Table S1 and Fig. S1). A high proportion of fibroadenomas,
cellular fibroadenomas, and benign phyllodes tumors had
amplifications in 7q11.21-q21.11 (15/15 vs 15/15 vs 15/15),
19p13.3-p12 (15/15 vs 15/15 vs 14/15), and 19q13.11-
q13.43 (15/15 vs 14/15 vs 14/15); gains in certain chro-
mosomal segments such as 10q23.33-q25.1 (15/15 vs 15/15
vs 15/15), 20p13-p12.3 (15/15 vs 15/15 vs 13/15), and
21q21.1-q22.2 (12/15 vs 14/15 vs 11/15); and chromosomal
deletions such as 7q36.1-q36.3 (14/15 vs 14/15 vs 15/15),
10p15.3-p14 (15/15 vs 15/15 vs 15/15), 18p11.32-q21.2
(15/15 vs 13/15 vs 14/15), and 19q11-q13.11 (14/15 vs 15/
15 vs 14/15). We did not observe any statistically sig-
nificant differences between conventional fibroadenoma and
cellular fibroadenoma; and when comparing conventional
fibroadenoma, cellular fibroadenoma, and benign phyllodes
tumors.

Discussion

A diagnosis of fibroadenoma is usually straightforward.
However, uncertainty arises in cellular fibroadenomas that

Table 3 Frequency of mutations of each gene across conventional fibroadenomas, cellular fibroadenomas, and benign phyllodes tumors.

Gene Total
(n= 625)

Conventional
FA (n= 258)

Cellular
FA
(n= 45)

Benign PT
(n= 322)

p value FA vs
CFA vs BPT

p value FA
and
CFA vs BPT

p value
FA vs BPT

p value
CFA vs BPT

p value
FA vs CFA

MED12 334 (53%) 113 (44%) 22 (49%) 199 (62%) <0.001* <0.001* <0.001* 0.098 0.528

TERT 122 (20%) 16 (6%) 2 (4%) 104 (32%) <0.001* <0.001* <0.001* <0.001* 0.647

KMT2D 89 (14%) 39 (15%) 6 (13%) 44 (14%) 0.624 0.732 0.621 0.952 0.757

RARA 82 (13%) 20 (8%) 6 (13%) 56 (17%) 0.001* 0.001* 0.001* 0.498 0.219

FLNA 60 (10%) 15 (6%) 2 (4%) 43 (13%) 0.002* 0.001* 0.003* 0.088 0.714

SETD2 53 (8%) 10 (4%) 3 (7%) 40 (12%) <0.001* <0.001* <0.001* 0.262 0.396

TP53 14 (2%) 4 (2%) 1 (2%) 9 (3%) 0.315 0.422 0.315 0.826 0.745

RB1 13 (2%) 2 (1%) 0 (0%) 11 (3%) 0.025* 0.022* 0.033* 0.209 0.555

NF1 24 (4%) 13 (5%) 0 (0%) 11 (3%) 0.333 0.678 0.330 0.209 0.125

PTEN 8 (1%) 1 (0%) 1 (2%) 6 (2%) 0.121 0.288 0.106 0.869 0.162

PIK3CA 18 (3%) 5 (2%) 4 (9%) 9 (3%) 0.591 >0.999 0.505 0.038* 0.011*

EGFR 22 (4%) 4 (2%) 2 (4%) 16 (5%) 0.027* 0.051 0.025* 0.879 0.200

BCOR 15 (2%) 8 (3%) 1 (2%) 6 (2%) 0.341 0.438 0.341 0.874 0.750

ERBB4 11 (2%) 4 (2%) 1 (2%) 6 (2%) 0.782 >0.999 0.774 0.869 0.745

MAP3K1 13 (2%) 2 (1%) 2 (4%) 9 (3%) 0.096 0.265 0.076 0.547 0.047*

IGF1R 4 (1%) 0 (0%) 0 (0%) 4 (1%) 0.060 0.125 0.073 0.454 NA

FA conventional fibroadenoma, CFA cellular fibroadenoma, BPT benign phyllodes tumor.

*Statistically significant with p value of < 0.05.
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possess overlapping features with phyllodes tumors [3]. The
extent of leaf-like fronds and stromal cellularity that favor a
benign phyllodes tumor over a cellular fibroadenoma remain
subjective, and substantial interobserver differences exist. For
instance, stromal atypia at the benign end of the fibroepithelial
spectrum where benign phyllodes tumors and cellular
fibroadenomas both lie is usually mild. Stromal cellularity and
mitotic activity of benign phyllodes tumors also overlap with
those of cellular fibroadenomas [40, 41]. As a result,

distinguishing cellular fibroadenomas from benign phyllodes
tumors can pose significant difficulties, even for experienced
breast pathologists [23]. In this study, we determined if there
were molecular differences between fibroadenomas (in parti-
cular cellular fibroadenomas) and benign phyllodes tumors
that can be adjunctive aids in overcoming the limitations
posed by histological examination.

We observed MED12 mutations across all three groups
of lesions, with the majority (72%) occurring in codon 44

Fig. 2 Waterfall plot of
recurrently mutated genetic
aberrations. Genomic
landscape of conventional
fibroadenomas, cellular
fibroadenomas and benign
phyllodes tumors, and their
mutation rates.
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(see Supplementary material, Table S2). MED12 was noted
to be involved in Wnt/β-catenin signaling, as β-catenin
binds with the MED12 subunit in Mediator to activate
transcription [42]. This pathway was found to be dysregu-
lated in uterine leiomyomas which reported identical mis-
sense MED12 mutations as fibroadenomas [43]. Thus, the
MED12 gene may be similarly affected in benign fibroe-
pithelial lesions to promote cell proliferation and differ-
entiation via Wnt signaling, which is known to be a
fundamental growth control pathway [42].

According to our previous gene expression profiling study
on ten fibroadenomas, genes upregulated in MED12-mutant
fibroadenomas were associated with ER+ breast cancers and
estrogen stimulus in ER+ breast cancer cells [5], and
MED12 could enhance the function of estrogen receptor
alpha (ERα) [44]. KMT2D which encodes the epigenetic
regulator lysine (K)-specific methyltransferase 2D could
directly interact with ERα, causing its recruitment and acti-
vation [45]. The retinoic acid receptor alpha which is enco-
ded by RARA acts as a transcription factor and is capable of
binding with ERα [46]. Activating mutations in PIK3CA
have been reported to be frequent in ER-positive breast
cancer [45]. Meanwhile, ER-EGFR signaling was discovered
to be reciprocal: EGFR signaling promotes the activation of
ER, and ER signaling promotes the activation of EGFR.

Estrogen may induce activation of MAPK and PI3K which
are associated with cell proliferation, angiogenesis, and
tumor metastasis in non-small cell lung cancer [47]. In terms
of immunohistochemical studies, epithelial expression of ER
was higher in benign PTs than in borderline and malignant
PTs [48], whereas Tan et al. observed significantly higher
ER expression in fibroadenomas than in phyllodes tumors
[49]. Thus, these results suggest potential involvement of
estrogen signaling in the pathogenesis of benign tumors. Luo
et al. observed that MED12 could bind to the EGFR pro-
moter and result in EGFR transcription in ovarian cancers
[50]. EGFR plays a role in elevating tumor cell survival,
motility, and development through the Ras-Raf-Mek-Erk
(Ras-MAPK) pathway [51], and its mutations have been
described in breast, lung, and colorectal cancers [52–54].
Interestingly, activating mutations such as L858R confer
sensitivity to tyrosine kinase inhibitors (TKIs) gefitinib and
erlotinib in non-small cell lung cancer, as mutant EGFR
binds the inhibitors more tightly than wild-type EGFR [55].
However, we did not detect this mutation in our current
cohort of fibroadenomas and benign phyllodes tumors.

From our results, benign fibroepithelial tumors generally
had a low incidence of cancer driver mutations, reaffirming
their benign nature. The ten cancer driver genes (TP53,
RB1, NF1, PTEN, PIK3CA, EGFR, BCOR, ERBB4,
MAP3K1, and IGF1R) had the lowest incidence of muta-
tions amongst the 16 genes (Table 4). Among the three
subcategories of benign fibroepithelial tumors, benign
phyllodes tumors also had a higher proportion of tumors
having four or more mutations (33/322, 10%) compared to
cellular fibroadenomas and conventional fibroadenomas
(1/45, 2% and 4/258, 2%, respectively) (Table 2), indicating
that they were more genetically complex. However, a sta-
tistical difference in mutation rate was found only in two
out of the ten cancer driver genes (RB1 and EGFR) when
comparing benign phyllodes tumors with fibroadenomas.
Taken together, this shows that benign phyllodes tumors on
the whole are similar to fibroadenomas (eight out of the ten
cancer driver genes showed no significant differences in
mutation frequencies), yet at the same time, the higher rate
of mutations in RB1 and EGFR seen in benign phyllodes
tumors suggests a potential for malignant progression
compared to fibroadenomas as both alterations are detected
in phyllodes tumors of higher grades [56]. Sixteen con-
ventional fibroadenomas in our cohort harbored TERT
promoter –124 C > T (chr5:1,295,228C > T) and –146 C > T
(chr5:1,295,250C > T) mutations (15/16, 94% and 1/16,
6%, respectively), while two cellular fibroadenomas had
alterations in the former (see Supplementary material,
Table S3). Yoshida et al. similarly reported TERT promoter
mutations in fibroadenomas although their proportion
was less (4/58, 7%) [57], while four other studies did
not detect such alterations among their fibroadenoma

Table 4 Mutation frequencies for the panel of 16 genes sequenced
across the entire cohort, arranged in descending order, and their co-
mutation with mutant MED12.

Gene No.
mutated (%)

Cases with
mutant
MED12
(n= 334)

Cases with
wild-type
MED12
(n= 291)

Sig. (2-
tailed) for
co-mutation
with mutant
MED12
(p value)

MED12 334 (53%) 334 (100%) 291 (100%) N/A

TERT 122 (20%) 86 (26%) 36 (12%) <0.001*

KMT2D 89 (14%) 52 (16%) 37 (13%) 0.302

RARA 82 (13%) 63 (19%) 19 (7%) <0.001*

FLNA 60 (10%) 38 (11%) 22 (8%) 0.131

SETD2 53 (8%) 37 (11%) 16 (5%) 0.012*

NF1 24 (4%) 15 (4%) 9 (3%) 0.361

EGFR 22 (4%) 17 (5%) 5 (2%) 0.022*

PIK3CA 18 (3%) 6 (2%) 12 (4%) 0.084

BCOR 15 (2%) 8 (2%) 7 (2%) 0.998

TP53 14 (2%) 7 (2%) 7 (2%) 0.799

RB1 13 (2%) 8 (2%) 5 (2%) 0.551

MAP3K1 13 (2%) 10 (3%) 3 (1%) 0.086

ERBB4 11 (2%) 9 (3%) 2 (1%) 0.056

PTEN 8 (1%) 4 (1%) 4 (1%) 0.848

IGF1R 4 (1%) 4 (1%) 0 (0%) 0.061

*Statistically significant with p value of < 0.05.
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samples [8, 58–60]. When comparing benign phyllodes
tumors and cellular fibroadenomas, mutations in TERT
promoter gene showed the greatest difference in mutation
frequency (32 vs 4%) (Table 3), while its sensitivity and
specificity were 32% and 96%, respectively (AUC 0.641,
p= 0.002) (Table 5 and Fig. 4). This shows that the TERT
promoter gene mutation is probably the most useful in
helping to subclassify cellular fibroepithelial tumors that
border on cellular fibroadenomas and benign phyllodes
tumors. This may also be useful in small biopsies where
there is only partial sampling of the tumor and the full
architectural features of a phyllodes tumor are not appre-
ciated. Other mutations had AUC values close to the
reference line of 0.5 (no real predictability) and p values
which were not statistically significant, indicating that their
utility for diagnostic discrimination may not be optimal.
This was similarly observed when comparing both con-
ventional and cellular fibroadenomas vs benign phyllodes
tumors, as well as when comparing conventional fibroade-
nomas with their cellular counterpart.

Most sequencing studies on fibroadenomas and benign
phyllodes tumors involved targeted profiling of MED12 and
TERT promoter [11, 12, 57, 58, 61–69], while few had done

multi-gene assays or exome sequencing [5–8, 59, 60, 70, 71].
To the best of our knowledge, our study has the largest number
of fibroadenomas and cellular fibroadenomas profiled.
Although most studies reported a lack of alterations in cancer
driver genes in the benign group of fibroepithelial lesions, some
studies did reveal such mutations. Our previous exome
sequencing of eight fibroadenomas showed a singular RB1
mutation [5], while other investigators found mutant TP53 [72]
and PIK3CA [73]. A single case of a pediatric fibroadenoma
harboring PIK3CAmissense mutation, a juvenile fibroadenoma
with mutant MAP3K1, and a pediatric benign fibroepithelial
neoplasm with PTEN and BRCA1 mutations, have been
reported [59]. Profiling heterogeneous lesions demonstrated
TP53 mutation in an FA-like area of a malignant PT, and a
PIK3CA mutation in an FA-like area of a borderline PT [74]. It
is not yet known whether presence of such mutations could
signal possible malignant transformation of fibroadenomas,
predict future progression into phyllodes tumors, or indicate
likely recurrence of benign phyllodes tumors. However, it is
critical to distinguish benign phyllodes tumors from fibroade-
nomas, since the former has a likelihood for grade progression
upon recurrence and its malignant forms can metastasize,
although such occurrences are extremely low [14, 15, 75–83].

Fig. 3 Cases with changed diagnoses and their mutations. A
FEB941: this case was designated a fibroadenoma, but on histological
review, the tumor comprised sheets of spindle cells areas of necrosis,
consistent with a borderline/malignant phyllodes tumor. B FEB551:
originally labeled as a fibroadenoma, histological review showed well-
developed stromal fronds with mild stromal hypercellularity, con-
sistent with a benign phyllodes tumor. C FEB589: case that was
initially labeled as a benign phyllodes tumor, showed phyllodal

architecture with leaf-like stromal fronds. D FEB589: higher magni-
fication showed moderate to marked stromal atypia, readily found
mitoses (arrows) and mild to moderate stromal hypercellularity, indi-
cating borderline grade. E FEB1476: initially diagnosed as a benign
phyllodes tumor, histological review favored borderline grade as the
tumor borders were irregularly permeative along a relatively
long front.
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Table 5 Sensitivity and specificity of mutation profiling for optimal discrimination, for conventional and cellular FAs vs benign PTs; cellular FAs
vs benign PTs; and conventional FAs vs cellular FAs.

Gene FA+CFA vs BPT CFA vs BPT FA vs CFA

Sensitivity Specificity AUC p value Sensitivity Specificity AUC p value Sensitivity Specificity AUC p value

MED12 62% 55% 0.586 <0.001* 62% 51% 0.564 0.162 44% 51% 0.475 0.586

TERT 32% 94% 0.633 <0.001* 32% 96% 0.641 0.002* 6% 96% 0.509 0.851

KMT2D 14% 85% 0.495 0.819 14% 87% 0.502 0.960 15% 87% 0.509 0.849

RARA 17% 91% 0.543 0.062 17% 87% 0.520 0.671 8% 87% 0.472 0.550

FLNA 13% 94% 0.538 0.103 13% 96% 0.544 0.343 6% 96% 0.507 0.883

SETD2 12% 96% 0.541 0.075 12% 93% 0.529 0.524 4% 93% 0.486 0.765

TP53 3% 98% 0.504 0.853 3% 98% 0.501 0.975 2% 98% 0.497 0.943

RB1 3% 99% 0.514 0.547 3% 100% 0.517 0.708 1% 100% 0.504 0.934

NF1 3% 96% 0.496 0.856 3% 100% 0.517 0.708 5% 100% 0.525 0.590

PTEN 2% 99% 0.506 0.792 2% 98% 0.498 0.970 0% 98% 0.491 0.844

PIK3CA 3% 97% 0.499 0.974 3% 91% 0.470 0.510 2% 91% 0.465 0.457

EGFR 5% 98% 0.515 0.513 5% 96% 0.503 0.951 2% 96% 0.486 0.757

BCOR 2% 97% 0.495 0.814 2% 98% 0.498 0.970 3% 98% 0.504 0.925

ERBB4 2% 98% 0.501 0.960 2% 98% 0.498 0.970 2% 98% 0.497 0.943

MAP3K1 3% 99% 0.508 0.746 3% 96% 0.492 0.860 1% 96% 0.482 0.695

IGF1R 1% 100% 0.506 0.787 1% 100% 0.506 0.892 0% 100% 0.500 1.000

For FAs and CFAs vs BPT, we considered true positive as the number of benign PTs which had the mutation; false negative as the number of
benign PTs without the mutation; false positive as the number of FAs and CFAs which had the mutation; and true negative as the number of FAs
and CFAs without the mutation. For CFAs vs BPTs, true positive and false negative were the number of BPTs with/without the mutation, while
false positive and true negative were CFAs with the mutation present/absent, respectively. When comparing FAs vs CFAs, true positive and false
negative were determined by the number of FAs with/without the mutation, while false positive and true negative were CFAs with the mutation
present/absent, respectively.

FA conventional fibroadenoma, CFA cellular fibroadenoma, BPT benign phyllodes tumor.

*Statistically significant with p value of < 0.05.

Fig. 4 ROC curves of 16 gene
mutations. These were analyzed
in A combined FAs vs benign
PTs; B conventional FAs vs
benign PTs; C cellular FAs vs
benign PTs; and D conventional
FAs vs cellular FAs.
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Investigating genetic alterations of paired primary tumors and
their recurrent/metastatic lesions could be an area for further
exploration to unravel their molecular mechanisms.

When we histologically reviewed fibroadenomas and
benign phyllodes tumors with cancer driver mutations, only
4.7% (6/128) of tumors had their original diagnoses revised,
with three fibroadenomas reclassified as benign phyllodes
tumors, two benign phyllodes tumors reclassified as bor-
derline, and one fibroadenoma reclassified as a borderline/
malignant phyllodes tumor. When we reviewed benign
phyllodes tumors with mutations in more than two non-
cancer driving genes, there were no tumors that were
reclassified. While histological assessment remains reliable
in classifying these lesions, the possibility of morphological
heterogeneity underpinned by the molecular alterations has
to be considered. While central review of all histological
sections may be useful, these cases were appraised and
diagnosed by international pathologist collaborators based
on current histological criteria, with findings from this study
according additional genomic insights that can help refine
light microscopic interpretation in participating institutions.

Pareja et al. proposed that fibroepithelial tumor progression
from normal mammary stroma toward phyllodes tumors,
occurs either through the MED12-mutant pathway or the
MED12-wild-type pathway. Fibroadenomas are the first step in
the MED12-mutant pathway, after the stroma acquires muta-
tions in MED12 exon 2 [84]. Our study, like others, confirm
that MED12 mutations are not universally present in all breast
fibroepithelial lesions [5, 6, 11, 12, 58, 61, 63, 65]. This pro-
vides corroborating evidence that phyllodes tumors can indeed
develop through the MED12-wild-type pathway by acquisition
of alterations in cancer driver genes.

In a study of 23 fibroadenomas using comparative genomic
hybridization analysis, Ojopi et al. found that the most fre-
quently overrepresented segments were 5p14, 5q34-qter,
13q32-qter, 10q25-qter, and 18q22 [85]. Amiel et al. detected
genetic aberrations in chromosomes 4–6, 8–13, 16, 18, 19, 20,
and 22 [86]; while Cavalli et al. and Ried et al. reported no
alterations in the DNA copy number of 20 fibroadenomas and
13 fibroadenomas, respectively [87, 88]. Additionally, Xie
et al. observed through whole exome sequencing that most of
the 27 recurrent somatic CNVs were clustered in chromosomes
1, 4, 9, 11, 13, 15, 19, and were deletions [60].

As for benign phyllodes tumors, Lv et al. noted that
chromosomal regions prevalently involved in copy number
gains were 1p12-q21 (4/12), 18p11.2-q11.2 (3/12) and
losses were most frequently found on chromosome regions
9q34 (3/12), 10q26 (3/12), 17q25 (3/12), 19q13.3 (3/12)
[89]. Laé et al. reported losses in 6q (4/9), 10p (1/9), 16q (1/
9), and 22q (1/9), and gains in 1q (1/9) [90]. We also
observed losses in 19q11-q13.11 (14/15), 10p15.3-p14 (14/
15), and 22q11.22-q12.1 (8/15), although our data showed
gains in 9q33.3-q34.3 (7/15) instead.

These studies used different experimental techniques
(comparative genomic hybridization and whole exome
sequencing) compared to our low-pass WGS, thus the data
are not entirely comparable. Our assessment of CNV did not
show significant differences between the three tumor types
(see Supplementary material, Table S1 and Fig. S1) in terms
of chromosomal alterations too, hence somatic DNA pro-
filing may be a better tool to differentiate them.

The strength of our study includes the large number of
benign phyllodes tumors with representation from various
countries. This helps to eliminate bias based on ethnic or
geographic differences and adds confidence to our results.
The limitations include the restricted panel of 16 genes that
are studied which may not fully reveal the genetic differ-
ences between fibroadenomas and phyllodes tumors.
Approaches such as WGS may help us gain greater insights
into the full molecular spectrum of breast fibroepithelial
tumors. WGS has already been performed in uterine leio-
myomas, which share certain clinical and mutational char-
acteristics with fibroadenomas [91]. In addition, the number
of cellular fibroadenomas are disproportionately smaller
than the number of benign phyllodes tumors and our results
for cellular fibroadenomas may therefore be susceptible to
bias. There is also a proportion of cases that did not have
available H&E sections for histological review.

In summary, next generation sequencing using a targeted
16 gene panel revealed that benign phyllodes tumors have a
higher mean number of mutations compared to fibroadeno-
mas. Cellular fibroadenomas are genetically similar to con-
ventional fibroadenomas. Most of the cancer driver genes
studied showed no significant difference in mutation fre-
quencies when comparing benign phyllodes tumors and
fibroadenomas, but RB1 and EGFR were notably mutated in
a higher proportion of benign phyllodes tumors than fibroa-
denomas. Benign phyllodes tumors possessed a significantly
higher percentage of TERT promoter mutations compared to
cellular fibroadenomas and this may be a useful adjunct when
evaluating challenging cellular fibroepithelial tumors. Histo-
logic criteria remain reliable in the classification of benign
fibroepithelial tumors with only a small percentage of tumors
being reclassified with the help of molecular findings. Further
study of the genetics of benign fibroepithelial tumors beyond
the scope of the 16 gene panel is required to help us better
chart the genomic landscape of these tumors.

Data availability

The dataset generated is available in the NCBI Sequence
Read Archive (SRA) under accession code PRJNA516727.
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