Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fibroepithelial lesions revisited: implications for diagnosis and management

Abstract

Fibroepithelial lesions of the breast, comprising the fibroadenoma and phyllodes tumour, are a unique group of neoplasms that share histological characteristics but possess different clinical behaviour. The fibroadenoma is the commonest benign breast tumour in women, while the phyllodes tumour is rare and may be associated with recurrences, grade progression and even metastasis. The diagnosis of fibroadenoma is usually straightforward, with recognised histological variants such as the cellular, complex, juvenile and myxoid forms. The phyllodes tumour comprises benign, borderline and malignant varieties, graded using a constellation of histological parameters based on stromal characteristics of hypercellularity, atypia, mitoses, overgrowth and the nature of tumour borders. While phyllodes tumour grade correlates with clinical behaviour, interobserver variability in assessing multiple parameters that are potentially of different biological weightage leads to significant challenges in accurate grade determination and consequently therapy. Differential diagnostic considerations along the spectrum of fibroepithelial tumours can be problematic in routine practice. Recent discoveries of the molecular underpinnings of these tumours may have diagnostic, prognostic and therapeutic implications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Microscopic appearance of a fibroadenoma with both intracanalicular and pericanalicular growth patterns.
Fig. 2: Infarction in a fibroadenoma shows haemorrhage and loss of cellular detail.
Fig. 3: Invasive carcinoma in a fibroadenoma.
Fig. 4: Cellular fibroadenoma.
Fig. 5: Complex fibroadenoma.
Fig. 6: Juvenile fibroadenoma.
Fig. 7: Myxoid fibroadenoma.
Fig. 8: Paediatric fibroadenoma.
Fig. 9: Macroscopic pathology of phyllodes tumour.
Fig. 10: Benign phyllodes tumour.
Fig. 11: Benign phyllodes tumour.
Fig. 12: Malignant phyllodes tumour.
Fig. 13: Borderline phyllodes tumour.
Fig. 14: Liposarcoma in phyllodes tumour.
Fig. 15
Fig. 16: Benign fibroepithelial tumour with hybrid tubular adenoma and fibroadenoma areas and bizarre multinucleated stromal cells.
Fig. 17: Borderline phyllodes tumour with stromal giant cells.
Fig. 18: Fibromatosis.
Fig. 19: Fibromatosis-like metaplastic carcinoma.
Fig. 20: Spindle-cell metaplastic carcinoma.
Fig. 21: Malignant phyllodes tumour with stromal p63 staining.
Fig. 22: Structure and function of wild-type and mutant MED12 gene.
Fig. 23

References

  1. 1.

    WHO Classification of Tumours Editorial Board. Breast tumours. vol 2. 5th ed. France, Lyon: IARC; 2019.

  2. 2.

    Mishima C, Kagara N, Tanei T, Naoi Y, Shimoda M, Shimomura A, et al. Mutational analysis of MED12 in fibroadenomas and phyllodes tumors of the breast by means of targeted next-generation sequencing. Breast Cancer Res Treat. 2015;152:305–12.

    CAS  PubMed  Google Scholar 

  3. 3.

    Pfarr N, Kriegsmann M, Sinn P, Klauschen F, Endris V, Herpel E, et al. Distribution of MED12 mutations in fibroadenomas and phyllodes tumors of the breast—implications for tumor biology and pathological diagnosis. Genes Chromosomes Cancer. 2015;54:444–52.

    CAS  PubMed  Google Scholar 

  4. 4.

    Berean K, Tron VA, Churg A, Clement PB. Mammary fibroadenoma with multinucleated stromal giant cells. Am J Surg Pathol. 1986;10:823–7.

    CAS  PubMed  Google Scholar 

  5. 5.

    Powell CM, Cranor ML, Rosen PP. Multinucleated stromal giant cells in mammary fibroepithelial neoplasms. A study of 11 patients. Arch Pathol Lab Med. 1994;118:912–6.

    CAS  PubMed  Google Scholar 

  6. 6.

    Heneghan HM, Martin ST, Casey M, Tobbia I, Benani F, Barry KM. A diagnostic dilemma in breast pathology–benign fibroadenoma with multinucleated stromal giant cells. Diagn Pathol. 2008;3:33.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kuijper A, Mommers EC, van der Wall E, van Diest PJ. Histopathology of fibroadenoma of the breast. Am J Clin Pathol. 2001;115:736–42.

    CAS  PubMed  Google Scholar 

  8. 8.

    Krishnamurthy K, Alghamdi S, Gyapong S, Kaplan S, Poppiti RJ. A clinicopathological study of fibroadenomas with epithelial proliferation including lobular carcinoma in-situ, atypical ductal hyperplasia, DCIS and invasive carcinoma. Breast Dis. 2019;38:97–101.

    CAS  PubMed  Google Scholar 

  9. 9.

    Wu YT, Chen ST, Chen CJ, Kuo YL, Tseng LM, Chen DR, et al. Breast cancer arising within fibroadenoma: collective analysis of case reports in the literature and hints on treatment policy. World J Surg Oncol. 2014;12:335.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Carter BA, Page DL, Schuyler P, Parl FF, Simpson JF, Jensen RA, et al. No elevation in long-term breast carcinoma risk for women with fibroadenomas that contain atypical hyperplasia. Cancer. 2001;92:30–6.

    CAS  PubMed  Google Scholar 

  11. 11.

    Yasir S, Nassar A, Jimenez RE, Jenkins SM, Hartmann LC, Degnim AC, et al. Cellular fibroepithelial lesions of the breast: a long term follow up study. Ann Diagn Pathol. 2018;35:85–91.

    PubMed  Google Scholar 

  12. 12.

    Md Nasir ND, Ng CCY, Rajasegaran V, Wong SF, Liu W, Ng GXP, et al. Genomic characterisation of breast fibroepithelial lesions in an international cohort. J Pathol. 2019;249:447–60.

    CAS  PubMed  Google Scholar 

  13. 13.

    Nassar A, Visscher DW, Degnim AC, Frank RD, Vierkant RA, Frost M, et al. Complex fibroadenoma and breast cancer risk: a Mayo Clinic Benign Breast Disease Cohort Study. Breast Cancer Res Treat. 2015;153:397–405.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Sklair-Levy M, Sella T, Alweiss T, Craciun I, Libson E, Mally B. Incidence and management of complex fibroadenomas. AJR Am J Roentgenol. 2008;190:214–8.

    PubMed  Google Scholar 

  15. 15.

    Dupont WD, Page DL, Parl FF, Vnencak-Jones CL, Plummer WD Jr., Rados MS, et al. Long-term risk of breast cancer in women with fibroadenoma. N Engl J Med. 1994;331:10–5.

    CAS  PubMed  Google Scholar 

  16. 16.

    Mies C, Rosen PP. Juvenile fibroadenoma with atypical epithelial hyperplasia. Am J Surg Pathol. 1987;11:184–90.

    CAS  PubMed  Google Scholar 

  17. 17.

    Carney JA, Toorkey BC. Myxoid fibroadenoma and allied conditions (myxomatosis) of the breast. A heritable disorder with special associations including cardiac and cutaneous myxomas. Am J Surg Pathol. 1991;15:713–21.

    CAS  PubMed  Google Scholar 

  18. 18.

    Lozada JR, Burke KA, Maguire A, Pareja F, Lim RS, Kim J, et al. Myxoid fibroadenomas differ from conventional fibroadenomas: a hypothesis-generating study. Histopathology. 2017;71:626–34.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Sanchez R, Ladino-Torres MF, Bernat JA, Joe A, DiPietro MA. Breast fibroadenomas in the pediatric population: common and uncommon sonographic findings. Pediatr Radio. 2010;40:1681–9.

    Google Scholar 

  20. 20.

    Tay TK, Chang KT, Thike AA, Tan PH. Paediatric fibroepithelial lesions revisited: pathological insights. J Clin Pathol. 2015;68:633–41.

    PubMed  Google Scholar 

  21. 21.

    Ross DS, Giri DD, Akram MM, Catalano JP, Olcese C, Van Zee KJ, et al. Fibroepithelial lesions in the breast of adolescent females: a clinicopathological study of 54 cases. Breast J. 2017;23:182–92.

    PubMed  Google Scholar 

  22. 22.

    Tay TKY, Guan P, Loke BN, Nasir NDM, Rajasegaran V, Thike AA, et al. Molecular insights into paediatric breast fibroepithelial tumours. Histopathology. 2018;73:809–18.

    PubMed  Google Scholar 

  23. 23.

    Pareja F, Da Cruz Paula A, Murray MP, Hoang T, Gularte-Merida R, Brown D, et al. Recurrent MED12 exon 2 mutations in benign breast fibroepithelial lesions in adolescents and young adults. J Clin Pathol. 2019;72:258–62.

    CAS  PubMed  Google Scholar 

  24. 24.

    Jacobs TW, Chen Y-Y, Guinee DG, Eby PR, Thike AA, Vohra P, et al. Phyllodes tumor (PT) subsequent to a diagnosis of fibroadenoma (FA) on breast core needle biopsy (CNB): frequency and characteristics. Mod Pathol. 2014;27:34–90.

    Google Scholar 

  25. 25.

    Chng TW, Gudi M, Lim SH, Li H, Tan PH. Validation of the Singapore nomogram for outcome prediction in breast phyllodes tumours in a large patient cohort. J Clin Pathol. 2018;71:125–8.

    PubMed  Google Scholar 

  26. 26.

    Jacobs TW, Chen YY, Guinee DG Jr., Holden JA, Cha I, Bauermeister DE, et al. Fibroepithelial lesions with cellular stroma on breast core needle biopsy: are there predictors of outcome on surgical excision? Am J Clin Pathol. 2005;124:342–54.

    PubMed  Google Scholar 

  27. 27.

    Lee AH, Hodi Z, Ellis IO, Elston CW. Histological features useful in the distinction of phyllodes tumour and fibroadenoma on needle core biopsy of the breast. Histopathology. 2007;51:336–44.

    CAS  PubMed  Google Scholar 

  28. 28.

    Resetkova E, Khazai L, Albarracin CT, Arribas E. Clinical and radiologic data and core needle biopsy findings should dictate management of cellular fibroepithelial tumors of the breast. Breast J. 2010;16:573–80.

    PubMed  Google Scholar 

  29. 29.

    Jara-Lazaro AR, Akhilesh M, Thike AA, Lui PC, Tse GM, Tan PH. Predictors of phyllodes tumours on core biopsy specimens of fibroepithelial neoplasms. Histopathology. 2010;57:220–32.

    PubMed  Google Scholar 

  30. 30.

    Yasir S, Gamez R, Jenkins S, Visscher DW, Nassar A. Significant histologic features differentiating cellular fibroadenoma from phyllodes tumor on core needle biopsy specimens. Am J Clin Pathol. 2014;142:362–9.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Jung J, Kang E, Chae SM, Kim H, Park SY, Yun B, et al. Development of a management algorithm for the diagnosis of cellular fibroepithelial lesions from core needle biopsies. Int J Surg Pathol. 2018;26:684–92.

    PubMed  Google Scholar 

  32. 32.

    Tan WJ, Cima I, Choudhury Y, Wei X, Lim JC, Thike AA, et al. A five-gene reverse transcription-PCR assay for pre-operative classification of breast fibroepithelial lesions. Breast Cancer Res. 2016;18:31.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Sim Y, Ng GXP, Ng CCY, Rajasegaran V, Wong SF, Liu W, et al. A novel genomic panel as an adjunctive diagnostic tool for the characterization and profiling of breast fibroepithelial lesions. BMC Med Genom. 2019;12:142.

    Google Scholar 

  34. 34.

    Dessauvagie BF, Lee AHS, Meehan K, Nijhawan A, Tan PH, Thomas J, et al. Interobserver variation in the diagnosis of fibroepithelial lesions of the breast: a multicentre audit by digital pathology. J Clin Pathol. 2018;71:672–9.

    PubMed  Google Scholar 

  35. 35.

    Sin EI, Wong CY, Yong WS, Ong KW, Madhukumar P, Tan VK, et al. Breast carcinoma and phyllodes tumour: a case series. J Clin Pathol. 2016;69:364–9.

    PubMed  Google Scholar 

  36. 36.

    Tan PH, Jayabaskar T, Chuah KL, Lee HY, Tan Y, Hilmy M, et al. Phyllodes tumors of the breast: the role of pathologic parameters. Am J Clin Pathol. 2005;123:529–40.

    PubMed  Google Scholar 

  37. 37.

    Liu SY, Joseph NM, Ravindranathan A, Stohr BA, Greenland NY, Vohra P, et al. Genomic profiling of malignant phyllodes tumors reveals aberrations in FGFR1 and PI-3 kinase/RAS signaling pathways and provides insights into intratumoral heterogeneity. Mod Pathol. 2016;29:1012–27.

    CAS  PubMed  Google Scholar 

  38. 38.

    Bacchi CE, Wludarski SC, Lamovec J, Ben Dor D, Ober E, Salviato T, et al. Lipophyllodes of the breast. A reappraisal of fat-rich tumors of the breast based on 22 cases integrated by immunohistochemical study, molecular pathology insights, and clinical follow-up. Ann Diagn Pathol. 2016;21:1–6.

    PubMed  Google Scholar 

  39. 39.

    Inyang A, Thomas DG, Jorns J. Heterologous liposarcomatous differentiation in malignant phyllodes tumor is histologically similar but immunohistochemically and molecularly distinct from well-differentiated liposarcoma of soft tissue. Breast J. 2016;22:282–6.

    CAS  PubMed  Google Scholar 

  40. 40.

    Lyle PL, Bridge JA, Simpson JF, Cates JM, Sanders ME. Liposarcomatous differentiation in malignant phyllodes tumours is unassociated with MDM2 or CDK4 amplification. Histopathology. 2016;68:1040–5.

    PubMed  Google Scholar 

  41. 41.

    Powell CM, Rosen PP. Adipose differentiation in cystosarcoma phyllodes. A study of 14 cases. Am J Surg Pathol. 1994;18:720–7.

    CAS  PubMed  Google Scholar 

  42. 42.

    Rowe JJ, Cheah AL, Calhoun BC. Lipomatous tumors of the breast: a contemporary review. Semin Diagn Pathol. 2017;34:453–61.

    PubMed  Google Scholar 

  43. 43.

    Koh VCY, Thike AA, Nasir NDM, Yip GWC, Bay BH, Tan PH. Size and heterologous elements predict metastases in malignant phyllodes tumours of the breast. Virchows Arch. 2018;472:615–21.

    PubMed  Google Scholar 

  44. 44.

    Kim JM, Jung EJ, Kim JY, Lee HS, An HJ, Park T, et al. A rare case of mixed type liposarcoma of breast arising in malignant phyllodes tumor. Breast J. 2020;26:271–3.

    PubMed  Google Scholar 

  45. 45.

    Sancheti SM, Sawaimoon SK, Ahmed R. Pleomorphic liposarcoma arising in a malignant phyllodes tumor of breast: a rare occurrence. J Cancer Res Ther. 2015;11:1032.

    PubMed  Google Scholar 

  46. 46.

    Tan BY, Md Nasir ND, Chang HY, Ng CC, Guan P, Nagarajan S, et al. Morphologic and genetic heterogeneity in breast fibroepithelial lesions—a comprehensive mapping study. Mod Pathol. 2020. https://doi.org/10.1038/s41379-020-0533-0.

  47. 47.

    Tan PH, Thike AA, Tan WJ, Thu MM, Busmanis I, Li H, et al. Predicting clinical behaviour of breast phyllodes tumours: a nomogram based on histological criteria and surgical margins. J Clin Pathol. 2012;65:69–76.

    PubMed  Google Scholar 

  48. 48.

    Nishimura R, Tan PH, Thike AA, Tan MH, Taira N, Li HH, et al. Utility of the Singapore nomogram for predicting recurrence-free survival in Japanese women with breast phyllodes tumours. J Clin Pathol. 2014;67:748–50.

    PubMed  Google Scholar 

  49. 49.

    Chng TW, Lee JY, Lee CS, Li H, Tan MH, Tan PH. Validation of the Singapore nomogram for outcome prediction in breast phyllodes tumours: an Australian cohort. J Clin Pathol. 2016;69:1124–6.

    PubMed  Google Scholar 

  50. 50.

    Cristando C, Li H, Almekinders M, Tan PH, Brogi E, Murray M. Validation of the Singapore nomogram for outcome prediction in a US-based population of women with breast phyllodes tumors (PT). Mod Pathol. 2017;30:27–81.

    Google Scholar 

  51. 51.

    Tan BY, Acs G, Apple SK, Badve S, Bleiweiss IJ, Brogi E, et al. Phyllodes tumours of the breast: a consensus review. Histopathology. 2016;68:5–21.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Tan BY, Tan PH. A diagnostic approach to fibroepithelial breast lesions. Surg Pathol Clin. 2018;11:17–42.

    PubMed  Google Scholar 

  53. 53.

    Slodkowska E, Nofech-Mozes S, Xu B, Parra-Herran C, Lu FI, Raphael S, et al. Fibroepithelial lesions of the breast: a comprehensive morphological and outcome analysis of a large series. Mod Pathol. 2018;31:1073–84.

    PubMed  Google Scholar 

  54. 54.

    Tan PH, Sahin AA. Atlas of differential diagnosis in breast pathology. New York: Springer; 2017.

    Google Scholar 

  55. 55.

    Tse GM, Law BK, Chan KF, Mas TK. Multinucleated stromal giant cells in mammary phyllodes tumours. Pathology. 2001;33:153–6.

    CAS  PubMed  Google Scholar 

  56. 56.

    Tan PH, Jayabaskar T, Yip G, Tan Y, Hilmy M, Selvarajan S, et al. p53 and c-kit (CD117) protein expression as prognostic indicators in breast phyllodes tumors: a tissue microarray study. Mod Pathol. 2005;18:1527–34.

    CAS  PubMed  Google Scholar 

  57. 57.

    Koo CY, Bay BH, Lui PC, Tse GM, Tan PH, Yip GW. Immunohistochemical expression of heparan sulfate correlates with stromal cell proliferation in breast phyllodes tumors. Mod Pathol. 2006;19:1344–50.

    CAS  PubMed  Google Scholar 

  58. 58.

    Jara-Lazaro AR, Tan PH. Molecular pathogenesis of progression and recurrence in breast phyllodes tumors. Am J Transl Res. 2009;1:23–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ. WHO classification of tumours of the breast. 4th ed. France, Lyon: IARC; 2012.

    Google Scholar 

  60. 60.

    Burga AM, Tavassoli FA. Periductal stromal tumor: a rare lesion with low-grade sarcomatous behavior. Am J Surg Pathol. 2003;27:343–8.

    PubMed  Google Scholar 

  61. 61.

    Hart WR, Bauer RC, Oberman HA. Cystosarcoma phyllodes. A clinicopathologic study of twenty-six hypercellular periductal stromal tumors of the breast. Am J Clin Pathol. 1978;70:211–6.

    CAS  PubMed  Google Scholar 

  62. 62.

    Ho SK, Thike AA, Cheok PY, Tse GM, Tan PH. Phyllodes tumours of the breast: the role of CD34, vascular endothelial growth factor and beta-catenin in histological grading and clinical outcome. Histopathology. 2013;63:393–406.

    PubMed  Google Scholar 

  63. 63.

    Moore T, Lee AH. Expression of CD34 and bcl-2 in phyllodes tumours, fibroadenomas and spindle cell lesions of the breast. Histopathology. 2001;38:62–7.

    CAS  PubMed  Google Scholar 

  64. 64.

    Chen CM, Chen CJ, Chang CL, Shyu JS, Hsieh HF, Harn HJ. CD34, CD117, and actin expression in phyllodes tumor of the breast. J Surg Res. 2000;94:84–91.

    CAS  PubMed  Google Scholar 

  65. 65.

    Lee AH. Recent developments in the histological diagnosis of spindle cell carcinoma, fibromatosis and phyllodes tumour of the breast. Histopathology. 2008;52:45–57.

    CAS  PubMed  Google Scholar 

  66. 66.

    Dunne B, Lee AH, Pinder SE, Bell JA, Ellis IO. An immunohistochemical study of metaplastic spindle cell carcinoma, phyllodes tumor and fibromatosis of the breast. Hum Pathol. 2003;34:1009–15.

    CAS  PubMed  Google Scholar 

  67. 67.

    Lacroix-Triki M, Geyer FC, Lambros MB, Savage K, Ellis IO, Lee AH, et al. beta-catenin/Wnt signalling pathway in fibromatosis, metaplastic carcinomas and phyllodes tumours of the breast. Mod Pathol. 2010;23:1438–48.

    CAS  PubMed  Google Scholar 

  68. 68.

    Sawyer EJ, Hanby AM, Rowan AJ, Gillett CE, Thomas RE, Poulsom R, et al. The Wnt pathway, epithelial-stromal interactions, and malignant progression in phyllodes tumours. J Pathol. 2002;196:437–44.

    CAS  PubMed  Google Scholar 

  69. 69.

    Sawyer EJ, Hanby AM, Poulsom R, Jeffery R, Gillett CE, Ellis IO, et al. Beta-catenin abnormalities and associated insulin-like growth factor overexpression are important in phyllodes tumours and fibroadenomas of the breast. J Pathol. 2003;200:627–32.

    CAS  PubMed  Google Scholar 

  70. 70.

    Hayes MJ, Thomas D, Emmons A, Giordano TJ, Kleer CG. Genetic changes of Wnt pathway genes are common events in metaplastic carcinomas of the breast. Clin Cancer Res. 2008;14:4038–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Lim SZ, Ong KW, Tan BK, Selvarajan S, Tan PH. Sarcoma of the breast: an update on a rare entity. J Clin Pathol. 2016;69:373–81.

    PubMed  Google Scholar 

  72. 72.

    Lim SZ, Ng CCY, Rajasegaran V, Guan P, Selvarajan S, Thike AA, et al. Genomic profile of breast sarcomas: a comparison with malignant phyllodes tumours. Breast Cancer Res Treat. 2019;174:365–73.

    CAS  PubMed  Google Scholar 

  73. 73.

    Lim SZ, Selvarajan S, Thike AA, Nasir ND, Tan BK, Ong KW, et al. Breast sarcomas and malignant phyllodes tumours: comparison of clinicopathological features, treatment strategies, prognostic factors and outcomes. Breast Cancer Res Treat. 2016;159:229–44.

    PubMed  Google Scholar 

  74. 74.

    Chia Y, Thike AA, Cheok PY, Yong-Zheng Chong L, Man-Kit Tse G, Tan PH. Stromal keratin expression in phyllodes tumours of the breast: a comparison with other spindle cell breast lesions. J Clin Pathol. 2012;65:339–47.

    PubMed  Google Scholar 

  75. 75.

    Cimino-Mathews A, Sharma R, Illei PB, Vang R, Argani P. A subset of malignant phyllodes tumors express p63 and p40: a diagnostic pitfall in breast core needle biopsies. Am J Surg Pathol. 2014;38:1689–96.

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Lu Y, Chen Y, Zhu L, Cartwright P, Song E, Jacobs L, et al. Local recurrence of benign, borderline, and malignant phyllodes tumors of the breast: a systematic review and meta-analysis. Ann Surg Oncol. 2019;26:1263–75.

    PubMed  Google Scholar 

  77. 77.

    Barth RJ Jr. Borderline and malignant phyllodes tumors: how often do they locally recur and is there anything we can do about it? Ann Surg Oncol. 2019;26:1973–5.

    PubMed  Google Scholar 

  78. 78.

    Tan EY, Tan PH, Yong WS, Wong HB, Ho GH, Yeo AW, et al. Recurrent phyllodes tumours of the breast: pathological features and clinical implications. ANZ J Surg. 2006;76:476–80.

    PubMed  Google Scholar 

  79. 79.

    Borhani-Khomani K, Talman ML, Kroman N, Tvedskov TF. Risk of local recurrence of benign and borderline phyllodes tumors: a Danish population-based retrospective study. Ann Surg Oncol. 2016;23:1543–8.

    PubMed  Google Scholar 

  80. 80.

    Cowan ML, Argani P, Cimino-Mathews A. Benign and low-grade fibroepithelial neoplasms of the breast have low recurrence rate after positive surgical margins. Mod Pathol. 2016;29:259–65.

    CAS  PubMed  Google Scholar 

  81. 81.

    Moutte A, Chopin N, Faure C, Beurrier F, Ho Quoc C, Guinaudeau F, et al. Surgical management of benign and borderline phyllodes tumors of the breast. Breast J. 2016;22:547–52.

    PubMed  Google Scholar 

  82. 82.

    Moo TA, Alabdulkareem H, Tam A, Fontanet C, Lu Y, Landers A, et al. Association between recurrence and re-excision for close and positive margins versus observation in patients with benign phyllodes tumors. Ann Surg Oncol. 2017;24:3088–92.

    PubMed  Google Scholar 

  83. 83.

    Lim WK, Ong CK, Tan J, Thike AA, Ng CC, Rajasegaran V, et al. Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma. Nat Genet. 2014;46:877–80.

    CAS  PubMed  Google Scholar 

  84. 84.

    Loke BN, Md Nasir ND, Thike AA, Lee JYH, Lee CS, Teh BT, et al. Genetics and genomics of breast fibroadenomas. J Clin Pathol. 2018;71:381–7.

    CAS  PubMed  Google Scholar 

  85. 85.

    Cani AK, Hovelson DH, McDaniel AS, Sadis S, Haller MJ, Yadati V, et al. Next-gen sequencing exposes frequent MED12 mutations and actionable therapeutic targets in phyllodes tumors. Mol Cancer Res. 2015;13:613–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Yoshida M, Sekine S, Ogawa R, Yoshida H, Maeshima A, Kanai Y, et al. Frequent MED12 mutations in phyllodes tumours of the breast. Br J Cancer. 2015;112:1703–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Nagasawa S, Maeda I, Fukuda T, Wu W, Hayami R, Kojima Y, et al. MED12 exon 2 mutations in phyllodes tumors of the breast. Cancer Med. 2015;4:1117–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Ng CC, Tan J, Ong CK, Lim WK, Rajasegaran V, Nasir ND, et al. MED12 is frequently mutated in breast phyllodes tumours: a study of 112 cases. J Clin Pathol. 2015;68:685–91.

    CAS  PubMed  Google Scholar 

  89. 89.

    Yoshida M, Ogawa R, Yoshida H, Maeshima A, Kanai Y, Kinoshita T, et al. TERT promoter mutations are frequent and show association with MED12 mutations in phyllodes tumors of the breast. Br J Cancer. 2015;113:1244–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Tan J, Ong CK, Lim WK, Ng CC, Thike AA, Ng LM, et al. Genomic landscapes of breast fibroepithelial tumors. Nat Genet. 2015;47:1341–5.

    CAS  PubMed  Google Scholar 

  91. 91.

    Piscuoglio S, Murray M, Fusco N, Marchio C, Loo FL, Martelotto LG, et al. MED12 somatic mutations in fibroadenomas and phyllodes tumours of the breast. Histopathology. 2015;67:719–29.

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Lien HC, Huang CS, Yang YW, Jeng YM. Mutational analysis of MED12 exon 2 in a spectrum of fibroepithelial tumours of the breast: implications for pathogenesis and histogenesis. Histopathology. 2016;68:433–41.

    PubMed  Google Scholar 

  93. 93.

    Piscuoglio S, Ng CK, Murray M, Burke KA, Edelweiss M, Geyer FC, et al. Massively parallel sequencing of phyllodes tumours of the breast reveals actionable mutations, and TERT promoter hotspot mutations and TERT gene amplification as likely drivers of progression. J Pathol. 2016;238:508–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Yoon N, Bae GE, Kang SY, Choi MS, Hwang HW, Kim SW, et al. Frequency of MED12 mutations in phyllodes tumors: Inverse correlation with histologic grade. Genes Chromosom Cancer. 2016;55:495–504.

    CAS  PubMed  Google Scholar 

  95. 95.

    Tan WJ, Chan JY, Thike AA, Lim JC, Md Nasir ND, Tan JS, et al. MED12 protein expression in breast fibroepithelial lesions: correlation with mutation status and oestrogen rece ptor expression. J Clin Pathol. 2016;69:858–65.

    CAS  PubMed  Google Scholar 

  96. 96.

    Piscuoglio S, Geyer FC, Burke KA, Murray MP, Ng CK, Mota A, et al. Massively parallel sequencing analysis of synchronous fibroepithelial lesions supports the concept of progression from fibroadenoma to phyllodes tumor. NPJ Breast Cancer. 2016;2:16035.

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Lae M, Gardrat S, Rondeau S, Richardot C, Caly M, Chemlali W, et al. MED12 mutations in breast phyllodes tumors: evidence of temporal tumoral heterogeneity and identification of associated critical signaling pathways. Oncotarget. 2016;7:84428–38.

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Nozad S, Sheehan CE, Gay LM, Elvin JA, Vergilio JA, Suh J, et al. Comprehensive genomic profiling of malignant phyllodes tumors of the breast. Breast Cancer Res Treat. 2017;162:597–602.

    CAS  PubMed  Google Scholar 

  99. 99.

    Pareja F, Geyer FC, Kumar R, Selenica P, Piscuoglio S, Ng CKY, et al. Phyllodes tumors with and without fibroadenoma-like areas display distinct genomic features and may evolve through distinct pathways. NPJ Breast Cancer. 2017;3:40.

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Garcia-Dios DA, Levi D, Shah V, Gillett C, Simpson MA, Hanby A, et al. MED12, TERT promoter and RBM15 mutations in primary and recurrent phyllodes tumours. Br J Cancer. 2018;118:277–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Kim JY, Yu JH, Nam SJ, Kim SW, Lee SK, Park WY, et al. Genetic and clinical characteristics of phyllodes tumors of the breast. Transl Oncol. 2018;11:18–23.

    PubMed  Google Scholar 

  102. 102.

    Darooei M, Khan F, Rehan M, Zubeda S, Jeyashanker E, Annapurna S, et al. MED12 somatic mutations encompassing exon 2 associated with benign breast fibroadenomas and not breast carcinoma in Indian women. J Cell Biochem. 2019;120:182–91.

    CAS  PubMed  Google Scholar 

  103. 103.

    Xie SN, Cai YJ, Ma B, Xu Y, Qian P, Zhou JD, et al. The genomic mutation spectrums of breast fibroadenomas in Chinese population by whole exome sequencing analysis. Cancer Med. 2019;8:2372–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Wang H, Shen Q, Ye LH, Ye J. MED12 mutations in human diseases. Protein Cell. 2013;4:643–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Turunen M, Spaeth JM, Keskitalo S, Park MJ, Kivioja T, Clark AD, et al. Uterine leiomyoma-linked MED12 mutations disrupt mediator-associated CDK activity. Cell Rep. 2014;7:654–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Yeong J, Thike AA, Young Ng CC, Md Nasir ND, Loh K, Teh BT, et al. A genetic mutation panel for differentiating malignant phyllodes tumour from metaplastic breast carcinoma. Pathology. 2017;49:786–9.

    CAS  PubMed  Google Scholar 

  107. 107.

    Lien HC, Huang CS, Yang YW, Jeng YM. MED12 exon 2 mutation as a highly sensitive and specific marker in distinguishing phyllodes tumours from other spindle neoplasms of the breast. APMIS. 2016;124:356–64.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support by the Singapore General Hospital (SGH) Division of Pathology Breast Research Group, SGH Department of Anatomical Pathology and the International Fibroepithelial Consortium is appreciated. The assistance of Ms Nur Diyana Binte Md Nasir and Ms Valerie Koh with the tables and figures is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Puay Hoon Tan.

Ethics declarations

Conflict of interest

The author declares no conflict of interest in this review.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, P.H. Fibroepithelial lesions revisited: implications for diagnosis and management. Mod Pathol 34, 15–37 (2021). https://doi.org/10.1038/s41379-020-0583-3

Download citation

Further reading

Search

Quick links