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Automated detection algorithm for C4d immunostaining showed
comparable diagnostic performance to pathologists in renal
allograft biopsy
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Abstract

A deep learning-based image analysis could improve diagnostic accuracy and efficiency in pathology work. Recently, we
proposed a deep learning-based detection algorithm for C4d immunostaining in renal allografts. The objective of this study is
to assess the diagnostic performance of the algorithm by comparing pathologists’ diagnoses and analyzing the associations
of the algorithm with clinical data. C4d immunostaining slides of renal allografts were obtained from two different
institutions (100 slides from the Asan Medical Center and 86 slides from the Seoul National University Hospital) and
scanned using two different slide scanners. Three pathologists and the algorithm independently evaluated each slide
according to the Banff 2017 criteria. Subsequently, they jointly reviewed the results for consensus scoring. The result of the
algorithm was compared with that of each pathologist and the consensus diagnosis. Clinicopathological associations of the
results of the algorithm with allograft survival, histologic evidence of microvascular inflammation, and serologic results for
donor-specific antibodies were also analyzed. As a result, the reproducibility between the pathologists was fair to moderate
(kappa 0.36-0.54), which is comparable to that between the algorithm and each pathologist (kappa 0.34-0.51). The C4d
scores predicted by the algorithm achieved substantial concordance with the consensus diagnosis (kappa =0.61), and they
were significantly associated with remarkable microvascular inflammation (P =0.001), higher detection rate of donor-
specific antibody (P =0.003), and shorter graft survival (P <0.001). In conclusion, the deep learning-based C4d detection
algorithm showed a diagnostic performance similar to that of the pathologists.
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Antibody-mediated rejection (ABMR) is an important
complication following kidney transplantation, contributing
to acute and chronic allograft injury in ~10% of kidney

P< Heounjeong Go

damul37 @amc.seoul.kr

Department of Pathology, University of Ulsan College of
Medicine, Asan Medical Center, 88 Olympic-ro 43-gil,
Songpa-gu, Seoul 05505, South Korea

Department of Biomedical Engineering, Asan Institute of Life
Science, University of Ulsan College of Medicine, Asan Medical
Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South
Korea

Department of Convergence Medicine, University of Ulsan
College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil,
Songpa-gu, Seoul 05505, South Korea

Department of Pathology, Seoul National University Hospital,
Seoul National University College of Medicine, 101 Daehang-ro,
Jongro-gu, Seoul 03080, South Korea

SPRINGER NATURE

transplant recipients [1]. The diagnosis of ABMR requires
three factors: histologic evidence of microvascular injury,
presence of donor-specific antibody (DSA) in the serologic
test, and C4d deposition in the peritubular capillary (PTC)
confirmed by immunostaining. Although the Banff 2013
criteria for ABMR introduced C4d-negative ABMR [2], the
immunohistochemical evaluation of C4d remains an indis-
pensable part of ABMR assessment. The Banff 2017 criteria
accepted C4d positivity as an alternative marker of DSA
testing [3], indicating its importance.

C4d is an end product of the activated complement
system [4]. Antibody-mediated immune reactions activate
the classical complement pathway, followed by the degra-
dation of activated C4. C4d, a fragment of C4, forms a
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covalent thioester bond with nearby proteins and remains in
the tissue, while other immune products are washed away.
Therefore, C4d deposition is considered a trace of the
antibody reaction and histologic hallmark of ABMR.
Indeed, many studies have reported that it has a significant
association with DSA and poor graft survival [5, 6].

Currently, the evaluation of C4d deposition is based on a
scoring system according to the Banff criteria [7] using
immunohistochemistry (IHC) or immunofluorescence (IF)
staining. C4d staining is considered positive only when it is
found in PTCs and vasa recta with a linear, circumferential
staining pattern, regardless of the staining intensity. C4d
staining findings in other areas, such as glomerular capil-
laries, tubular epithelium, and arteries as well as PTCs with
incomplete patterns are regarded as false-positive results.
False-negative results of C4d are also possible. An IHC
slide containing only a single C4d-stained PTC should be
interpreted as positive, but pathologists easily miss this
finding. Thus, the interpretation of C4d is not only a tedious
and laborious task but also a very difficult task with sig-
nificant intra- and interobserver variabilities. Mengel et al.
reported that C4d staining is subject to variation between
observers and laboratories, with kappa values under 0.5 [8].

Recent advances in digital slide scanners and computer
science have led to the development of image analysis
techniques for digitized pathologic images. Machine learn-
ing algorithms with deep learning make it possible to ana-
lyze complicated tasks, such as the detection of metastatic
tumors, prediction of prognosis, and grading of tumors
[9-13]. In particular, computer-aided pathologic analysis
has strengths in quantification tasks, and it could provide
accurate and reproducible results with superior sensitivity
and reduced labor and interobserver variability [14].

Because the scoring system of the Banff criteria has a
quantitative nature, this could be an ideal target for digital
image analysis. Among various scores, we targeted the C4d
score and reported an automated algorithm for it [15]. The
algorithm showed reasonable performance for detecting
individual PTCs and identifying them as C4d-positive or
-negative. In this study, the slide-level diagnostic perfor-
mance of the algorithm was compared with those of the
pathologists. Moreover, we collected additional C4d-
immunostained slides from another institution, and the
performance of the algorithm was validated with these
slides, which were stained following different protocols and
scanned using different slide scanners.

Methods
Patients selection

This study was performed using a protocol approved by the
institutional review board of Asan Medical Center (AMC)

(Approval no. 2018-0295). A total of 480 cases were ran-
domly selected from all needle biopsies of renal allografts
conducted from 2009 to 2016 from the anonymized
research database of AMC. This database contains zero-day
biopsies and indication biopsies with a clinical suspicion of
graft dysfunction but does not include protocol biopsies. Of
the 480 biopsies, 380 biopsies taken earlier were used for
the development of the algorithm [15], and the last 100
biopsies were used for this study. To evaluate interinstitu-
tional performance, an additional 86 cases were retrieved
from Seoul National University Hospital (SNUH), which
were randomly selected among biopsies conducted from
2017 to 2018. The database of SNUH contains zero-day
biopsies, indication biopsies, and protocol biopsies, but all
clinical information was blinded.

Data collection
Clinicopathological data collection

Cases from AMC provided the following information:
scanned whole slide images (WSIs) of biopsy specimens,
age at biopsy, elapsed time since kidney transplantation,
pathologic diagnosis, and graft survival and follow-up
periods. All clinical data were obtained from their anon-
ymized research database, and no data that can lead to
patient identification were collected. Cases from SNUH
were submitted with anonymized scanned images of C4d
THC slides without clinical information.

Immunohistochemistry and WSI scanning

IHC for C4d was performed on 4 um-thick sections from
formalin-fixed, paraffin-embedded tissue blocks using a
rabbit polyclonal antihuman C4d antibody (Cell Marque,
Rocklin, CA, USA) at 1:32 dilution using a Ventana
BenchMark XT autostainer (Ventana Medical Systems,
Tucson, AZ, USA). All slides from AMC were scanned
using a Pannoramic 250 Flash digital slide scanner
(3DHISTECH, Budapest, Hungary) at x20 magnification
and a resolution of 0.221 ym per pixel.

Development of an automated algorithm

The detailed development processes were reported in our
previously published article [15]. In brief, the algorithm
comprises two steps: classification of the feasible regions of
interest (ROIs) and detection of PTC. In the first step, the
algorithm divided a WSI into numerous candidate feasible
ROIs in 1024 x 1024 pixels and then distinguished feasible
or non-feasible ROIs for interpretation using a classification
model that was based on the Inception v3 network archi-
tecture. Areas with severe artifacts, poorly stained areas,
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Fig. 1 Accurate detection of C4d-positive capillaries by the algo-
rithm. Examples from Case 433 (a—c) and Case 450 (d-f). Both
capillaries showed linear C4d expression with moderate-to-strong
intensity, but they are so small that they could be easily missed by

glomeruli, and large vessels were automatically classified as
non-feasible ROIs and were excluded from the next step.
The second step detected and counted all PTCs with or
without C4d staining separately in the feasible areas using a
model that adopted the Faster R-CNN detection archi-
tecture. Finally, the algorithm outputs the number of entire
PTCs and proportion of C4d-positive PTCs.

Evaluation of C4d immunohistochemistry
Slide review by pathologists

Three readers, including two board-certified renal pathologists
(I and 9 years of experience) and a 4th-year resident
pathologist, participated in the study. The pathologists used
the viewing software CaseViewer 2.1 (3DHISTECH, Buda-
pest, Hungary) to evaluate WSIs with their personal compu-
ters and assessed the IHC according to the Banff 2017 criteria
as follows: C4d0 (0%) = no staining; C4d1 (<10%) = mini-
mal staining; C4d2 (10-50%) = focal staining; and C4d3
(250%) = diffuse staining. The results from individual
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pathologists. Annotation marks by the algorithm (¢, f) help readers to
recognize them. The number at the upper right side of the annotation
box is a calculated probability of the prediction.

pathologists were anonymized and designated as P scores
(P1, P2, and P3). After completing the task, the pathologists
had a review meeting and discussed their interpretations until
a consensus score for discrepant cases was agreed upon,
which was marked as the consensus score (C score).

C4d scoring by the algorithm and comparison with the
results of the pathologists

The algorithm run using the on-premise system. The same
computer used in the development system was used [15].
For each input, the algorithm automatically counted the
number of C4d-stained and -unstained PTCs and calculated
the proportion of C4d-stained PTCs. C4d scoring followed
the Banff 2017 criteria, but we changed the criterion of
C4d0 from 0% to <1% [15]. These scores were designated
as the algorithm score (A score) (Fig. 1). To evaluate the
agreement level among the pathologists, we compared A
scores with P scores and C scores. Interobserver variability
between pathologists and the algorithm was evaluated in
three ways: at the full scale (C4d0-3), binary distinction of
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negative (C4d0) vs. positive (C4d 2 1), and no or minimal
staining (C4d < 1) vs. more-than-focal staining (C4d > 2).
This method was adopted from that of the Banff working
group [8]. Thereafter, pathologists reviewed dozens of
images produced by the algorithm, which annotated C4d-
stained PTCs to analyze false-negative and false-positive
errors.

Interinstitutional validation

A total of 86 cases from SNUH were used to evaluate the
performance of the algorithm with slides that were stained
and scanned by different laboratories. IHC for SNUH cases
was performed on 2 um-thick sections from formalin-fixed,
paraffin-embedded tissue blocks using a rabbit polyclonal
antihuman C4d antibody (Cell Marque, Rocklin, CA, USA)
at a 1:100 dilution by a Bond Max Automated IHC Vision
Biosystem (Leica Microsystems, Wetzlar, Germany), and
the stained slides were scanned by an Aperio AT2 scanner
(Leica Biosystems, Newcastle upon Tyne, UK) at x20
magnification and a resolution of 0.502 um per pixel. Since
the size of the ROI is defined as 1024 x 1024 pixels and is
not based on the “actual” size, the slides scanned at different
resolutions need resizing to fit in the algorithm. As SNUH
slides were scanned at a lower resolution (0.502 um per
pixel) than AMC slides (0.221 um per pixel), these images
were magnified to match the actual size of each ROL
However, this caused a problem: images were blurred in
this process and were classified into non-feasible areas in
the first step. To overcome this issue, augmentation meth-
ods, such as sharpening, blurring, and zooming in and out,
were used to improve the robustness of the algorithm. The
C4d scores of SNUH slides were also reviewed by pathol-
ogists to make a C score using the viewing software
CaseViewer 2.1.

Correlation with clinicopathological data
Assessment for histopathological diagnosis

For each of the 100 biopsies from AMC, all available glass
slides were reviewed by an expert pathologist (HG). The
diagnostic criteria followed the 2018 Banff reference guide
[7]. Microvascular inflammation (MVI) was evaluated by
the MVI score, which was defined as the sum of the g score
(glomerulitis) and the ptc score (peritubular capillaritis).
Intensity was classified as negative/mild (MVI< 2), mod-
erate (2<MVI<5), or severe (MVI=5).

Graft survival analysis

The graft survival period was calculated from the date the
biopsy to the date of dialysis resumption, patient death, loss

to follow-up, or end of the study (April 29th, 2019). Patient
death despite a functioning graft and from other reasons was
not counted as graft failure.

DSA assessment

Donor-specific anti-human leukocyte antigen (HLA) anti-
bodies were assessed by the Luminex single antigen bead
assay using LABScreen Single Antigen HLA Class I and
Class II (One lambda, Canoga Park, CA, USA). The posi-
tive cut off value was a mean fluorescence intensity >1000.

Statistical analysis

All statistical analyses were calculated using the SPSS
version 25.0 software (IBM, Armonk, NY, USA). Graft
survival was compared by C4d scores using the
Kaplan—Meier method and the log-rank test. Kappa (K)
statistics were used to evaluate the agreement level between
the P score and A score, P score and C score, and C score
and A score. The correlation between the C4d score and
histologic evidence of MVI was evaluated using the Fisher
test. Statistical significance was set at p <0.05.

Results
Population characteristics

The characteristics of the patients from AMC are summar-
ized in Table 1. Their mean age was 48.9 + 13.9 years. The
mean elapsed time since the transplantation was 59.9 +
76.5 months. There were 66 cases of pathologically diag-
nosed allograft rejection: 35 T cell-mediated rejection, 4
ABMR, and 27 mixed rejection cases. DSA was tested for
in 79 patients and was found to be present in 22 patients.
The median follow-up period after biopsy was 25.7
8.8 months. In total, 22 graft losses occurred, including 21
patients who restarted dialysis and 1 patient who died with a
functioning graft.

Interobserver concordance of the C4d score

All of the comparison data of the C4d scores are summar-
ized in Table 2.

Comparison between the pathologists

All P scores, A scores, and C scores for 100 cases are
provided in supplementary material 1. The consensus of the
pathologists classified 52 cases as negative and 48 cases as
positive for C4d with minimal (C4dl, 32 cases), focal
(C4d2, 12 cases), and diffuse (C4d3, 4 cases) staining
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Table 1 Patient characteristics.

Table 2 Comparison of C4d scores.

Patient information n=100

Age at biopsy (yr)
Mean (95% CI)
Posttransplantation time (mo)
Mean (95% CI)

48.9 (46.2-51.7)

59.9 (44.7-75.1)

Donor type
Deceased 25
Living, ABO-compatible 61
Living, ABO-incompatible 14

Pathologic diagnosis

Acute/chronic active T cell-mediated rejection 35

Active/chronic active antibody-mediated 4
rejection
Mixed T cell- & antibody-mediated rejection 27
Others 34
C4d consensus score
C4d0 (No staining, 0%) 52
C4d1 (Minimal staining, >0% and <10%) 32
C4d2 (Focal staining, 210% and <50%) 12
C4d3 (Diffuse staining, >50%) 4
Donor-specific antibody
Present 22
Class 1 9
Class 11 17
Absent 57
Not available 21

Follow-up period after biopsy (mo)

Mean (95% CI) 25.6 (23.9-27.4)

Graft loss 22
Restarting dialysis 21
Deceased (with functioning graft) 1

yr year, mo month, CI confidence interval.

(Table 1). The interobserver variation between the three
pathologists was moderate, and the average kappa value
was 0.42. When binary distinction was performed with
simplified C4d groups into positive and negative, the
diagnostic concordance increased with a kappa value of
0.48. No and minimal staining (C4d0/1) group vs. more-
than-focal staining (C4d2/3) group showed further
improvement of reproducibility to a kappa value of 0.71.
The three pathologists had C score accuracies of 77% (P1),
80% (P2), and 74% (P3), with kappa values of 0.63, 0.68,
and 0.55, respectively. P1 and P2 showed excellent con-
cordance (K =0.93) with the C score when distinguishing
more-than-focal staining (C4d>2) vs. no-to-minimal
staining (C4d0/1), but P3 tended to give a lower score
(i.e., gave a C4d1 score for C4d2- or 3-scored cases in the C
score) and showed the lowest kappa values (0.56).

SPRINGER NATURE

Kappa
Accuracy Allscore- C4d0 vs. C4d0,1 vs.
(%) s C4d1,2,3  C4d2,3

Interobserver variability

PI vs. 0.42 0.48 0.71

P2 vs. P3

P1 vs. P2 81 0.54 0.50 0.93

P2 vs. P3 62 0.36 0.44 0.56

P1 vs. P3 63 0.37 0.50 0.56
Pathologists’ accuracy (vs. Consensus)

P1 77 0.63 0.62 0.93

P2 80 0.68 0.68 0.93

P3 74 0.55 0.68 0.56
Comparison between the algorithm and pathologists

vs. P1 62 0.34 0.46 0.61

vs. P2 65 0.42 0.48 0.70

vs. P3 74 0.51 0.55 0.63

vs. Consensus 77 0.61 0.72 0.70
Comparison between the algorithm and pathologists in SNUH cases

vs. Consensus 70 0.46 0.53 0.91

Comparison between the algorithm and pathologists

The C4d scores predicted by the algorithm achieved
substantial concordance with the consensus score (K =
0.61) with an accuracy of 77%. The kappa values of the
algorithm when compared with individual pathologists
were lower at 0.34 (vs. P1), 0.42 (vs. P2), and 0.51 (vs.
P3), which were comparable to the kappa values between
the pathologists. The algorithm also showed a higher
kappa value for binary distinction, with 0.72 for negative
vs. positive staining and 0.70 for differentiating more-
than-focal staining (C4d>2). On comparing C and A
scores, A scores contained four false-positive and ten
false-negative cases. The pathologists reviewed the out-
put images from these cases and found several errors that
brought about the false-positive and false-negative results
(Fig. 2). The A score was also compared with each
P score, assuming the C score as the reference standard.
The algorithm found several false-negative cases wherein
each pathologist erroneously scored a case as C4d0 when
it was actually C4d-positive; this was true for 6 of 49
(12.2%) for P1, 3 of 44 (6.8%) for P2, and 7 of 58
(12.1%) for P3.

Comparison in the dataset from another institution

For the 86 cases from SNUH, the algorithm showed a kappa
value of 0.45 for the C score. The kappa value for binary
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Fig. 2 Examples of false-positive and false-negative cases with the
A score. Examples of false-positive cases. a Linear, but not cir-
cumferential, expression should be regarded as negative according to
the Banff guidelines. C4d expression in structures other than the
peritubular capillary and vasa recta, such as the glomerular arteriole
(b), loop of Henle (c¢), and glomerular capillary (d), should be con-
sidered a false-positive. Not all such cases were confused by the
algorithm, as represented by the false-positive expression in the loop
of Henle at the upper right side of (c¢), which was not predicted as a

distinction was much higher when distinguishing more-
than-focal staining from negative/minimal staining (K=
0.91) than when distinguishing negative from positive
staining (K = 0.53). The scores predicted by the algorithm
and the consensus panel are provided in supplementary
material 2.

Clinicopathological correlation of the C4d score

All P scores, C scores, and A scores were significantly
associated with MVI severity and the presence of DSA.
Cases with higher C4d scores tended to reveal more
severe MVI on histopathological examination, with
statistical significance in both the C score (P =0.0019)
and A score (P=0.0009), and DSAs were more fre-
quently detected among patients with higher C4d scores
(Table 3).

positive peritubular capillary. e-f Annotated images extracted from
cases with C4d0 in the A score. These cases contain a few C4d-
positive PTCs, and the algorithm did not fail to detect them, as seen in
figures (e—f), but their proportion did not reach 0.5%. As we used
altered criteria for C4d0 for A score (C4d < 1%), the algorithm graded
them as C4d0. Although the algorithm misdiagnosed the C4d score,
these annotated images were greatly helpful in the review by pathol-
ogists. A Algorithm, PTC peritubular capillary.

Graft failures occurred more frequently in the C4d-
positive cases in both C and A scores (Fig. 3a). The mean
survival time during the follow-up period was significantly
shorter for C4d-positive cases than for C4d-negative cases,
and it was statistically significant in terms of both A (p <
0.001) and C scores (p =0.003) (Fig. 3b, c). When the
patients were compared by C4d scores 0, 1, and 22, the
p value remained less than 0.05 in terms of both A (P =
0.001) and C scores (P =0.005). But, survival graphs
crossed at the late follow-up period, precluding its validity
(Fig. 3d, e).

Discussion

In our previous study, the proposed algorithm showed
reasonable detection performance at the individual PTC

SPRINGER NATURE
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Table 3 Correlation with microcirculation injury and donor-specific
antibody.

MVI group (n = 100) P value
Negative/mild Moderate Severe
C score 0.0019
C4do 40 6
C4d1 17 10
C4d2,3 4 7
A score 0.0009
C4do 45 8 5
C4d1 13 10 8
C4d2,3 3 5 3
Donor-specific antibody (n = 100) P value
Absent Present NA
C score 0.0022?
C4do 34 4 14
C4d1 16 10 6
C4d2, 3 7 8
A score 0.0029*
C4do 34 8 16
C4d1 21
C4d2,3 2

MVI microcirculation injury, C consensus, A algorithm, NA not
available.

“Not including NA cases.

level [15]. In this study, we evaluated the slide-level per-
formance to assess its practical diagnostic applicability. The
scoring result of the algorithm not only was comparable to
that of the pathologists but also was significantly correlated
with other evidence of ABMR, represented by the histolo-
gical evidence of MVI, the presence of DSA, and overall
graft survival.

In this study, each pathologist achieved moderate-to-
substantial concordance with the C score, with kappa values
ranging from 0.55 to 0.68. The algorithm also achieved
substantial concordance with the C score (K= 0.61), which
is similar to that of the pathologists. This result is better than
the result achieved by the Banff working group [8]. They
evaluated interobserver and interinstitutional variabilities in
C4d scoring between a consensus panel and 78 pathologists.
Consequently, their results showed moderate reproduci-
bility, with an average kappa value of 0.44. Moreover, the
clinical validity of the A score was further supported by its
association with DSA, MVI, and graft survival.

Deep learning-based artificial intelligence can meticu-
lously investigate an image with a high-level of consistency
that is difficult for humans to achieve [16]. We focused on
this property of the algorithm and tried to maximize the

SPRINGER NATURE

A
A score Graft failure Survival Survival time (95% Cl)
Positive (C4d > 1) 16 26 25.6 (22.7-28.5)
Negative (C4d=0) 5 53 29.7 (28.1-31.4)
Cscore
Positive (C4d 2 1) 16 32 26.2 (23.5-28.9)
Negative (C4d =0) 5 47 29.7 (28.0-31.4)
B C
1.0 - 1.0
0.8 0.8
0.6 P<0.001 - 0.6 P=0.003
0.4 0.4
=== A C4dO === C C4d0
02 == A C4d>1 02 = C C4d>21
0 0
0 10 20 30 0 10 20 30
follow-up (month) follow-up (month)
D D
1.0 1 10| —
0.8 ‘ 0.8 H
0.6 P=0.001 - 0.6 P=0.011 e
0.4 == A C4dO 0.4 === C C4d0
0.2 == A C4d=1 0.2 == C C4d=1
0 w A C4d>2 0 w C C4d>2
0 10 20 30 0 10 20 30

follow-up (month) follow-up (month)

Fig. 3 Kaplan—-Meier estimation of graft survival by the A score
and C score. a A summary of graft survival. b, ¢ Both A and C scores
showed poor graft survival in the C4d-positive group of patients. d, e
When grouped by three levels, graph lines of C4d1 and C4d2/3 cross
at the late follow-up period in both cases. A algorithm, C consensus.

sensitivity in the range as it maintains reasonable accuracy.
Indeed, the algorithm detected some positive PTCs that
were missed by several pathologists; however, at the same
time, it showed several false-positive detections in most
cases (Fig. 2). Due to these false-positives, unfortunately,
changing the criterion of C4d0 from 0% to <1% was
inevitable to correct for false-positive errors at the slide
level; however, it also caused some false-negative errors.
False-positive errors were mostly detected in tubule-like
structures with thin walls, such as loops of Henle, atrophic
tubules, glomerular capillaries, and arterioles (Fig. 2a—d).
Some cases were also challenging for pathologists and
required mutual discussion to consider them as false-
positives. Despite using the altered criterion of C4d0 < 1%,
four slide-level false-positive cases were seen. These cases
mostly had a staining problem, wherein either too many
nonspecific background signals confused the algorithm or
too weak background hematoxylin staining precluded the
detection of C4d-unstained PTCs and consequently over-
rated the proportion of C4d-positive PTCs. These results
suggest that not only superior algorithmic performance but
also excellent, laboratory-produced, high-quality slides are
very important for applying computer-aided image analysis
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to digital pathology. Recent advances in quality-improving
techniques of WSI, such as color normalization, could also
help to solve these problems [17, 18].

False-negative results were absolutely critical as our aim
was to maximize the sensitivity of the algorithm to enable
its use as a screening tool. However, there were ten slide-
level false-negative cases. To analyze this finding, pathol-
ogists reviewed dozens of images produced by the algo-
rithm with annotations of C4d-stained PTCs and found that
these results were mainly due to the altered criterion for
C4d0. There was not a case that contained a C4d-positive
PTC truly missed by the algorithm. The algorithm identified
at least one output image with a C4d-positive PTC label in
these cases (Fig. 2e, f), but its proportion did not reach 1%
among all PTCs found in WSIs. Such cases, i.e., those
containing less than five C4d-positive PTCs throughout
WSIs, could also be missed by pathologists. Some of the
slides were also classified as C4d0 during the pathologist
review: two cases by P1, one case by P2, and four cases by
P3. Although slide-level C4d0 classification by the algo-
rithm was not perfectly reliable, it could function as a useful
screening tool by providing annotations for some possible
candidates of C4d-positive PTCs.

There are several limitations to discuss. First, the entire
dataset used in the training and validation of the algorithm
was retrieved from a single institution (AMC) [15]. We
addressed this issue by testing the performance of the
algorithm on cases from another institution (SNUH).
Although deteriorated scoring concordance was noted at the
full scale (C4d0-3), the algorithm achieved an excellent
kappa value for binary distinction between C4d0-1 and
C4d2-3. Most errors occurred when distinguishing between
C4d0 and C4d1, as seen in the AMC dataset as well. Dif-
ferences in laboratory settings and the slide scanner may
affect the performance of the algorithm. Second, our dataset
did not include protocol biopsy cases. Routine protocol
biopsies have been implemented in many institutions [19].
There might be a smaller population expressing C4d among
them compared with the population included in this study.
If protocol biopsy cases had been included in the study
population, the overall slide-level accuracy of the algorithm
may have reduced because the algorithm made most errors
in the distinction between C4d0 and C4dl. As discussed
earlier, although the slide-level C4d0 classification of the
algorithm was unreliable, the algorithm could function as a
screening tool with annotations for possible candidates of
C4d-positive PTCs. Third, there were some confounding
factors within the clinicopathological correlation of C4d.
C4d was negative in some chronic ABMR cases [2]. Con-
versely, there could be nonspecific C4d deposition in PTC,
particularly in cases of ABO-incompatible transplantation
[20]. In addition, the pathologists could not assure that the
consensus result was absolutely accurate. There were some

cases with uncertain C4d-stained structures that were very
difficult to interpret as PTC. There was a possibility of
misinterpretation with false-positive results and vice versa.
These problems could potentially impair the reliability of
C4d immunostaining itself. However, our data showed that
both A and C scores were significantly associated with
DSA, MVI, and graft survival, thus supporting their clinical
validity. Although the algorithm itself had various false-
negative and -positive errors and thereby could not act as a
gold-standard C4d reader, we believe that it could be of
valuable help to pathologists.

Deep learning-based image analysis has a great advan-
tage in quantification [16, 18]. The Banff system for renal
allograft biopsy is an ideal target because there are well-
established diagnostic criteria based on semiquantitative
evaluation. We selected the C4d score as the first step
because the C4d score is based on IHC, which is unlike
other scoring systems which are mainly based on histo-
chemical staining, including hematoxylin—eosin (H&E),
periodic acid-Schiff (PAS), trichrome, and methenamine
silver staining (MT) [7]. Therefore, the stained slides have a
sharp color contrast and relatively small variation in inter-
institutional staining intensity. Furthermore, since C4d is a
powerful prognostic marker [5, 6, 21] and is closely
related to other histopathological and serological evidences
of ABMR [20-22], further validation through clin-
icopathological correlation was easily achieved.

Notably, this study showed that a deep learning-based
algorithm can detect and analyze complex histological
architectures on IHC slides. This finding exceeded our
expectations because IHC images have a disadvantage for
recognizing complex architectures. Indeed, most deep
learning-associated histopathological algorithms, particu-
larly when detecting and analyzing complex histological
architectures, use images stained with multiple colors such
as H&E, PAS, and MT [11, 12, 23-26]. IHC uses only a
single color (hematoxylin) to show the background archi-
tectures and has therefore been used in machine learning for
quantifying relatively simple targets [27, 28]. The results of
this study show a deep learning-based system’s ability for
handling more complicated IHC interpretation tasks. For
example, an assessment algorithm for immune cell infil-
tration in specific architectures, such as tubules, glomeruli,
and vessels, using IHC markers, such as CDS8, would
improve the diagnostic accuracy and consistency. This
achievement is not only greatly useful for practice but
also very important for research because interobserver
variability has been a major problem for renal transplant
pathology [29].

In conclusion, the deep learning-based C4d detection
algorithm showed a diagnostic performance similar to that
of the pathologists in renal allograft biopsy. Scoring renal
allograft biopsies to evaluate rejection, especially with the
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help of IHC, could be another suitable target for applying a
deep learning-based decision support model.
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