MicroRNA signatures associated with lymph node metastasis in intramucosal gastric cancer

Abstract

Although a certain proportion of intramucosal carcinomas (IMCs) of the stomach does metastasize, the majority of patients are currently treated with endoscopic resection without lymph node dissection, and this potentially veils any existing metastasis and may put some patients in danger. In this regard, biological markers from the resected IMC that can predict metastasis are warranted. Here, we discovered unique miRNA expression profiles that consist of 21 distinct miRNAs that are specifically upregulated (miR-628-5p, miR-1587, miR-3175, miR-3620-5p, miR-4459, miR-4505, miR-4507, miR-4720-5p, miR-4742-5p, and miR-6779-5p) or downregulated (miR-106b-3p, miR-125a-5p, miR-151b, miR-181d-5p, miR-486-5p, miR-500a-3p, miR-502-3p, miR-1231, miR-3609, and miR-6831-5p) in metastatic (M)-IMC compared to nonmetastatic (N)-IMC, or nonneoplastic gastric mucosa. Intriguingly, most of these selected miRNAs showed stepwise increased or decreased expression from nonneoplastic tissue to N-IMC to M-IMC. This suggests that common oncogenic mechanisms are gradually intensified during the metastatic process. Using a machine-learning algorithm, we demonstrated that such miRNA signatures could distinguish M-IMC from N-IMC. Gene ontology and pathway analysis revealed that TGF-β signaling was enriched from upregulated miRNAs, whereas E2F targets, apoptosis-related, hypoxia-related, and PI3K/AKT/mTOR signaling pathways, were enriched from downregulated miRNAs. Immunohistochemical staining of samples from multiple institutions indicated that PI3K/AKT/mTOR pathway components, MAPK1, phospho-p44/42 MAPK, and pS6 were highly expressed and the expression of SMAD7, a TGF-β pathway component, was decreased in M-IMC, which could aid in distinguishing M-IMC from N-IMC. The miRNA signature discovered in this study is a valuable biological marker for identifying metastatic potential of IMCs, and provides novel insights regarding the metastatic progression of IMC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of the workflow of the study for the identification of specific miRNAs related to lymph node metastasis in intramucosal gastric cancer.
Fig. 2: Differential expression of miRNAs in metastatic- and nonmetastatic intramucosal carcinoma (M-IMC and N-IMC).
Fig. 3: Predictive model building for lymph node metastasis in intramucosal gastric cancer.
Fig. 4: Gene ontology and pathway analysis for metastasis-related miRNAs.
Fig. 5: Analysis of clinicopathological characteristics and experimental validation of metastatic intramucosal gastric cancer using an independent dataset.

References

  1. 1.

    Angeles-Angeles A, Candanedo-Gonzalez F, Gamboa-Dominguez A, Larriva-Sahd J. A clinicopathologic variant of intramucosal early gastric cancer with widespread dissemination: report of three cases. J Clin Gastroenterol. 1998;27:173–7.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  2. 2.

    Hanaoka N, Tanabe S, Higuchi K, Sasaki T, Nakatani K, Ishido K, et al. A rare case of histologically mixed-type intramucosal gastric cancer accompanied by nodal recurrence and liver metastasis after endoscopic submucosal dissection. Gastrointest Endosc. 2009;69:588–90.

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Song SY, Park S, Kim S, Son HJ, Rhee JC. Characteristics of intramucosal gastric carcinoma with lymph node metastatic disease. Histopathology. 2004;44:437–44.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  4. 4.

    Lee D, Kim YC, Lee KM, Yoon JK, Kim YB. MET-amplified intramucosal gastric cancer widely metastatic after complete endoscopic submucosal dissection. Cancer Res Treat. 2015;47:120–5.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  5. 5.

    Korenaga D, Haraguchi M, Tsujitani S, Okamura T, Tamada R, Sugimachi K. Clinicopathological features of mucosal carcinoma of the stomach with lymph node metastasis in eleven patients. Br J Surg. 1986;73:431–3.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  6. 6.

    Yamao T, Shirao K, Ono H, Kondo H, Saito D, Yamaguchi H, et al. Risk factors for lymph node metastasis from intramucosal gastric carcinoma. Cancer. 1996;77:602–6.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  7. 7.

    Lee SH, Choi CW, Kim SJ, Choi CI, Kim DH, Jeon TY, et al. Risk factors for lymph node metastasis in mucosal gastric cancer and re-evaluation of endoscopic submucosal dissection. Ann Surg Treat Res. 2016;91:118–26.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Wang H, Wei XZ, Fu CG, Zhao RH, Cao FA. Patterns of lymph node metastasis are different in colon and rectal carcinomas. World J Gastroenterol. 2010;16:5375–9.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Zhao YX, Liu YR, Xie S, Jiang YZ, Shao ZM. A nomogram predicting lymph node metastasis in T1 breast cancer based on the surveillance, epidemiology, and end results program. J Cancer. 2019;10:2443–9.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Cancer Genome Atlas Research N. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

    Article  CAS  Google Scholar 

  11. 11.

    Choi JH, Kim YB, Ahn JM, Kim MJ, Bae WJ, Han SU, et al. Identification of genomic aberrations associated with lymph node metastasis in diffuse-type gastric cancer. Exp Mol Med. 2018;50:6.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. 12.

    Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353:1793–801.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  13. 13.

    Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  14. 14.

    Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA. 2007;297:1901–8.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  15. 15.

    Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F, et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 2008;111:3183–9.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Hao NB, He YF, Li XQ, Wang K, Wang RL. The role of miRNA and lncRNA in gastric cancer. Oncotarget. 2017;8:81572–82.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Li X, Zhang Y, Zhang Y, Ding J, Wu K, Fan D. Survival prediction of gastric cancer by a seven-microRNA signature. Gut. 2010;59:579–85.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  18. 18.

    Hwang J, Min BH, Jang J, Kang SY, Bae H, Jang SS, et al. MicroRNA expression profiles in gastric carcinogenesis. Sci Rep. 2018;8:14393.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12:697.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Dweep H, Sticht C, Pandey P, Gretz N. miRWalk-database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 2011;44:839–47.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  21. 21.

    Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Fresno C, Fernandez EA. RDAVIDWebService: a versatile R interface to DAVID. Bioinformatics. 2013;29:2810–1.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  23. 23.

    Simon R, Lam A, Li MC, Ngan M, Menenzes S, Zhao Y. Analysis of gene expression data using BRB-ArrayTools. Cancer Informat. 2007;3:11–7.

    Article  Google Scholar 

  24. 24.

    Simon RM, Subramanian J, Li MC, Menezes S. Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data. Brief Bioinformat. 2011;12:203–14.

    Article  Google Scholar 

  25. 25.

    Colak S, Ten Dijke P. Targeting TGF-beta Signaling in. Cancer Trends Cancer. 2017;3:56–71.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  26. 26.

    Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554:538–43.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  27. 27.

    Kim YB, Ham IH, Hur H, Lee D. Various ARID1A expression patterns and their clinical significance in gastric cancers. Hum Pathol. 2016;49:61–70.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  28. 28.

    Nishida N, Mimori K, Fabbri M, Yokobori T, Sudo T, Tanaka F, et al. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin Cancer Res. 2011;17:2725–33.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  29. 29.

    Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA. 2008;105:13556–61.

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA. MicroRNAs-the micro steering wheel of tumour metastases. Nat Rev Cancer. 2009;9:293–302.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  31. 31.

    Dong L, Li Y, Han C, Wang X, She L, Zhang H. miRNA microarray reveals specific expression in the peripheral blood of glioblastoma patients. Int J Oncol. 2014;45:746–56.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  32. 32.

    Figueroa J, Phillips LM, Shahar T, Hossain A, Gumin J, Kim H. Exosomes from glioma-associated mesenchymal stem cells increase the tumorigenicity of glioma stem-like cells via transfer of miR-1587. Cancer Res. 2017;77:5808–19.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Han L, Liu D, Li Z, Tian N, Han Z, Wang G, et al. HOXB1 is a tumor suppressor gene regulated by miR-3175 in glioma. PLoS ONE. 2015;10:e0142387.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34.

    Martinez-Gutierrez AD, Catalan OM, Vazquez-Romo R, Porras Reyes FI, Alvarado-Miranda A, Lara Medina F, et al. miRNA profile obtained by nextgeneration sequencing in metastatic breast cancer patients is able to predict the response to systemic treatments. Int J Mol Med. 2019;44:1267–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Wang YN, Chen ZH, Chen WC. Novel circulating microRNAs expression profile in colon cancer: a pilot study. Eur J Med Res. 2017;22:51.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Li S, Hang L, Ma Y, Wu C. Distinctive microRNA expression in early stage nasopharyngeal carcinoma patients. J Cell Mol Med. 2016;20:2259–68.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37.

    Ni S, Weng W, Xu M, Wang Q, Tan C, Sun H, et al. miR-106b-5p inhibits the invasion and metastasis of colorectal cancer by targeting CTSA. Onco Targets Ther. 2018;11:3835–45.

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Cao Y, Tan S, Tu Y, Zhang G, Liu Y, Li D, et al. MicroRNA-125a-5p inhibits invasion and metastasis of gastric cancer cells by targeting BRMS1 expression. Oncol Lett. 2018;15:5119–30.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Yan L, Yu MC, Gao GL, Liang HW, Zhou XY, Zhu ZT, et al. MiR-125a-5p functions as a tumour suppressor in breast cancer by downregulating BAP1. J Cell Biochem. 2018;119:8773–83.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Hu Y, Wang H, Chen E, Xu Z, Chen B, Lu G. Candidate microRNAs as biomarkers of thyroid carcinoma: a systematic review, meta-analysis, and experimental validation. Cancer Med. 2016;5:2602–14.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Li Y, Kuscu C, Banach A, Zhang Q, Pulkoski-Gross A, Kim D, et al. miR-181a-5p inhibits cancer cell migration and angiogenesis via downregulation of matrix metalloproteinase-14. Cancer Res. 2015;75:2674–85.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Gao LM, Zheng Y, Wang P, Zheng L, Zhang WL, Di Y, et al. Tumor-suppressive effects of microRNA-181d-5p on non-small-cell lung cancer through the CDKN3-mediated Akt signaling pathway in vivo and in vitro. Am J Physiol Lung Cell Mol Physiol. 2019;316:L918–L33.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  43. 43.

    Tian F, Wang J, Ouyang T, Lu N, Lu J, Shen Y, et al. MiR-486-5p serves as a good biomarker in nonsmall cell lung cancer and suppresses cell growth with the involvement of a target PIK3R1. Front Genet. 2019;10:688.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Yu S, Geng S, Hu Y. miR-486-5p inhibits cell proliferation and invasion through repressing GAB2 in non-small cell lung cancer. Oncol Lett. 2018;16:3525–30.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Liao XH, Xie Z, Guan CN. MiRNA-500a-3p inhibits cell proliferation and invasion by targeting lymphocyte antigen 6 complex locus K (LY6K) in human non-small cell lung cancer. Neoplasma. 2018;65:673–82.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  46. 46.

    Jiang C, Long J, Liu B, Xu M, Wang W, Xie X, et al. miR-500a-3p promotes cancer stem cells properties via STAT3 pathway in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2017;36:99.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Jin H, Yu M, Lin Y, Hou B, Wu Z, Li Z, et al. MiR-502-3P suppresses cell proliferation, migration, and invasion in hepatocellular carcinoma by targeting SET. Onco Targets Ther. 2016;9:3281–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. 48.

    Ujihira T, Ikeda K, Suzuki T, Yamaga R, Sato W, Horie-Inoue K, et al. MicroRNA-574-3p, identified by microRNA library-based functional screening, modulates tamoxifen response in breast cancer. Sci Rep. 2015;5:7641.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Okumura T, Kojima H, Miwa T, Sekine S, Hashimoto I, Hojo S, et al. The expression of microRNA 574-3p as a predictor of postoperative outcome in patients with esophageal squamous cell carcinoma. World J Surg Oncol. 2016;14:228.

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Shang S, Wang J, Chen S, Tian R, Zeng H, Wang L, et al. Exosomal miRNA-1231 derived from bone marrow mesenchymal stem cells inhibits the activity of pancreatic cancer. Cancer Med. 2019;8:7728–40.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. 51.

    Zhang J, Zhang J, Qiu W, Zhang J, Li Y, Kong E, et al. MicroRNA-1231 exerts a tumor suppressor role through regulating the EGFR/PI3K/AKT axis in glioma. J Neurooncol. 2018;139:547–62.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Li D, Wang X, Yang M, Kan Q, Duan Z. miR3609 sensitizes breast cancer cells to adriamycin by blocking the programmed death-ligand 1 immune checkpoint. Exp Cell Res. 2019;380:20–8.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  53. 53.

    Usuba W, Urabe F, Yamamoto Y, Matsuzaki J, Sasaki H, Ichikawa M, et al. Circulating miRNA panels for specific and early detection in bladder cancer. Cancer Sci. 2019;110:408–19.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation (NRF), funded by the Ministry of Science and ICT (2017R1C1B2003970), Republic of Korea.

Author information

Affiliations

Authors

Contributions

DL designed the study and supervised the entire process. KWC and COS analyzed and interpreted miRNA expression data. WJB performed qRT-PCR. JMA organized sample data. J-HH and K-MK provided FFPE tumor samples. SK and DL reviewed the tissue slides and performed IHC. SK, COS, and DL wrote the manuscript. All authors were involved in critical review and discussion of this manuscript.

Corresponding authors

Correspondence to Chang Ohk Sung or Dakeun Lee.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Bae, W.J., Ahn, J.M. et al. MicroRNA signatures associated with lymph node metastasis in intramucosal gastric cancer. Mod Pathol (2020). https://doi.org/10.1038/s41379-020-00681-x

Download citation

Search