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Abstract
Although a certain proportion of intramucosal carcinomas (IMCs) of the stomach does metastasize, the majority of patients
are currently treated with endoscopic resection without lymph node dissection, and this potentially veils any existing
metastasis and may put some patients in danger. In this regard, biological markers from the resected IMC that can predict
metastasis are warranted. Here, we discovered unique miRNA expression profiles that consist of 21 distinct miRNAs that are
specifically upregulated (miR-628-5p, miR-1587, miR-3175, miR-3620-5p, miR-4459, miR-4505, miR-4507, miR-4720-5p,
miR-4742-5p, and miR-6779-5p) or downregulated (miR-106b-3p, miR-125a-5p, miR-151b, miR-181d-5p, miR-486-5p,
miR-500a-3p, miR-502-3p, miR-1231, miR-3609, and miR-6831-5p) in metastatic (M)-IMC compared to nonmetastatic
(N)-IMC, or nonneoplastic gastric mucosa. Intriguingly, most of these selected miRNAs showed stepwise increased or
decreased expression from nonneoplastic tissue to N-IMC to M-IMC. This suggests that common oncogenic mechanisms are
gradually intensified during the metastatic process. Using a machine-learning algorithm, we demonstrated that such miRNA
signatures could distinguish M-IMC from N-IMC. Gene ontology and pathway analysis revealed that TGF-β signaling was
enriched from upregulated miRNAs, whereas E2F targets, apoptosis-related, hypoxia-related, and PI3K/AKT/mTOR
signaling pathways, were enriched from downregulated miRNAs. Immunohistochemical staining of samples from multiple
institutions indicated that PI3K/AKT/mTOR pathway components, MAPK1, phospho-p44/42 MAPK, and pS6 were highly
expressed and the expression of SMAD7, a TGF-β pathway component, was decreased in M-IMC, which could aid in
distinguishing M-IMC from N-IMC. The miRNA signature discovered in this study is a valuable biological marker for
identifying metastatic potential of IMCs, and provides novel insights regarding the metastatic progression of IMC.

Introduction

With advances in diagnostic surveillance, gastric cancer
(GC) is now detected earlier and prognosis is improving. In

particular, patients with intramucosal carcinoma (IMC)
mostly experience complete cure once the tumor is resected,
mainly because this early stage of disease is unlikely to
develop metastasis. However, a certain proportion of IMCs
do recur and even metastasize to liver and bone as well as
regional lymph nodes [1–4]. Previous studies have
demonstrated that lymph node metastasis occurs in
1.9–3.5% of IMCs, and some of these patients eventually
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succumb to the disease [3, 5–7]. As most IMCs are now
treated with endoscopic submucosal dissection (ESD) rather
than by radical gastrectomy, the exact incidence of regional
lymph node metastasis in this early stage of disease remains
largely unknown. Once a tumor is resected and histologi-
cally diagnosed as IMC, it is assumed that there will be no
metastasis and the patient will receive no additional adju-
vant treatment. Considering that lymph node biopsy or
dissection is included in the standardized treatment protocol
in cancers of other organs showing similar rates of nodal
metastasis [8, 9], this lack of surveillance of nodal status
may pose a potential risk of disease progression in such
early GC patients.

To overcome this, many researchers have investigated
the clinicopathologic factors predicting lymph node
metastasis by studying metastatic IMCs (M-IMCs) [3, 5, 6].
According to these previous reports, pathologic features
such as large tumor size (usually >2 cm), invasion to the
muscularis mucosa, presence of an ulcer, and
undifferentiated-type histology are commonly associated
with lymph node metastasis in IMC. Despite these efforts,
lymph node metastasis is still barely predictable, because
most of these cases finally eventuate to be nonmetastatic,
even though they exhibit all the above risk factors. Radical
gastrectomy with regional lymph node dissection is not
regarded as a treatment of choice in patients with IMC, as
ESD provides several profound benefits to patients. Thus,
identification of new biomarkers that can more precisely
predict metastasis in IMC is warranted for tailored therapy.

Over the past decade, multiplexed, high-throughput
technologies have enabled numerous fresh human tumor-
based genomic sequencing studies, which unmasked certain
new oncogenic driver mutations and underlying mechan-
isms involved in cancer progression or resistance to treat-
ment [10, 11]. However, regarding GC, these studies
have been mostly limited to advanced stages of the disease
because very early-stage GCs are small and shallow, and are
not clearly delineated; thus, fresh tumor sampling is not
possible in most circumstances. Therefore, studies investi-
gating the molecular characteristics surrounding IMC have
only rarely been conducted, and the underlying mechanisms
involved in early-stage cancer metastasis have remained
largely elusive.

MicroRNAs (miRNAs) are small noncoding RNAs that
are known to regulate gene expression. Through binding to
a 3′ untranslated region of a mRNA, which is partially
complementary to their target sequence, miRNAs inhibit or
promote the translation of various mRNAs of oncogenes or
tumor suppressor genes to impact cancer biology. Several
studies have been conducted to identify miRNAs that are
related to cancer progression or patient prognosis in various
types of malignancies [12–15]. Regarding GCs, it has been
reported that certain miRNAs are aberrantly expressed in

GC [16], and some of these show value in predicting patient
prognosis [17]. A recent study revealed distinct miRNA
expression profiles that are related to the different stages of
gastric carcinogenesis, from nonneoplastic gastric mucosa
to adenoma to early GC [18], which underscores the crucial
role of miRNAs in the development and progression of
cancer. Nevertheless, miRNA profiles specifically related to
metastasis in IMC have never been reported.

Here, we investigated unique miRNA expression profiles
of M-IMC in comparison to non-M-IMC (N-IMC) and
nonneoplastic gastric mucosa. By analyzing the target genes
of the identified miRNAs, we elucidated the biological
modes of action underlying the progression of M-IMC.
Also, with a machine-learning algorithm and immunohis-
tochemical staining, we internally and externally validated
the miRNA expression profiles of M-IMC.

Materials and methods

Clinical samples

We reviewed medical records of patients who underwent
gastrectomy from July 2005 to March 2012 at Ajou Uni-
versity Hospital, and selected an experimental set which
consisted of 7 cases of normal gastric mucosa, 12 cases of
N-IMC, and 16 cases of M-IMC. For the independent
validation, 108 formalin-fixed, paraffin-embedded (FFPE)
samples from three different institutes were selected; 54
cases of M-IMC from Samsung Medical Center (47 cases)
and Bundang CHA Hospital (7 cases) and 54 cases of N-
IMC samples from Ajou University Hospital were included.
This study was carried out following the code of ethics of
the World Medical Association (Declaration of Helsinki),
and was approved by the Institutional Review Board of
Ajou University Hospital (AJIRB-BMR-KSP-17-129).

miRNA extraction and microarray analysis

Total RNA, including miRNAs, was extracted from the
FFPE normal and tumor specimens and was prepared using
Affymetrix GeneChip miRNA (cat. no. 902412; Affyme-
trix, Santa Clara, CA, USA), according to the manu-
facturer’s instructions. For quality control, RNA purity
and integrity were evaluated by determination of OD
260/280 nm ratio, and analyzed using an Agilent 2100
Bioanalyzer instrument (Agilent Technologies, Palo Alto,
CA, USA). One microgram RNA samples were labeled
with the FlashTag™ Biotin RNA Labeling Kit (Genisphere,
Hatfield, PA, USA). The labeled RNA was quantified,
fractionated, and hybridized to the miRNA microarray
according to the standard procedures provided by the
manufacturer. The labeled RNA was heated to 99 °C for
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5 min and then to 45 °C for 5 min. RNA-array hybridization
was performed with agitation at 60 rotations per minute for
16–18 h at 48 °C on an Affymetrix® 450 Fluidics Station.
The chips were washed and stained using a GeneChip
Fluidics Station 450 (Affymetrix, Santa Clara, CA, USA).
They were then scanned with an Affymetrix GeneChip
Scanner 3000 (Affymetrix, Santa Clara, CA, USA). Signal
values were computed using Affymetrix® GeneChip™
Command Console software.

Microarray data processing and normalization

We used a dedicated software tool specialized for such data,
which was provided by Affymetrix®. Briefly, raw data were
extracted automatically using the Affymetrix data extraction
protocol and software provided by Affymetrix GeneChip®
Command Console® Software (AGCC). The CEL files
import, miRNA level RMA+DABG-All analysis, and
export of the results were all performed using Affymetrix®
Expression Console™ Software. Array data were filtered by
annotated probes for a given species and the data were
normalized using AGCC Software. Normalized expression
levels across samples are shown in Supplementary Fig. 1.

Differentially expressed miRNA selection

Comparative analysis involving test and control samples
was carried out using a fold change and independent t-test
in which the null hypothesis was that no difference exists
between the two groups. False discovery rate (FDR) was
controlled by adjusting p values using the
Benjamini–Hochberg algorithm. All statistical tests and
visualization of differentially expressed genes were con-
ducted using the R statistical language v.3.5.2.

Gene ontology and pathway analysis

miRNA-target genes were predicted using the “miRNA-
Gene Targets” module of the miRWalk2.0 tool [19, 20].
Pathway and ontology analysis were performed using the
clusterProfiler v3.8 R package [21] for target genes of up-
and downregulated miRNAs, separately. Network and
enrichment analysis using clusterProfiler was performed
based on the Hallmark gene set collection in the Molecular
Signatures Database (MSigDB, version 6.2). Functional
clustering for the identified target genes was performed
using the RDAVIDWebService v3.8 R package [22].

Prediction model building and internal validation

To test the predictive ability for lymph node metastasis,
classification models were constructed using normalized
miRNA expression data. For classification models, eight

algorithms including compound covariate predictors, diag-
onal linear discriminant analysis, 1-nearest neighbor, 3-
nearest neighbors, nearest centroid, support vector machine,
Bayesian compound covariates, and prediction analysis of
microarrays were applied using BRB-Array tools [23].
Briefly, miRNAs exhibiting significantly different levels
between M-IMC and N-IMC at p < 0.001 by Student’s t test
were used for predictions using the classification models.
To evaluate the predictive performance of the classification
models, a leave-one-out cross-validation (LOOCV) proce-
dure was used as follows:

Step 1. For the ith sample (I= 1,…, n), divide the ith
sample from the whole data as the training set and the
remaining (n− 1) patients as the validation set.

Step 2. The classification models were applied to the
training set to fit a prediction model.

Step 3. A fitted prediction model was applied to the vali-
dation data, and the predicted probabilities were calculated.

Step 4. Repeat steps 1–3 above for all n samples.
Step 5. After cross-validation was completed, the pre-

dicted probability values of all samples calculated by
LOOCV were combined. A single ROC curve was drawn
according to Simon et al. [24], and the area under the curve
(AUC) was calculated. To remove the overfitting bias of
LOOCV as detailed by Simon et al. [24], we calculated a
permutation p value from 1000 random permutations by
each random permutation of the two-class labels for the
cross-validated misclassification error rate.

Real-time quantitative reverse transcription
polymerase chain reaction (qRT-PCR)

We selected three downregulated miRNAs (miR-106-3p,
miR-125a-5p, and miR-486-5p) and three upregulated
miRNAs (miR-3175, miR-4742-5p, and miR-4505) for
validation using individual TaqMan miRNA assays
(Applied Biosystems, Foster city, CA, USA). Tissue RNA
containing miRNA was reverse-transcribed into cDNA
using multiscribe reverse transcriptase (Applied Biosys-
tems) and a stem-loop primer (Applied Biosystems). qRT-
PCR was performed using the TaqMan PCR kit (Applied
Biosystems) on an ABI 7500 Realtime PCR system
(Applied Biosystems). Each sample was run in
triplicate, and miRNA expression levels were normalized
to an endogenous control, RNU6B (U6). Relative
miRNA expression levels were calculated by the com-
parative threshold cycle (Ct) method using the formula:
2−[ΔCt(metastatic tumor)−ΔCt(control)].

Immunohistochemistry (IHC)

Immunohistochemical staining was performed with primary
antibodies and 4-μm-thick tissue sections of FFPE tissues
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using a BenchMark XT® automated immunostainer (Ven-
tana Medical Systems, Tucson, AZ, USA). The following
primary antibodies were used: anti-p53 (DO-7, 1:100,
Roche Diagnostics, Tucson, AZ, USA), anti-ERK2
(MAPK1, 1:100, Invitrogen, Carlsbad, CA, USA), anti-
phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204)
(D13.14.4E, 1:400, Cell Signaling Technology, Danvers,
MA, USA), anti-pS6 (1:300, Cell Signaling Technology),
anti-SMAD7 (1:20, Invitrogen), anti-HIF-1-alpha
(EP1215Y, 1:100, Abcam, Cambridge, UK), anti-E2F1
(8G9, 1:200, Abcam), and anti-CALD1 (HPA27330,
1:1000, Atlas, Stockholm, Sweden). Tumors showing
strong nuclear (for MAPK1, phospho-p44/42 MAPK1, p53,
and E2F) or cytoplasmic (for MAPK1, pS6, SMAD7, HIF-
1-alpha, and CALD1) staining of >5% of tumor cells were
graded 1 (5–25%), 2 (26–50%), or 3 (51–100%), while
tumors with no expression or staining < 5% were graded as
0. All IHC slides were independently analyzed by two
experienced pathologists (SK and DL).

Statistical analysis

Wilcoxon rank sum tests, unpaired Student’s t test, Chi-
squared test, or Fisher’s exact test were performed to
compare differences, as and when appropriate. Univariate
and multivariate logistic regression analyses were per-
formed to obtain odds ratio for lymph node metastasis. All
reported p values are two-sided, and p < 0.05 was con-
sidered statistically significant. All statistical analyses were
performed using R version 3.5.2.

Results

Case selection

Among the 1094 GC samples that were pathologically
diagnosed as IMC (T1a), we found 31 patients (2.8%)
who revealed lymph node metastasis, with the number of
metastatic lymph nodes ranging from 1 to 14. We selec-
ted 16 appropriate FFPE tissue samples for microarray
analysis from these cases. For comparison, we chose age-,
tumor size-, and tumor location-matched N-IMC samples
(12 cases), which did not result in metastasis during at
least a 5-year follow-up period. Seven normal
gastric mucosa tissues which were adjacent to the cancer
in the IMC samples were also included. The FFPE sam-
ples were all macro-dissected for tumor or normal
mucosal areas. Using these samples, total RNA extraction
and subsequent miRNA array analysis were performed
(Fig. 1). The clinicopathological characteristics of this
experimental cohort are summarized in Supplementary
Table 1.

Identification of metastasis-related miRNAs in IMCs

miRNA arrays using Affymetrix GeneChip® miRNA 4.0
were used to identify differentially expressed miRNAs in
M-IMCs and N-IMCs. We added seven cases of normal
gastric mucosa to this array to enable identification of the
functional relevance of selected miRNAs. Principal com-
ponent analysis revealed that cancer and normal samples
were separated along the PC1 axis, whereas metastatic- and
nonmetastatic cancer samples were differentially located
along the PC2 axis (Fig. 2a). Next, we identified 257 small
RNAs differentially expressed in normal gastric mucosa
and M-IMCs (fold change ≥ 1.5, p < 0.05) (Fig. 2b). We
then compared M-IMCs with N-IMCs, and found 85 dif-
ferentially expressed small RNAs (fold change ≥ 1.5, p <
0.05). Among these small RNAs, we identified 27 over-
lapping small RNAs. After excluding six snoRNAs,
we finally obtained 21 differentially expressed miRNAs in
M-IMCs.

Among these altered miRNAs, ten including miR-628-
5p, miR-1587, miR-3175, miR-3620-5p, miR-4459,
miR-4505, miR-4507, miR-4720-5p, miR-4742-5p, and
miR-6779-5p were significantly upregulated in M-IMCs
compared to normal tissue or nonmetastatic cancers
(Fig. 2c). Interestingly, most of these miRNAs except miR-
3157 and miR-4505 exhibited a stepwise increasing pattern
in normal, nonmetastatic, and metastatic cancers. Many of
these miRNAs are reported to be upregulated in various
cancers, and some of them demonstrated oncogenic prop-
erties (Table 1). Eleven miRNAs were significantly down-
regulated in M-IMCs, and these included miR-106b-3p,
miR-125a-5p, miR-151b, miR-181d-5p, miR-486-5p,
miR-500a-3p, miR-502-3p, miR-1231, miR-3609, and miR-
6831-5p (Fig. 2d). As for miR-125a-5p, miR-151b, miR-
181d-5p, and miR-486-5p, expression levels descended
stepwise from normal to nonmetastatic cancer to metastatic
cancer tissues. Most of the downregulated miRNAs are also
reported to be downregulated in other cancers, including
GC, and their tumor-suppressive roles have been experi-
mentally confirmed (Table 2). The expression of repre-
sentative three downregulated (miR-106b-3p, miR-125a-5p,
and miR-486-5p) and three upregulated (miR-3175, miR-
4742-5p, and miR-4505) miRNAs were validated by using
qRT-PCR (Fig. 2e).

Prediction modeling and internal validation

To evaluate whether the miRNAs identified above could be
utilized as predictive markers for lymph node metastasis in
IMC, we built a prediction model using a machine-learning
algorithm to classify M-IMCs and N-IMCs based on miR-
NAs with significantly increased or decreased expression
levels (Fig. 3a). We used the LOOCV procedure for internal
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validation because the number of samples was relatively
low. Although the classifiers showed various sensitivity,
specificity, positive predictive value, and negative pre-
dictive value depend on the classifier, the classifiers
including diagonal linear discriminant, 1-nearest neighbor,
3-nearest neighbor, and Bayesian compound covariate
classifier have p value of <0.05 based on 1000 random
permutations, which suggest that the prediction model using
the miRNA could be successfully constructed. A LOOCV
ROC curve for Bayesian compound covariate predictor
(permutated p value= 0.03) exhibited a high AUC value of
0.839 (Fig. 3b). These findings indicated that the miRNA
expression profiles we discovered consisting of 21 miRNAs
possess value in terms of predicting lymph node metastasis
in IMC.

Functional characteristics of metastasis-specific
miRNAs

To address the functions of the selected miRNAs, we
identified 575 predicted target genes from the 21 selected
miRNAs; 384 genes for upregulated miRNAs and 338
genes for downregulated miRNAs were noticed, with 49
overlapping genes (Fig. 4a, Supplementary Table 2).

Enriched GO terms related to RNA splicing and develop-
ment were identified among the upregulated miRNA-target
genes. The networks of GO terms derived from down-
regulated miRNA-target genes were more complex com-
pared to those of upregulated miRNA-target genes, and
involved the terms cell cycle, migration, and cellular sur-
vival (Fig. 4a, Supplementary Table 3).

Pathway analysis using the Hallmark gene set v.6.2
(Fig. 4b) revealed that the enriched target genes of upre-
gulated miRNAs including BMPR1A, NCOR2, SKIL,
SMAD7, UBE2D3, and XIAP were components of the TGF-
β signaling pathway (FDR= 0.031), which is well known
to induce tumor cell migration, stimulate epithelial to
mesenchymal transition (EMT), promote tumorigenesis,
and contribute to chemoresistance [25]. Target genes of
downregulated miRNAs were significantly enriched in five
distinct signaling pathways with multiple interconnections
as follows; E2F targets (LBR, RAN, CKS2, SRSF2, GINS4,
KIF2C, DCK, ESPL1, TFRC, MTHFD2, and CDKN1A;
FDR= 0.021), apoptosis (ANKH, ERBB2, ERBB3, MGMT,
CCND1, BCL2L11, IFNGR1, BTG3, SLC20A1, and
CDKN1A; FDR= 0.021), hypoxia (EGFR, CA12, RBPJ,
PFKP, F3, ETS1, BCL2, AK4, ENO1, and CDKN1A;
FDR= 0.029), mTORC1 signaling (ACTR2, HSP90B1,

Fig. 1 Overview of the workflow of the study for the identification of specific miRNAs related to lymph node metastasis in intramucosal
gastric cancer. Unpaired two-tailed t tests were used for statistical analysis of patients’ ages and sizes of tumors.
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ENO1, AK4, NIBAN1, PSMG1, SCD, TFRC, MTHFD2, and
CDKN1A; FDR= 0.029), and PI3K-AKT signaling
(MKNK2, VAV3, MAPK1, EGFR, HSP90B1, ACTR2, and
CDKN1A; FDR= 0.029). Genes such as CDN1A, ACTR2,
and HSP90B1 played a centripetal role linking the enriched
signaling pathways. Given that the enriched signaling
pathways are critical components of cell cycling or pro-
liferation, we speculate that regulation of tumor cell pro-
liferation by downregulated miRNAs, together with
acquisition of EMT and invasive properties from upregu-
lated miRNAs, coordinately promote this early stage of
metastasis in GC.

Experimental validation using independent IMC set

We next sought to validate our results using an indepen-
dent dataset. As M-IMC samples are rare, we collected
samples for a validation set from 3 different institutes
consisting of 54 metastatic and 54 N-IMCs (Fig. 5a).
Then, we performed an miRNA array analysis using these
samples. Unfortunately, the independent dataset revealed
a wide range of sample quality and severe batch effects on
the miRNA array despite normalization (data not shown).
Therefore, we performed IHC to validate miRNA sig-
natures in the independent dataset as an alternative option.

Fig. 2 Differential expression of miRNAs in metastatic- and non-
metastatic intramucosal carcinoma (M-IMC and N-IMC). a Prin-
cipal component analysis of 16 M-IMCs, 12 N-IMCs, and 7 normal
gastric mucosal tissues. b Workflow of the process for the identifica-
tion of lymph node metastasis-related miRNAs. c List of upregulated
miRNAs in M-IMC compared to N-IMC and normal gastric mucosal
tissue with relative levels expressed in fold change. d Downregulated

miRNAs in M-IMC compared to N-IMC and normal gastric mucosal
tissue with relative levels expressed in fold change. e Experimental
validation of altered miRNA expression in M-IMC compared to
N-IMC using real-time quantitative reverse transcription polymerase
chain reaction (qRT-PCR). All experiments were conducted in tripli-
cate. Data are presented as means ± SD. Unpaired two-tailed t tests
were used for statistical analysis. **p < 0.01 and *p < 0.05.
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We tested antibodies for the direct targets and/or the
pathway components of all five miRNA-related pathways
found in the experimental set; anti-SMAD7 and anti-
CALD1 for TGF-β signaling [26], anti-E2F for E2F tar-
gets, anti-p53 for apoptosis, anti-HIF-1α for hypoxia, and
anti-MAPK1 (ERK2), anti-phospho-p44/42 MAPK
(ERK1/2), and anti-pS6 for PI3K/AKT/mTOR signaling
[27]. Among these, we found significantly increased
expression of MAPK1, one of the direct targets of
downregulated miRNAs, and its activated downstream

components (phospho-p44/42 MAPK and pS6, Fig. 5b).
The level of SMAD7 expression, a direct target of upre-
gulated miRNAs, showed statistically significant
decrease, inferring the action of the miRNAs. In con-
cordance with a previous report [28], the level of p53, a
component of apoptotic pathway, was moderately chan-
ged, but not significantly so in M-IMC. In this indepen-
dent dataset, tumor size, invasion depth, and
lymphovascular tumor invasion (LVI) were significantly
associated with lymph node metastasis (p < 0.05 by

Table 2 Downregulated miRNAs in relation to cancer, as reported in the literature.

miRNA Relevant cancer Expression Source Note Ref.

miR-106b-3p Colorectal cancer Down Cell line Inhibits metastasis [37]

miR-125a-5p Head and neck cancer Down Tumor Downregulation is associated with high recurrence
and poor prognosis

[28]

Gastric cancer Down Cell line Inhibits metastasis [38]

Breast cancer Down Cell line Inhibits progression [39]

miR-151b Thyroid cancer Down Serum – [40]

miR-181d-5p Breast and colon cancer Down Tumor, cell line Suppresses cell migration and angiogenesis [41]

Non-small cell lung cancer Down Tumor, cell line Suppresses cell proliferation, invasion, and
angiogenesis

[42]

miR-486-5p Non-small cell lung cancer Down Tumor, serum,
cell line

Suppress cell growth [43]

Non-small cell lung cancer Down Tumor, cell line Inhibits cell proliferation and invasion [44]

miR-500a-3p Non-small cell lung cancer Down Tumor, cell line Inhibits cell proliferation and invasion [45]

Hepatocellular carcinoma Up Tumor Enhances tumorigenicity and stem cell property [46]

miR-502-3p Hepatocellular carcinoma Down Tumor Inhibits invasion and metastasis [47]

miR-574-3p Breast cancer Down Tumor – [48]

Esophageal squamous cell
carcinoma

Down Tumor Upregulation is associated with non-relapse and
favorable prognosis

[49]

miR-1231 Pancreas cancer Down Exosome Inhibits the activity of pancreatic cancer [50]

Glioma Down Tumor Suppresses tumor growth [51]

miR-3609 Chemotherapy-resistant
breast cancer

Down Tumor Sensitizes cancer cells to adriamycin [52]

miR-6831-5p Bladder cancer Up Serum Downregulated in other types of cancer [53]

Table 1 Upregulated miRNAs in relation to cancer, as sourced from the literature.

miRNA Relevant cancer Expression Source Note Ref.

miR-625-5p Glioblastoma Up Serum Mediates hypoxia-induced migration/invasion [31]

miR-1587 Glioma Up Exosome Promotes proliferation of glioma cells [32]

miR-3175 Glioma Up Cell line Promotes proliferation and invasion. Inhibits apoptosis. [33]

miR-3620-5p Glioma Up Exosome Promotes proliferation of glioma cells [32]

miR-4459 Metastatic breast cancer Up Tumor Upregulated in metastatic cancer found in lung [34]

miR-4505 Colon cancer Up Serum – [35]

miR-4507 Stage I nasopharyngeal cancer Up Tumor – [36]

miR-4720-5p – – – – –

miR-4742-5p – – – – –

miR-6779-5p – – – – –
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univariate logistic regression analysis, Fig. 5a). Therefore,
multivariate logistic regression analysis with these clinical
factors (size, depth, and LVI) and the significant target
proteins (MAPK1, phospho-p44/42 MAPK, pS6, and
SMAD7) was performed and tumor size, LVI, pS6, and
SMAD7 were revealed to be independently associated
with the lymph node metastasis (Fig. 5c). Representative
immunohistochemical staining results for MAPK1,
phospho-p44/42 MAPK, pS6, p53, and SMAD7 were
shown in Fig. 5d. Other IHC markers did not stain tumor
cells reliably; no nuclear staining of E2F1 using auto-
stainer, unreliable staining of HIF-1α in cancer cells and
which was obscured by strong staining of infiltrating
neutrophils, and practically no expression of CALD1 on
cancer cells despite manipulation of various staining
conditions. It seems that aberrantly expressed genes do
not invariably coincide with IHC results, as previously
indicated [28]. From these validation dataset results, we
could conclude that the miRNA signatures identified in
this study somehow exert effects on biological functions
in M-IMC samples, and that pS6, and SMAD7 are
potential biomarkers that can predict metastasis in IMC.

Discussion

Considering that nodal metastasis of IMC is not uncommon
and that current complete resection of the primary tumor is the
sole treatment option, biological markers that can predict
metastatic potential in intramucosal GC would be valuable to
determine treatment strategies and application of post-
operative therapies. For more than a decade, many studies
have attempted to use miRNAs as markers predicting prog-
nosis in various cancer types, including GC [16, 17].

However, specific miRNA signatures related to metastasis in
intramucosal GC have never been investigated.

In this study, we identified the expression of 21 miRNAs,
including 10 upregulated miRNAs (miR-628-5p, miR-1587,
miR-3175, miR-3620-5p, miR-4459, miR-4505, miR-4507,
miR-4720-5p, miR-4742-5p, and miR-6779-5p) and 11
downregulated miRNAs (miR-106b-3p, miR-125a-5p, miR-
151b, miR-181d-5p, miR-486-5p, miR-500a-3p, miR-502-3p,
miR-574-3p, miR-1231, miR-3609, and miR-6831-5p),
which were significantly altered in M-IMCs compared to N-
IMCs and nonneoplastic gastric tissues. The majority of these
miRNAs are known to be related to tumorigenesis in various
types of cancers, and we identified three additional novel
miRNAs (miR-4720-5p, miR-4742-5p, and miR-6779-5p) in
the context of cancer metastasis. In fact, our group is inves-
tigating the specific roles of these novel miRNAs and the
preliminary results are promising. Using a machine-learning
algorithm, we demonstrated that the identified miRNA sig-
nature consisting of 21 miRNAs had considerable value in
predicting metastasis in IMCs, suggesting its potential use as a
biomarker. However, in order to obtain more reliable results
by machine-learning algorithms, a large number of qualified
samples is necessary. Due to the difficulty in acquiring
miRNAs from tumor samples, only a few studies have
conducted external validation only using limited samples
[16–18]. When it comes to IMC, this is even more challen-
ging due to its rarity and low tumor volume. Furthermore, as
samples from different institutions showed a wide range of
sample quality, for miRNA analysis, quality control seems to
be critical for the actual utilization of a miRNA signature in
clinical settings.

Here, the discovered miRNAs are known to either promote
cancer cell proliferation or enhance invasion/metastasis in
terms of their mode of action. For example, the upregulated

Fig. 3 Predictive model building for lymph node metastasis in intramucosal gastric cancer. a Overview of predictive model building.
b Performance of the prediction models.
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miRNAs consisted of miRNAs related to either cellular pro-
liferation (miR-1587, miR-3175, and miR-3620-5p) or inva-
sion/metastasis (miR-628-5p, miR-3175, and miR-4459)
(Table 1). In the same manner, the downregulated miRNAs
were composed of three miRNAs in relation to proliferation
(miR-486-5p, miR-500a-3p, and miR-1231) and six miRNAs
to invasion/metastasis (miR-181d-5p, miR-500a-3p, miR-
502-3p, miR-106b-3p, miR-125a-5p, and miR-502-3p)

(Table 2). Although upregulated and downregulated miRNA
groups contain the same components of these two functional
categories, it is intriguing that the upregulated miRNAs more
closely represent migration or invasion phenotypes mainly
driven by TGF-β signaling, whereas the downregulated
miRNAs showed greater enrichment in proliferation pheno-
types, largely via E2F and AKT/mTOR signaling pathways.
Another noticeable finding was that most miRNAs we

Fig. 4 Gene ontology and pathway analysis for metastasis-related miRNAs. a Gene ontology term enrichment for predicted target genes for
upregulated and downregulated miRNAs. b Pathway analysis for predicted target genes for upregulated miRNAs and downregulated miRNAs.
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identified exhibited stepwise increases or decreases from
nonneoplastic tissue to N-IMC to M-IMC. This implies that
similar biological mechanisms may be utilized in the process
of metastasis as well as in cancer development; only those are
intensified in the metastatic process. In this aspect, setting an
appropriate threshold for each miRNA in order to distinguish
M-IMC from N-IMC is worth pursuing and should be
investigated in the future.

In the present study, upregulated or downregulated
miRNAs shared 49 common target genes, and this sug-
gested that miRNAs involving the metastasis of

intramucosal GC dynamically regulate the expression of
cancer-related genes in a complicated manner. This com-
plex genetic regulation cannot be fully explained by con-
ventional sequence-specific suppression or promotion of
target genes, but, instead, may be explained, at least in part,
by the more sophisticated epigenetic silencing of miRNAs
with tumor suppressor features. In fact, a miRNA DNA
methylation signature has been reported to be linked to
metastasis in various cancer types, including GC [29, 30].
In this regard, epigenetic alterations to miRNAs need to be
investigated in metastatic intramucosal GC.
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Fig. 5 Analysis of clinicopathological characteristics and experi-
mental validation of metastatic intramucosal gastric cancer using
an independent dataset. a Clinicopathological characteristics of an
independent sample set composed of 54 M-IMCs and 54 N-IMCs from
three different institutes with statistical analysis. LN lymph node, LVI
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and N-IMCs. Scale bar= 200 μm.
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In summary, for the first time, we identified a novel
miRNA signature related to metastatic intramucosal GC,
which provides insights into the biological mechanisms
involved in the development of metastasis at this early stage
of disease. Based on this signature, we generated a metas-
tasis prediction model using a machine-learning algorithm
and demonstrated potential usage of this signature for pre-
diction of metastasis in IMC. Furthermore, we suggested
immunohistochemical markers for improved means to dis-
tinguish M-IMC from N-IMC, and this may guide treatment
strategies for in patients with IMC in the future.
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