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Abstract
Phosphatase and tensin homolog (PTEN) loss is associated with adverse outcomes in prostate cancer and has clinical
potential as a prognostic biomarker. The objective of this work was to develop an artificial intelligence (AI) system for
automated detection and localization of PTEN loss on immunohistochemically (IHC) stained sections. PTEN loss was
assessed using IHC in two prostate tissue microarrays (TMA) (internal cohort, n= 272 and external cohort, n= 129
patients). TMA cores were visually scored for PTEN loss by pathologists and, if present, spatially annotated. Cores from
each patient within the internal TMA cohort were split into 90% cross-validation (N= 2048) and 10% hold-out testing
(N= 224) sets. ResNet-101 architecture was used to train core-based classification using a multi-resolution ensemble
approach (×5, ×10, and ×20). For spatial annotations, single resolution pixel-based classification was trained from
patches extracted at ×20 resolution, interpolated to ×40 resolution, and applied in a sliding-window fashion. A final AI-
based prediction model was created from combining multi-resolution and pixel-based models. Performance was
evaluated in 428 cores of external cohort. From both cohorts, a total of 2700 cores were studied, with a frequency of
PTEN loss of 14.5% in internal (180/1239) and external 13.5% (43/319) cancer cores. The final AI-based prediction of
PTEN status demonstrated 98.1% accuracy (95.0% sensitivity, 98.4% specificity; median dice score= 0.811) in internal
cohort cross-validation set and 99.1% accuracy (100% sensitivity, 99.0% specificity; median dice score= 0.804) in
internal cohort test set. Overall core-based classification in the external cohort was significantly improved in the external
cohort (area under the curve= 0.964, 90.6% sensitivity, 95.7% specificity) when further trained (fine-tuned) using 15%
of cohort data (19/124 patients). These results demonstrate a robust and fully automated method for detection and
localization of PTEN loss in prostate cancer tissue samples. AI-based algorithms have potential to streamline sample
assessment in research and clinical laboratories.

Introduction

Modern artificial intelligence (AI) techniques have
demonstrated the potential to achieve human-level
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performance in various computer vision and medical
imaging applications. Specifically applied to digital
pathology, deep learning/convolutional neural networks
have shown promising accuracy for automated detection
and grading of several disease types [1–7]. Recent lit-
erature supports the potential for AI-based biomarker
assessment, where deep learning algorithms have shown
high accuracy in automated human epidermal growth
factor receptor 2 scoring in breast cancer and programmed
death receptor 1 scoring in lung cancer [8–10]. Well-
trained AI applications in IHC offer the potential for
reproducible immunoscoring and quantitation to assist
biomarker assessment without additional burden to
pathologists, where subjective scoring and technical
staining quality often lead to variation in human inter-
pretation [11–14].

Phosphatase and tensin homolog (PTEN), a tumor sup-
pressor gene, is a crucial regulator of the oncogenic PI3K/
AKT/mTOR signaling pathway and its loss of function is
one of the most common events observed in many types of
cancer [15, 16]. Genomic aberrations of PTEN or protein
loss are among the most common in prostate cancer and
have been shown to be associated with aggressive prostate
cancer and unfavorable patient outcomes after definitive
local therapy [17–20]. Current guidelines for prognostica-
tion of localized prostate cancer are driven solely by
assessment of clinico-pathological parameters such as age,
prostate-specific antigen, cancer grades, and stage [21, 22].
Clinically established risk stratification algorithms alone
lack personalized risk assessments especially in the group of
men characterized as low and intermediate risk, commonly
leading to overtreatment or undertreatment of the disease
[23]. To address these gaps and improve risk stratification
and treatment management of prostate cancer patients,
prognostic information from the molecular biomarkers or
genomic classifiers should be integrated into the standard
clinical parameters if that would impact on a short- or long-
term clinical management [24, 25]. Numerous studies have
reported that the use of PTEN loss as a prognostic bio-
marker can provide clinically relevant information at a
lower cost since the development of efficient clinical-grade
immunohistochemistry (IHC) assay, making it an attractive
biomarker of aggressive disease in a clinical workflow
[17, 20, 26, 27].

PTEN loss is a well-studied biomarker in prostate cancer
which might be soon integrated into the clinical practice. As
a proof-of-principle, here we use digital images of PTEN
IHC to develop and validate a deep learning-based work-
flow for automated detection and spatial annotation of
PTEN loss in tissue microarrays (TMA). In addition, we
assess the generalization of this approach by performing
validation using tumors on a TMA from an external patient
population.

Methods

Patients and cohorts

We used prostate TMA from two institutions: Kingston
Health Services Center (KHSC), Canada (n= 272, RP
years, 2000–2012), as an internal cohort, and the Uni-
versity of Sao-Paulo, Brazil (n= 129; RP years,
2006–2015), as an external cohort. High-density TMAs
from archival surgical tissues contained five 0.6 mm
cancer cores/per case and four benign cores/per case on
average for KHSC TMAs and three 1.0 mm cancer cores/
per case and one benign core/per case for the Brazilian
TMAs. Clinical and pathological information are provided
in Supplementary Table S1 and are further detailed in
previous publication [28].

Immunohistochemical staining (IHC), slide scoring,
and pathologists’ manual annotations

For both KHSC and Brazilian cohorts, IHC staining was
performed on an automated staining platform Discovery XT
(Ventana Medical System, Inc., Tucson, AZ, USA). Briefly,
TMA blocks were sectioned at 5 μm and stained with rabbit
monoclonal anti-PTEN antibody (Clone-D4.3 XP, dilution-
1:100, Cell Signaling Technologies). Staining conditions
are further detailed in Supplementary Table S2.

Stained TMA were scanned at ×20 on an Aperio scanner
(Leica Biosystems). Protein expression was independently
scored by two urologic pathologists (TJ and DMB) using
proposed scoring criteria [20, 29–31]. Stromal cells and
benign glands were utilized as internal positive controls. In
cancer cells, intact PTEN was defined as cytoplasmic and/or
nuclear staining above background. PTEN loss was defined
as complete (100% of sampled tumor cells) or partial
(<100%) loss of cytoplasmic and/or nuclear staining.
Examples of complete PTEN loss and partial PTEN loss are
shown in Fig. 1. “Low PTEN” was defined as cancer cells
showing significantly diminished PTEN protein expression
compared to an internal positive control (either benign
epithelium or stroma) (Supplementary Fig. S1). Any cores
with “low” PTEN expression still remained in the study if
appropriate positive control expression was identified in
either benign or stromal regions in the given case. Any
cores with substantial tissue, staining or scanning artifacts
noted by the pathologists were excluded from analysis,
resulting in a total patient population of n= 271 for the
internal (KHSC) cohort and n= 124 for the external (Bra-
zilian) cohorts. Tumor regions with PTEN loss (i.e., regions
of interests (ROIs)) were identified visually and manually
annotated by a pathologist. Annotations used for training
were performed by pathologists within PTEN loss con-
taining cancer cores.
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Data sets for deep learning algorithm development
and evaluation

Two different approaches were used in this study: (1) a
multi-resolution approach for automated identification of
TMA cores containing PTEN loss and (2) a pixel-based
approach for automated spatial localization of the regions
with PTEN loss within TMA cores. The entire image

processing and classification pipeline is shown in Fig. 2 and
training assignments for each patient cohort are summarized
in Table 1.

We trained and evaluated our algorithms in three steps:
(1) all cores (n= 2272 cores, N= 271 patients) from
internal cohort TMAs (KHSC) were randomly divided into
training and testing sets. This assignment was done on the
patient level, meaning all cores belonging to an individual

Fig. 1 Example true positive (correctly identified as having PTEN
loss) cases from internal and external testing cohorts. Note external
probability maps show performance of the algorithm after fine-tuning.
Top: internal cohort testing data set; case with complete PTEN loss in
tumor cells, multi-resolution probability= 43.4% and dice= 0.738.
Middle top: internal cohort testing data set; case with partial PTEN
loss, multi-resolution probability= 56.6% and dice= 0.761. Middle
bottom: external cohort testing data set; case with complete PTEN loss

in tumor cells, multi-resolution probability= 37.7% and dice= 0.552.
Bottom: external cohort testing data set; case with partial PTEN loss in
tumor cells, multi-resolution probability= 27.7% and dice= 0.347.
Cores with probability > 26.5% were classified as “PTEN loss” in
multi-resolution approach. Cores with any pixel region classified as
PTEN loss in binary mask were classified as “PTEN loss” in pixel-
based approach.
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patient were assigned to either training or testing set with no
overlap. The internal training set included n= 2048 cores
from N= 243 patients. Stratified cross-validation was used

to iteratively split this training set into five folds on the
patient level (Table S3). The internal hold-out testing set
was composed of n= 224 cores from N= 243 patients

Fig. 2 Deep learning workflow
for characterization of TMA
cores. a Core-base classification
using multi-resolution data
trained from core-level label (no
spatial annotation). The result of
the multi-resolution approach is
a core-level probability of PTEN
loss derived by pixel-based
averages of ×5, ×10, and ×20
algorithm predictions. b Pixel-
based classification at ×20
trained from pathologist spatial
annotation of PTEN loss
regions. The result of the pixel-
based classification is a spatial
map of pixel predicted as
containing PTEN loss cells,
derived from average of sliding
window-based inference. c The
final model consisted of a
combined (cascaded) approach
of (a) followed by (b). If a core-
level probability of PTEN loss
from the multi-resolution based
approach was above a
determined threshold (0.265),
the core would be sent to the
pixel-based classification
approach. Only cores containing
areas predicted to have PTEN
loss by both algorithms (above
threshold and included spatial
area of PTEN loss) received a
final AI-based prediction of
PTEN loss.
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(note: hold-out testing refers to data that are not included in
any training or validation procedures). Results from the
internal validation and internal test sets were reported
separately, (2) all external TMA core data (Brazilian cohort)
were used as a separate independent testing set (n= 428
cores, N= 124 patients), (3) algorithms from cross-
validation training cohort were fine-tuned using 15% of
the external TMA data, with random selection of N= 19
patients (71 cores). Then, the fine-tuned algorithms were
applied to the remaining 85% of external TMA data (n=
357 cores, N= 105 patients).

Both benign and cancer cores were included in training
and testing analysis. In all steps, all core images from an
individual patient were not split between sets (i.e., training,
validation, or testing sets). During validation, no patholo-
gist’s annotations were required for input.

Multi-resolution approach for core-based
classification

Each core image was extracted at ×20 from the TMAs
resulting in 2000 × 2000 pixels/core image for internal
cohort (0.6 mm diameter cores) and 2800 × 2800 pixels/core
image for external cohort (1 mm diameter cores). Patches of
100 × 100 pixels were extracted from ×5, ×10, and ×20
objectives and were included for image processing. Deep
learning models (ResNet-101 architecture) were trained
from patches at ×5, ×10, and ×20 objectives, respectively
(Fig. 2a). All patches were labeled according to the PTEN
status of the core. The final training parameters are included
in Supplementary Table S4. All models were trained using
fastai library (https://github.com/fastai/fastai). After com-
pletion of training, models were applied to validation and
testing sets and a multi-resolution map of core image was
generated, where every pixel represented average prob-
ability of PTEN loss from each resolution model (Fig. 2a).
The average probability of PTEN loss from all pixels within
an entire core image was reported as the AI-based score.

Due to the well-known differences in patient populations
across different medical centers, as well as differences in
staining and tissue processing in clinical and research
laboratories, it is possible that a model trained at one insti-
tution may not achieve high performance when directly
applied to a new patient cohort. Therefore, an additional
training method, fine-tuning was used to enhance perfor-
mance of models using 15% of the patients from external
cohort (Table 1). For this process, pretrained cross-validation
models from internal cohort data were used to initialize
weights for fine-tuning on external training data (Supple-
mentary Table S4). Following training, models were deployed
to all remaining cores of external testing set (N= 357).

Pixel-based approach for spatial annotation

All image patches were derived in reference to 50 × 50 pixel
regions at ×20 objective within pathologically annotated
regions of PTEN loss. Patch locations were determined by
fitting the minimum number of nonoverlapping regions that
fully contained pathologist annotations (Fig. 2b). All
remaining patches produced beyond pathologist annotations
were labeled as “PTEN intact.” A ResNet-101 architecture
was trained from patches resampled to 100 × 100 pixels
(simulated ×40 resolution). The model was then applied
using a sliding-window approach with 60% overlap
between neighboring patches (Fig. 2b). The average prob-
ability of PTEN loss was generated at each pixel location in
the core image. A refined binary mask was created from a
threshold-based mask (>50% probability of PTEN loss)
with additional post-processing for identification of distinct
morphological areas, with excluded regions defined as those
<0.00125 mm2 or those with maximum probability of
PTEN loss < 0.75. The final binary prediction mask assigns
pixels with PTEN loss= 1 and all other regions= 0. Full
details are provided in Supplementary Material. All post-
processing and image analysis were performed in
MATLAB (R2018b, https://www.mathworks.com).

Table 1 Core-based distribution
of training, validation, and
testing sets for internal cohort
and external cohort.

Data set Subset Patients (N) Cores (N) Cancer (%) PTEN loss (%)

Internal cohort Cross-validation 243 2048 1099 (54%) 161 (15%)

Hold-out testing set 28 224 134 (60%) 19 (13%)

External cohort – 124 428 319 (75%) 43 (13%)

External cohort fine-tune Training set 14 52 38 (73%) 9 (23%)

Validation set 5 19 14 (74%) 2 (14%)

Hold-out testing set 105 357 267 (75%) 32 (12%)

Cores were randomly split into sets at the patient level, i.e., all cores from individual patient were stratified to
each subset. Proportion of cores containing cancer is listed, as well as number of cancer cores with PTEN
loss. All cores, both cancer and benign, were utilized for training and evaluation. For fine-tuning in external
cohort, the model trained from internal data was retrained using n= 71 cores from external cohort and tested
on remaining 357 cores. Hold-out testing refers to data that are not included in any training or validation
procedures.
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Statistical analysis for deep learning algorithm
evaluation

For the multi-resolution approach, the AI-based probability
of PTEN loss per core was evaluated and area under the
curve (AUC) of ROC (receiver-operating curve) analysis
was reported. Cross-validation performance was reported
for each fold. A probability cut-off, defined as threshold
maximizing specificity while achieving 95% sensitivity (at
least 95%), was determined from the internal cross-
validation performance and set at 0.265. Accuracy, sensi-
tivity, and specificity at the identified threshold were
reported for correct classification of PTEN status for each
core. In testing sets, the reported AI-based probability used
for performance metric calculation was the average AI
probability from all cross-validation models. An individual
core was labeled as “PTEN loss” if the multi-resolution
probability was >26.5%. For performance metrics, each
core was defined as one of the following: true positive refers
to correct prediction of PTEN loss, true negative refers to
correct prediction of PTEN intact, false positive refers to
incorrect prediction of PTEN loss, and false negative
referred to incorrect prediction of PTEN intact.

For the pixel-based approach, the Sorensen–Dice coeffi-
cient was used to calculate the pixel-based similarity of AI-
based binary mask vs. pathologist spatial annotation. Dice is
defined as twice the area of overlap between regions divided
by sum of total area of both regions (see Supplementary
Material). In testing sets, the predicted probability for PTEN
loss in each spatial patch within a core was averaged across
all cross-validation models. An individual core was labeled as
“PTEN loss” if the binary detection mask included any pixel
regions with value= 1. Accuracy, sensitivity, and specificity
of cores with PTEN loss detection were reported.

A final AI-based prediction was created from combining
(cascading) multi-resolution and pixel-based models, where
an individual core was considered as containing PTEN loss
if the multi-resolution average probability was above the
predetermined threshold (0.265) and pixel-based binary
detection mask contained regions labeled as PTEN loss (i.e.,
the core was labeled as “PTEN loss” by both algorithms).

Definitions of all performance metrics are provided in
Supplementary Material. Ninety-five percent confidence
intervals and standard errors of the prediction performance
metrics were calculated from 2000 bootstrap samples by
randomly sampling patients with replacement. AI-based
quantitative metrics (multi-resolution average probability,
pixel-based dice coefficient) were evaluated across quali-
tative levels of PTEN loss (i.e., intact vs. intact low and
partial loss vs. complete loss) using Wilcoxon rank-sum test
using the Rosner–Glynn–Lee method to account for mul-
tiple cores per patient. All statistical analysis was performed
in R (version 3.4.1).

Results

In total, 2272 prostate cores from prostate cancer patients
were included in the internal cohort, split into 90% cross-
validation training and 10% testing (N= 224) sets
(Table 1). By pathologist scoring, the overall frequency of
PTEN loss for cancer cores was 14.5% (180/1233), where
26.1% (47/180) showed partial PTEN loss and 73.9% (132/
180) exhibiting complete PTEN loss. In the external cohort,
frequency of PTEN loss was similar at 13.5% (43/319) of
which 12/43 had partial PTEN loss and 72.1% (31/43) had
complete PTEN loss.

Multi-resolution classification performance

Overall classification performance (AUC) of the multi-
resolution approach for the internal cohort was 0.989
(95% CI: 0.980–0.996) and 0.993 (95% CI: 0.975–1.00)
in cross-validation and testing sets, respectively. Median
cross-validation performance at each resolution ranged
from AUC 0.980 to 0.990 (Supplementary Table S4).
Since the accuracy is heavily influenced by the large
proportion of PTEN intact cores, the probability threshold
for determining PTEN loss was optimized based on sen-
sitivity. Using a probability threshold of >26.5% like-
lihood of PTEN loss to achieve minimum 95% sensitivity
in cross-validation, the accuracy was 93.9% (95% CI:
92.2–95.5) and 95.1% (95% CI: 90.9–98.3) in the cross-
validation and testing sets, respectively (Table 2). Overall,
cross-validation models yielded similar performance, with
median 0.991 ± 0.006 standard deviation (Supplementary
Table S5). As expected, within cores with PTEN loss, the
average probability of PTEN loss was significantly higher
in cores with complete loss compared with partial loss in
cross-validation (p= 0.0003) and, a similar result was
also observed in the testing set, though not statistically
significant (Fig. 3). Median probability of PTEN loss in
cores with complete vs. partial loss was 0.7013 (range:
0.15–0.8796) vs. 0.4578 (range: 0.1783–0.7904) and
0.7446 (range: 0.2670–0.8807) vs. 0.5656 (range:
0.2680–0.7360) in cross-validation and testing sets,
respectively. Of eight false negatives cores (incorrectly
classified as PTEN intact) in cross-validation, seven had
partial PTEN loss and one had focal loss. Review of 11
false positive cores (incorrectly classified as PTEN loss)
demonstrated that majority were cancer containing cores
(7/11) and of these, 2 cores had low PTEN expression
(Supplementary Fig. S1 and Supplementary Table S6) and
7 had relatively low epithelial to stromal ratio, i.e., cores
having high stromal content, as assessed qualitatively
(Supplementary Fig. S2).

We first kept the probability threshold constant at
26.5%, and applied a multi-resolution based approach to
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the external cohort. Unfortunately, this approach
increased the rate of false positive cores, resulting in an
AUC of 0.963 and decreased accuracy of 47.34% (95%
CI: 41.9–53.3) (Table 2). Specifically, the performance of
×20 cross-validation models decreased the most with
mean AUC 0.942 (range: 0.926–0.951), while perfor-
mance of ×10 cross-validation models remained highest
with a mean AUC of 0.972 (range: 0.965–0.974) (Sup-
plementary Table S4). After fine-tuning with 15% of the
external cohort data, the overall AUC increased to 0.964
(95% CI: 0.902–0.998) when tested on the remaining
cores of the external cohort (n= 357) (Table 2). The
accuracy increased to 95.2% (95% CI: 93.0–97.3) at the
pre-defined 26.5% probability threshold (Table 2). Similar
to what was observed for the internal cohort data, the
average probability of PTEN loss was significantly higher
in cores annotated by pathologists as having complete loss
and partial loss, both with (p= 0.005) and without (p=
0.034) after fine-tuning (Fig. 4). False negativity was due
to heterogeneous PTEN staining, e.g., all three cores
exhibiting partial PTEN loss. Interestingly, some cores
had decreased PTEN staining that did not qualify as
complete loss as noted by pathologist. We found that
these “PTEN low” cores demonstrated increased average
probability of PTEN loss (Fig. 4). With respect to false
positive results (n= 14 TMA cores), we noted that 5/14
occurred in benign cores exhibiting lower than normal
PTEN expression.

Pixel-based classification and spatial annotation
performance

In the pixel-based classifier, classification performance was
evaluated by detection of any region with AI-predicted
PTEN loss in the core. Per core results demonstrated
accuracies of 96.5% (95% CI: 95.4–97.6) and 96.4% (95%
CI: 92.6–99.1) in the cross-validation and testing sets,
respectively (Supplementary Table S7). No false negatives
were recorded. Representative examples of AI-based spatial
annotation maps within complete and partial PTEN loss
cores are shown in Fig. 1. Using the post-processed pre-
dictions of PTEN loss regions, dice results were favorable
with median 0.811 (range: 0–0.94) and median 0.8043
(range: 0–0.97) in cross-validation and testing sets,
respectively (Supplementary Table S7). Evaluating varia-
bility in individual cross-validation models demonstrated
similar performance after post-processing, with median
0.809 ± 0.0097 standard deviation (Supplementary
Table S8).

Applying the pixel-based classifier to all external cores
(n= 428), accuracy only achieved 66.2% (95% CI:
59.9–72.0) due to high false positive regions in PTEN
intact cores (Supplementary Table S7). These falseTa
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positives were again observed within cores with lower
epithelial/stromal ratio (i.e., higher stromal content)
(Supplementary Fig. S2). Again, no false negatives were
recorded. Within cores with partial or complete PTEN
loss, median dice was 0.7392 (range: 0–0.924) compared
to pathologist annotations. Dice was significantly higher
in cores with complete PTEN loss, median 0.7779 (range:

0.2305–0.9197), compared with cores with partial PTEN
loss, median 0.32034 (0–0.9242), p= 0.002.

Combined model performance

The pixel-based approach did not undergo fine-tuning due
to the complementary nature of the two models and prior

Fig. 4 Core-based average probability of PTEN loss in external
cohort with and without fine-tuning. a with no fine-tuning N= 428
and b after fine-tuning, N= 357. For training and evaluation purposes,
cancer cores with partial and complete loss cases were grouped as
“PTEN loss,” while both benign and cancer cores with intact staining
were grouped as “PTEN intact.” Cancer cores with PTEN intact (low)
staining were also included in “PTEN intact” group. Cores with AI-

based probability >26.5% were classified as “PTEN loss.” Cores with
AI-based probability >26.5% were classified as “PTEN loss” (dashed
gray line). Each individual cores is shown as a datapoint. Any benign
or cancer cores with intact (or low) PTEN staining classified as “PTEN
loss” represent false positive by AI. Any cancer cores with partial or
complete PTEN loss classified as “PTEN intact” represent false
negative by AI.

Fig. 3 Core-based average probability of PTEN loss within inter-
nal cohort based on pathologist labels. a validation set, N= 2048,
and b testing set, N= 224; For training and evaluation purposes,
cancer cores with partial and complete loss were grouped as “PTEN
loss,” while both benign and cancer cores with intact staining were
grouped as “PTEN intact.” Cores with AI-based probability > 26.5%
were classified as “PTEN loss” (dashed gray line). Each individual

cores is shown as a datapoint, except in the benign cores of validation
set (panel a), due to high number of cores in these groups (n= 949
benign intact, n= 938 benign cancer). Any benign or cancer cores
with intact PTEN staining classified as “PTEN loss” represent false
positive by AI. Any cancer cores with partial or complete PTEN loss
classified as “PTEN intact” represent false negative by AI.
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fine-tuning of multi-resolution approach. Therefore, a final
combined result was obtained by sequential (cascaded)
application of the multi-resolution predictor followed by
pixel-based spatial annotations (Table 3). An individual
core was classified as having PTEN loss if the multi-
resolution average probability was >26.5% and it contained
regions suspicious for PTEN loss based on pixel-based
classification. The combined method increased specificity
within internal cohort cross-validation and testing sets by
eliminating 73.5% and 81.8% of false positives, respec-
tively. Overall accuracy was 98.1% (95% CI: 97.4–98.8)
and 99.1% (95% CI: 97.7–1.0) in cross-validation and
testing sets, respectively. In the external cohort, the com-
bined model yielded less than half as many (n= 3) false
negative cores as the internal data set, all of which con-
tained partial PTEN loss. The number of false positives
(n= 14) remained stable compared to the multi-resolution
technique (Tables 2 and 3). Combining the fine-tuned multi-
resolution model with pixel-based classification (n= 357
test cores) resulted in overall accuracy of 95.24% (95% CI:
93.0–97.3) (Table 3).

Discussion

Here we demonstrate the feasibility of deep learning algo-
rithms to automate biomarker scoring and annotation in a
high-throughput TMA setting. As proof-of-principle, we
deployed these algorithms to detect a well-studied tissue-
based biomarker, PTEN loss in prostate cancer.

Compared to previously established qualitative ana-
lyses for protein expression, more quantitative scoring
methods have the potential to provide superior molecular
insights and better prognostic performance [28, 32–34].
From a clinical workflow perspective, biomarker assess-
ment should be robust, with minimal inter- or intra-
observer variability and must perform consistently across
laboratories [35, 36]. All of the above prompted us to
investigate the need for fully automated, standardized,
cost- and time-effective approaches to biomarker assess-
ment [36, 37].

In this study, we showed that deep learning-based
algorithms can be used to effectively fully automate
assessment of PTEN protein loss and annotate regions with
loss in prostate cancer TMAs with accuracy ranging from
95.2 to 99.1% in two independent patient cohorts. Fur-
thermore, deep learning-based spatial annotation of PTEN
loss regions achieved favorable concordance with patholo-
gist annotations, with median dice 0.74–0.81 across multi-
ple testing and validation data sets. We observed the best
performance when algorithms were combined. By applying
a multi-resolution approach, we were able to identify the
cores potentially harboring PTEN loss which was followed
by a pixel-based approach for identification of specific areas
of PTEN loss using IHC images. Training these cascaded
models allowed us to fully automate scoring and annotation
on TMA, mimicking pathologist workflow without requir-
ing any manual annotation. We believe that similar deep
learning approaches could be used for other tissue-based
biomarkers to streamline sample scoring and annotation
process in an unbiased, objective way in both clinical and
research settings.

PTEN loss is known to be highly associated with adverse
clinico-pathological outcomes at both time of diagnosis and
time of surgery in prostate cancer [17, 19, 20, 29–31].
Assessment of PTEN loss has become more robust after the
development of a well-validated PTEN IHC assay [20, 29–
31]. Lack of clinical utilization of PTEN assessment is
linked to its heterogeneous nature of expression as well as
prostate cancer multifocality, which make it difficult to
identify areas with PTEN loss and objectively define
clinically important biomarker status on needle core biop-
sies [38]. In the current study, several cores containing both
benign and cancer tissues from each patient were used to
inherently address tissue-based as well as PTEN expression
heterogeneity in multi-focal prostate cancer, and to simulate
real histological scenario at the time of algorithm training.

We chose to employ a multi-resolution approach utiliz-
ing models trained at ×5, ×10, and ×20 for identification of
cores potentially harboring regions of PTEN loss. We
hypothesized that each resolution would balance informa-
tion about tumor burden (×5/×10), architecture (×5/×10),

Table 3 Simulation of high-throughput workflow by sequential combination of multi-resolution and pixel-based algorithms.

Cohort TP TN FP FN Sensitivity Specificity Accuracy

Internal cohort validation set (N= 2048) 153 1856 31 8 95.03% (90.4–98.4) 98.36% (97.6–99.0) 98.10% (92.6–99.1)

Internal cohort test set (N= 224) 19 203 2 0 100.00% (100–100) 99.02% (97.4–100) 99.11% (97.7–100)

External cohort (N= 428) 42 263 122 1 97.67% (91.1–100) 68.31% (62.1–73.8) 71.26% (65.6–76.4)

External cohort with fine-tuning (test set N= 357) 29 311 14 3 90.63% (75.0–100) 95.69% (93.6–97.6) 95.24% (93.0–97.3)

Any core predicted as PTEN loss by multi-resolution was considered for segmentation by pixel-based algorithm. Only cores predicted as PTEN
loss by both algorithms were classified as PTEN loss. External cohort performance is reported for all cores (N= 428) and with fine-tuning (N=
357). 95% confidence intervals calculated from bootstrap analysis on the patient level. TP= correctly classified as PTEN loss; TN= correctly
classified as PTEN intact; FP= incorrectly classified as PTEN loss; FN= incorrectly classified as PTEN intact.
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and cellular details (×20). The multi-resolution classifier
demonstrated improved performance compared to any
patch-based classifier at single magnification. This is con-
sistent with prior work by BenTaib et al. [39], who
demonstrated a latent model produced from multiple mag-
nification levels to improve subtype classification of ovarian
carcinoma. Specifically, multi-resolution approach allowed
to achieve higher sensitivity at the core-level compared to
sensitivity at the patch-level of each resolution (×5, ×10,
×20). We have shown that combining multi-resolution
classification and pixel-based spatial annotation provided
the highest classification performance compared to pathol-
ogist interpretation, while maintaining high sensitivity
(range: 90.6–100%) and specificity (range: 95.7–99.0%) in
both cohorts.

The success of machine learning in healthcare research
largely depends on proper validation of the algorithms on
various external cohorts. A limited access to large data sets
often leads to overfitting of algorithms to the training data
sets and therefore limits the success of its direct application
to external populations [40, 41]. In this study, we employed
cross-validation to assess the robustness of model devel-
opment. In addition, we validated a new automated detec-
tion algorithm for PTEN loss in an external independent
cohort. Here we observed high performance across multiple
patient splits. Cross-validated models demonstrated similar
performance (AUC: 0.988–0.994) when applied to internal
test set. It is worth noting that when applied to the external
testing set, performance accuracy of the algorithm only
reached 71.3% due to a high false positive rate (incorrect
prediction of PTEN loss) when applying the same prob-
ability threshold (0.265) used in internal cohort. In addition,
we observed that classification performance varied across
each magnification, with ×10 maintaining superiority
compared to ×5 and ×20. Reasons for the variable perfor-
mance could have been due to differences in tissue pro-
cessing and fixation procedures across institutions, leading
to overfitting on training set. To address this limitation, we
used a technique called fine-tuning [42], also referred to as
transfer learning, to modify algorithms initialized from
internal cohort to train a minority of samples from the
external cohort in order to produce a more robust model
with consistent performance across all cohorts [42]. Using
minority of samples (n= 19 patients, 15%) from the
external cohort, we were able to recover high performance
with 95.2% accuracy at probability threshold 0.265 in the
remaining external population (N= 357 cores, n= 105
patients) for the multi-resolution model. Future work will
consider developing a “generalizable” algorithm utilizing
training data from multiple institutions to apply this tech-
nique without the current dependency on fine-tuning.

Considering the heterogeneous nature of PTEN expression,
previously established visual scoring criteria characterize the

cases as either partial (<100% of cancer cells exhibiting
PTEN loss) or complete PTEN loss (100% of cancer cells
exhibiting PTEN loss). The current results demonstrated that
cases with complete PTEN loss were most accurately iden-
tified by the multi-resolution algorithm. Heterogeneous (par-
tial) PTEN loss was the primary source of false negatives
(incorrectly predicted as PTEN intact) in both cohorts with
rates of 4.4% (8/180) in the internal cohort and 9.4% (3/32) in
the external cohort, respectively. Only one core with complete
PTEN loss was misclassified by either algorithm. False
positive rates for the final combined model ranged from 1.6 to
4.3% across internal and external cohorts and were observed
in cores either with higher stromal content or “low PTEN”
(i.e., decreased PTEN expression compared to normal cells
but increased compared to threshold for loss). As “Low
PTEN” cores are a common source of discordant PTEN
scoring by pathologists [17], better assessment of this
expression pattern will come from aligning IHC assays with
orthogonal assays of PTEN status such as fluorescent in situ
hybridization, FISH. Additional opportunities for improving
deep learning-based approaches to PTEN assessment could
come from measuring the fraction of cancer cells with PTEN
loss, which has been linked to adverse prognosis [28].

This study has several important limitations. The algo-
rithms were developed on TMA of surgical specimens
which may not recapitulate tumor heterogeneity as seen in
clinical samples such as needle core biopsies. As a con-
sequence, the AI-based probability threshold of 26.5% for
predicting PTEN loss developed here may need to be
adjusted for different sample types and patient cohorts.
Given the large imbalance between PTEN intact and PTEN
loss cores, this cut-point was designed to optimize the
sensitivity of multi-resolution based approach in TMA cores
in cross-validation. Patch-based performance of the algo-
rithms was observed to be lower than the multi-resolution,
core-based performance. False positive classification within
regions/patches of benign epithelium and cores with low
cancer cell density suggests that future work should train
biomarker detection algorithms within clearly separated
tissue compartments (stroma vs. epithelium) from
pathologist-derived annotations as ground truth within those
compartments. Also, future studies should utilize cohorts
with more balanced numbers of cancer and benign cores.
Finally, while we demonstrated successful application of
the algorithm to tissues processed and sectioned at two
different institutions, fine-tuning of the model was never-
theless required. As IHC and digital scanning were per-
formed at a single institution, the algorithm may require
further modification to address variability in these proce-
dures if done at different centers in the future studies. In
addition, further correlation of AI-based approaches with
clinical outcomes is warranted, which was not the scope of
the current paper.
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In conclusion, this work demonstrates feasibility for fully
automated and robust detection and localization of PTEN
loss in prostate cancer tissue samples. This novel system has
great potential to streamline objective sample assessment in
research and clinical laboratories, making it an unbiased and
very rapid process. Such algorithms show promise to
minimize subjectivity, human error and involvement,
especially in resource-limited settings [4]. We expect that
this fully digital workflow and robust performance will
yield objective biomarker assessment and improve perso-
nalized patient care.

Code availability

All codes utilized in this study are publicly available at
https://github.com/NIH-MIP/ProstateTMA_PTEN.
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