Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prognostic value of desmoplastic stroma in intrahepatic cholangiocarcinoma

Abstract

Intrahepatic cholangiocarcinomas (iCCs) are primary tumors of the liver characterized by the presence of a desmoplastic stroma. While tumor stroma may have a protective or a pejorative value depending on the type of malignant disease, the precise role of the desmoplastic stroma in iCC remains poorly understood. The aim of the present study was to evaluate the prognostic value of stromal compartment in iCC through a multiparametric morphological analysis. Forty-nine surgically resected iCCs were included. For all cases, tumor paraffin blocks of iCCs were selected for stromal morphological characterization through quantitative and qualitative approaches using immunohistochemistry and second-harmonic generation imaging. Intratumor heterogeneity was also evaluated in regards with the different stromal features. High proportionated stromal area (PSA) (defined by stromal to tumor area ratio) was inversely correlated with vascular invasion (62.5% vs 95.7%, p = 0.006) and positively correlated with well-differentiated grade (60% vs 12.5%, p = 0.001). Patients with high PSA had a better disease-free survival (DFS) than patients with low stromal area (60% vs 10%, p = 0.077). Low activated stroma index (defined by cancer-associated fibroblasts number to stromal area ratio) was associated with a better DFS (60% vs 10%, p = 0.05). High collagen reticulation index (CRI), defined as the number of collagen fiber branches within the entire length of the collagen network, was associated with a poorer overall survival (42% vs NR, p = 0.026). Furthermore, we showed that CRI was also an homogeneous marker throughout the tumor. Based on morphological features, desmoplastic stroma seems to exert a protective effect in patients with iCC. Stromal collagen reticulation may provide additional clinically relevant information. In addition, these data support the potential value to evaluate CRI in biopsy specimen.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Representative digital image obtained from a red sirius stained iCC section (analyzed by Aperio imaging software).
Fig. 2: Tumor invasion patterns in iCC.
Fig. 3: Second-harmonic generation (SHG) imaging obtained from iCC TMA.
Fig. 4: Immunostaining of smooth muscle actin (AML), CD31 (MVD), and periostin in iCC.

References

  1. 1.

    Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014;383:2168–79.

    Article  Google Scholar 

  2. 2.

    Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma—evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018;15:95–111.

    CAS  Article  Google Scholar 

  3. 3.

    Krasinskas AM. Cholangiocarcinoma. Surg Pathol Clin. 2018;11:403–29.

    Article  Google Scholar 

  4. 4.

    Zhang X-F, Dong M, Pan Y-H, Chen JN, Huang XQ, Jin Y, et al. Expression pattern of cancer-associated fibroblast and its clinical relevance in intrahepatic cholangiocarcinoma. Hum Pathol. 2017;65:92–100.

    CAS  Article  Google Scholar 

  5. 5.

    Cadamuro M, Stecca T, Brivio S, Mariotti V, Fiorotto R. The deleterious interplay between tumor epithelia and stroma in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1435–43.

    CAS  Article  Google Scholar 

  6. 6.

    Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152:745–61.

    CAS  Article  Google Scholar 

  7. 7.

    Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50:1–11.

    Article  Google Scholar 

  8. 8.

    Nagao T, Inoue S, Goto S, Mizuta T, Omori Y, Kawano N, et al. Hepatic resection for hepatocellular carcinoma. Clinical features and long-term prognosis. Ann Surg. 1987;205:33–40.

    CAS  Article  Google Scholar 

  9. 9.

    Høgdall D, Lewinska M, Andersen JB. Desmoplastic tumor microenvironment and immunotherapy in cholangiocarcinoma. Trends Cancer. 2018;4:239–55.

    Article  Google Scholar 

  10. 10.

    Erkan M, Michalski CW, Rieder S, Reiser-Erkan C, Abiatari I, Kolb A, et al. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol. 2008;6:1155–61.

    Article  Google Scholar 

  11. 11.

    Caporale A, Vestri AR, Benvenuto E, Mariotti M, Cosenza UM, Scarpini M, et al. Is desmoplasia a protective factor for survival in patients with colorectal carcinoma? Clin Gastroenterol Hepatol. 2005;3:370–5.

    Article  Google Scholar 

  12. 12.

    Caporale A, Amore Bonapasta S, Scarpini M, Ciardi A, Vestri A, Ruperto M, et al. Quantitative investigation of desmoplasia as a prognostic indicator in colorectal cancer. J Investig Surg. 2010;23:105–9.

    Article  Google Scholar 

  13. 13.

    Wang LM, Silva MA, D’Costa Z, Bockelmann R, Soonawalla Z, Liu S, et al. The prognostic role of desmoplastic stroma in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7:4183–94.

    Article  Google Scholar 

  14. 14.

    Sinn M, Denkert C, Striefler JK, Pelzer U, Stieler JM, Bahra M, et al. α-Smooth muscle actin expression and desmoplastic stromal reaction in pancreatic cancer: results from the CONKO-001 study. Br J Cancer. 2014;111:1917–23.

    CAS  Article  Google Scholar 

  15. 15.

    Okano K, Yamamoto J, Kosuge T, Yamamoto S, Sakamoto M, Nakanishi Y, et al. Fibrous pseudocapsule of metastatic liver tumors from colorectal carcinoma. Clinicopathologic study of 152 first resection cases. Cancer. 2000;89:267–75.

    CAS  Article  Google Scholar 

  16. 16.

    Dvorak HF. Tumors: wounds that do not heal-redux. Cancer Immunol Res. 2015;3:1–11.

    CAS  Article  Google Scholar 

  17. 17.

    Erkan M. Understanding the stroma of pancreatic cancer: co-evolution of the microenvironment with epithelial carcinogenesis. J Pathol. 2013;231:4–7.

    Article  Google Scholar 

  18. 18.

    Zeisberg M, Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol, Cell Physiol. 2013;304:C216–225.

    CAS  Article  Google Scholar 

  19. 19.

    Barsky SH, Gopalakrishna R. Increased invasion and spontaneous metastasis of BL6 melanoma with inhibition of the desmoplastic response in C57 BL/6 mice. Cancer Res. 1987;47:1663–7.

    CAS  PubMed  Google Scholar 

  20. 20.

    Sirica AE, Almenara JA, Li C. Periostin in intrahepatic cholangiocarcinoma: pathobiological insights and clinical implications. Exp Mol Pathol. 2014;97:515–24.

    CAS  Article  Google Scholar 

  21. 21.

    Utispan K, Thuwajit P, Abiko Y, Charngkaew K, Paupairoj A, Chau-in S, et al. Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker. Mol Cancer. 2010;9:13.

    Article  Google Scholar 

  22. 22.

    Natal RA, Vassallo J, Paiva GR, Pelegati VB, Barbosa GO, Mendonça G, et al. Collagen analysis by second-harmonic generation microscopy predicts outcome of luminal breast cancer. Tumour Biol. 2018;40:1010428318770953.

    Article  Google Scholar 

  23. 23.

    Okoro C, Kelkar V, Sivaguru M, Emmadi R, Toussaint KC. Second-harmonic patterned polarization-analyzed reflection confocal microscopy of stromal collagen in benign and malignant breast tissues. Sci Rep. 2018;8:16243.

    Article  Google Scholar 

  24. 24.

    Zhou Z-H, Ji C-D, Xiao H-L, Zhao HB, Cui YH, Bian XW. Reorganized collagen in the tumor microenvironment of gastric cancer and its association with prognosis. J Cancer. 2017;8:1466–76.

    Article  Google Scholar 

  25. 25.

    Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139:891–906.

    CAS  Article  Google Scholar 

  26. 26.

    Bergeat D, Fautrel A, Turlin B, Merdrignac A, Rayar M, Boudjema K, et al. Impact of stroma LOXL2 overexpression on the prognosis of intrahepatic cholangiocarcinoma. J Surg Res. 2016;203:441–50.

    CAS  Article  Google Scholar 

  27. 27.

    Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet. 2016;388:518–29.

    CAS  Article  Google Scholar 

  28. 28.

    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  Article  Google Scholar 

  29. 29.

    Butler JM, Kobayashi H, Rafii S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer. 2010;10:138–46.

    CAS  Article  Google Scholar 

  30. 30.

    Kim KJ, Li B, Winer J, Armanini M, Gillett M, Phillips HS, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362:841–4.

    CAS  Article  Google Scholar 

  31. 31.

    Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 1995;55:3964–8.

    CAS  PubMed  Google Scholar 

  32. 32.

    Koh YW, Han J-H, Yoon DH, Suh C, Huh J. PD-L1 expression correlates with VEGF and microvessel density in patients with uniformly treated classical Hodgkin lymphoma. Ann Hematol. 2017;96:1883–90.

    CAS  Article  Google Scholar 

  33. 33.

    Benckert C, Thelen A, Cramer T, Weichert W, Gaebelein G, Gessner R, et al. Impact of microvessel density on lymph node metastasis and survival after curative resection of pancreatic cancer. Surg Today. 2012;42:169–76.

    Article  Google Scholar 

  34. 34.

    Tynninen O, Sjöström J, von Boguslawski K, Bengtsson NO, Heikkilä R, Malmström P, et al. Tumour microvessel density as predictor of chemotherapy response in breast cancer patients. Br J Cancer. 2002;86:1905–8.

    CAS  Article  Google Scholar 

  35. 35.

    Thelen A, Scholz A, Weichert W, Wiedenmann B, Neuhaus P, Gessner R, et al. Tumor-associated angiogenesis and lymphangiogenesis correlate with progression of intrahepatic cholangiocarcinoma. Am J Gastroenterol. 2010;105:1123–32.

    Article  Google Scholar 

  36. 36.

    Möbius C, Demuth C, Aigner T, Wiedmann M, Wittekind C, Mössner J, et al. Evaluation of VEGF A expression and microvascular density as prognostic factors in extrahepatic cholangiocarcinoma. Eur J Surg Oncol. 2007;33:1025–9.

    Article  Google Scholar 

  37. 37.

    Peng T, Deng X, Tian F, Li Z, Jiang P, Zhao X, et al. The interaction of LOXL2 with GATA6 induces VEGFA expression and angiogenesis in cholangiocarcinoma. Int J Oncol. 2019;55. https://doi.org/10.3892/ijo.2019.4837.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nathalie Guedj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guedj, N., Blaise, L., Cauchy, F. et al. Prognostic value of desmoplastic stroma in intrahepatic cholangiocarcinoma. Mod Pathol 34, 408–416 (2021). https://doi.org/10.1038/s41379-020-00656-y

Download citation

Search

Quick links