
Modern Pathology (2020) 33:483–495
https://doi.org/10.1038/s41379-019-0353-2

ARTICLE

Overexpression of TP53 protein is associated with the lack
of adjuvant chemotherapy benefit in patients with stage III
colorectal cancer

David S. Williams1,2,3 ● Dmitri Mouradov4,5 ● Clare Browne 1
● Michelle Palmieri4,5 ● Meg J. Elliott4,5 ●

Rebecca Nightingale2 ● Catherine G. Fang2
● Rita Li1 ● John M. Mariadason2,6

● Ian Faragher7 ● Ian T. Jones8 ●

Leonid Churilov9 ● Niall C. Tebbutt2,10 ● Peter Gibbs4,5,11,12 ● Oliver M. Sieber 4,5,13,14

Received: 11 June 2019 / Revised: 30 July 2019 / Accepted: 31 July 2019 / Published online: 30 August 2019
© United States & Canadian Academy of Pathology 2019

Abstract
TP53 mutations drive colorectal cancer development, with missense mutations frequently leading to accumulation of
abnormal TP53 protein. TP53 alterations have been associated with poor prognosis and chemotherapy resistance, but data
remain controversial. Here, we examined the predictive utility of TP53 overexpression in the context of current adjuvant
treatment practice for patients with stage III colorectal cancer. A prospective cohort of 264 stage III patients was tested for
association of TP53 expression with 5-year disease-free survival, grouped by adjuvant treatment. Findings were validated in
an independent retrospective cohort of 274 stage III patients. Overexpression of TP53 protein (TP53+) was found in 53%
and 52% of cases from the prospective and retrospective cohorts, respectively. Among patients receiving adjuvant
chemotherapy, TP53+ status was associated with shorter disease-free survival (p ≤ 0.026 for both cohorts), while no
difference in outcomes between TP53+ and TP53− cases was observed for patients treated with surgery alone. Considering
patients with TP53− tumors, those receiving adjuvant treatment had better outcomes compared with those treated with
surgery alone (p ≤ 0.018 for both cohorts), while no treatment benefit was apparent for patients with TP53+ tumors.
Combined cohort-stratified analysis adjusted for clinicopathological variables and DNA mismatch repair status confirmed a
significant interaction between TP53 expression and adjuvant treatment for disease-free survival (pinteraction= 0.030). For the
combined cohort, the multivariate hazard ratio for TP53 overexpression among patients receiving adjuvant chemotherapy
was 2.03 (95% confidence interval 1.41–2.95, p < 0.001), while the hazard ratio for adjuvant treatment among patients with
TP53− tumors was 0.42 (95% confidence interval 0.24–0.71, p= 0.001). Findings were maintained irrespective of tumor
location or when restricted to mismatch repair-proficient tumors. Our data suggest that adjuvant chemotherapy benefit in
stage III colorectal cancer is restricted to cases with low-level TP53 protein expression. Identifying TP53+ tumors could
highlight patients that may benefit from more aggressive treatment or follow-up.

Introduction

5-Fluorouracil-based adjuvant chemotherapy is the standard-
of-care for patients with stage III colorectal cancer [1, 2],
although some individuals are too frail or decline treatment.
Despite being the mainstay of care, the benefit from adjuvant

chemotherapy is limited to only 10–15% of individuals and
5-year relapse rates remain at ~60% [3]. Overtreatment with
adjuvant chemotherapy (85–90% of patients) is associated
with significant toxicities and healthcare costs. As a result,
considerable efforts have been invested in the identification
of tumor-based molecular markers that can complement
standard clinical and pathological staging systems to more
accurately predict disease outcome and determine optimal
adjuvant treatment approaches. Whilst several markers
associated with prognosis have been identified in colorectal
cancer, such as DNA mismatch repair status and gene
expression profiles [4, 5], there remains a clinical need for
biomarkers predictive of which patients will derive a benefit
from treatment with chemotherapy.
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Mutation of the TP53 tumor suppressor is a central driver
of colorectal carcinogenesis found in ~50% of sporadic
tumors [6]. Wild-type TP53 protein mediates cell-cycle
arrest and cell-death checkpoints, which can be triggered by
various cellular stress signals [7]. Normal cells under
unperturbed conditions express TP53 at low levels, with its
degradation mediated by ubiquitin-ligases including
MDM2, COP-1, and PIRH-2 [8–10]. In most tumors, both
TP53 alleles are inactivated, usually by a combination of a
missense mutation and 17p deletion that eliminates the
second TP53 allele [11]. TP53 missense mutations fre-
quently lead to accumulation of abnormal TP53 protein
with a prolonged half-life in the nucleus, which can be
detected by immunohistochemistry [12, 13]. Studies that
have examined both TP53 expression and mutation data for
colorectal cancer have reported an agreement of immuno-
histochemistry and mutation detection between 53 and 76%
[14–20].

TP53 aberrations are considered a late event in the
classic adenoma-to-carcinoma sequence of colorectal
tumorigenesis, associated with the transition from ade-
noma to carcinoma [21]. Some evidence suggest that the
frequency of TP53 aberrations increases with tumor stage
[22–31], although this has not been confirmed in other
studies [16, 28, 32–40]. There is general agreement that
TP53 aberrations occur less frequently in the proximal
colon as compared with the distal colon and rectum [18–
20, 30, 34, 39, 41–48].

The significance of TP53 aberrations as a prognostic
marker for colorectal cancer remains a matter of
controversy. For investigations of TP53 protein expression
which included at least 100 patients, overexpression
of TP53 has been associated with inferior outcomes
in univariate or multivariate survival analyses in multiple
reports [19, 20, 26–28, 31–33, 35, 39, 40, 49–58].
However, other studies have found no association
[18, 22, 25, 30, 37, 41, 45, 46, 48, 59–65] or reported the
opposite finding [34, 38, 66–68]. A systematic review of
TP53 expression data performed by Munro et al. some time
ago, which encompassed data for 12,257 patients across all
tumor stages, concluded that individuals with abnormal
TP53 were at increased risk of death (relative risk 1.32,
95% confidence interval 1.23–1.42), with similar results for
assessment of mutation data (relative risk 1.31, 95% con-
fidence interval 1.19–1.45) [69]. However, both publication
bias and heterogeneity of results were noted.

The lack of a consensus in the literature on the prog-
nostic significance of TP53 aberrations may be due to the
use of heterogeneous study populations such as tumor
stages included, differences in immunohistochemical
methods, limited cohort sizes and duration of follow-up.
A major issue is absence of a standardized immunohis-
tochemistry scoring scheme to optimally correlate TP53

protein expression with TP53 mutation status. It has
further been suggested that the prognostic significance
of TP53 aberrations may depend on the ethnic group,
body-mass index, tumor location, or stage of disease
[34, 39, 42, 43, 52]. TP53 aberrations are also negatively
associated with tumor microsatellite instability status
[20, 39, 44, 70–72], found in ~15% of colorectal cancers,
an established marker of good prognosis for early-stage
colorectal cancer [4]. Microsatellite instability is char-
acterized by increased insertion or deletion mutations
at simple repeat sequences due to a defect in DNA
mismatch repair [73], and may be associated with a lack
of benefit from 5-fluorouracil-based adjuvant chemother-
apy [74–77].

Furthermore, there are data from colorectal cancer cell
lines studies to suggest that the benefit of adjuvant che-
motherapy may be limited to patients with TP53 wild-type
cancers. Specifically, colorectal cancer cells with wild-
type TP53 have consistently been found to be more
sensitive to 5-fluorouracil and oxaliplatin treatment as
compared with cells with mutated TP53 [78–83].
Accordingly, some patient cohort studies have reported
inferior outcomes for individuals receiving chemotherapy
if their tumors had TP53 overexpression [20, 38, 84, 85],
but this was not observed by others [30, 55, 86–88].
The previous systematic review of Munro at el. did not
find a relationship between TP53 aberrations and adjuvant
chemotherapy benefit, although it identified a relationship
with neoadjuvant chemoradiation for rectal cancer [69].
Results of the TP53 Colorectal Cancer International
Collaborative Study, which combined TP53 mutation data
from 25 different research groups in 17 countries, indi-
cated a potential interaction between TP53 mutation status
and adjuvant treatment benefit for Dukes’ C patients with
distal tumors [89].

To clarify the conflicting data regarding the prognostic
and predictive value of TP53 protein expression in early-
stage colorectal cancer, we evaluated TP53 expression in a
homogenous prospective community-based population of
264 stage III patients. Specifically, the present study sought
to clarify the clinical potential of TP53 overexpression as a
predictor of outcomes in the context of current adjuvant
treatment practice. An optimal cutoff for identifying TP53
overexpression (TP53+ vs TP53−) was determined using
the Allred scoring system [90], which considers both pro-
portion of stained cells and stain intensity, based on a set of
66 colorectal cancer cell lines with existing TP53 mutation
data. Findings were validated in an independent retro-
spective community-based cohort of 274 stage III patients.
Hazard ratios and recurrence rates were estimated for
patient subgroups by TP53 expression status and adjuvant
treatment for a cohort-stratified analysis of the combined
538 patient population.
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Materials and methods

Prospective community series of colorectal cancer
patients

A total of 264 patients with resected stage III colorectal
adenocarcinoma were recruited at the Royal Melbourne
Hospital and Western Hospital, Footscray in Australia
between 1999 and 2011. Individuals with hereditary poly-
posis colorectal cancer syndromes or who had received
neoadjuvant chemoradiation were excluded. Formalin-fixed
paraffin-embedded tumor and matched normal tissue spe-
cimens were obtained at surgery, and tissue microarrays
consisting of 1-mm-diameter tissue cores were constructed.
For each patient, four tumor and two normal tissue cores
were embedded, with tumor cores taken from areas of the
densest tumor cell percentage. A total of 189 (72%) patients
received 5-fluorouracil-based adjuvant chemotherapy.
All patients were prospectively followed according to the
standard protocols, with 3 monthly clinic visits and testing
for carcinoembryonic antigen levels, 12 monthly CT scans
of the chest, abdomen and pelvis for 2 years after diagnosis
and then 6 monthly clinic visits and carcinoembryonic
antigen testing until 5 years from diagnosis. Patient char-
acteristics are summarized in Supplementary Table S1. All
participants gave informed consent, and this study was
approved by the medical ethics committees of all sites
(HREC 12/19).

TP53 protein expression

The DO-7 mouse monoclonal anti-TP53 antibody (Novo-
castra) was used for immunohistochemistry. Tissue staining
was performed on tissue microarray sections as per standard
protocol on a BenchMark ULTRA platform (Ventana).
Briefly, heat-induced antigen retrieval was performed using
CC1 (EDTA) buffer at 95 °C for 36 min. Tissue sections
were incubated at 36 °C with the primary TP53 antibody at
a 1:100 dilution for 32 min, followed by signal detection
using an enzyme-conjugated multimer secondary antibody
(UltraView Universal DAB detection kit, Ventana). Sec-
tions were counterstained with hematoxylin.

Evaluation of TP53 staining was carried out by a gas-
trointestinal pathologist (DSW) blinded to all clinical
information. We considered only tumor cells with distinct
nuclear immunostaining for TP53 as positive (Supplemen-
tary Fig. S1). Considering all tumor cores, the Allred score
was calculated by adding a score reflecting the percentage
of positive tumor cells (0 for none, 1 for <1%, 2 for 1–10%,
3 for 11–33%, 4 for 34–66%, and 5 for 67–100%) and a
score reflecting the intensity of immunoreactivity (1 for
weak, 2 for moderate, and 3 for strong), with a maximum
score of 8 [90]. Based on a set of colorectal cancer cell lines

(n= 66) with known TP53 mutation status [91], an Allred
score of 6 or greater was selected, reflecting the cutoff value
identifying TP53 missense mutated cases with maximum
sensitivity and specificity (Supplementary Methods, Sup-
plementary Fig. S2). To assess the accuracy of our color-
ectal cancer cell line determined cut-off in primary tumor
tissue, we integrated immunohistochemistry scores with
TP53 mutation data available from Sanger sequencing on a
subset of 51 tumor samples [92]. A total of 25 of 26 (96%)
samples with TP53 missense mutation exhibited an Allred
score of >6, while 19 of 25 (76%) samples without TP53
missense mutation exhibited an Allred score of ≤6. Repro-
ducibility of TP53 expression scores was verified by re-
examination of a random selection of 454 cases across both
our study cohorts by a second observer (CB), blinded to all
prior data. Interobserver reproducibility for TP53 scoring
showed high concordance (κ statistic= 0.85; 95% con-
fidence interval= 0.80–0.90).

DNA mismatch repair status

Whole-tissue sections were cut from tumor and matched
normal formalin-fixed paraffin-embedded blocks. For tumor
samples, macrodissection was performed to enrich for areas
with >60% neoplastic cells guided by hematoxylin and
eosin stained tissue sections. DNA was extracted using
standard protocols and polymerase chain reaction amplified
for the Bethesda consensus panel of microsatellite markers
(BAT25, BAT26, D2S123, D5S346, and D17S250) using
fluorescently labeled primers [93]. Polymerase chain reac-
tion products were analyzed on a 3130xl Genetic Analyzer
(Applied Biosystems). Mismatch repair-deficient status was
diagnosed if instability was detected at two or more mar-
kers, and mismatch repair-proficient status was diagnosed if
instability was detected at fewer than two markers.

Retrospective community series of colorectal cancer
patients

To validate findings, we examined an independent cohort of
274 patients with stage III colorectal cancer recruited at
Austin Health, Australia, between 1998 and 2015, for
whom clinical, treatment and follow-up data were retro-
spectively assembled with human research ethics approval
(HREC H2013/05077). Among these patients, 181 (66%)
had received 5-fluorouracil-based adjuvant chemotherapy.
Individuals with hereditary polyposis colorectal cancer
syndromes or who had received neoadjuvant chemoradia-
tion were excluded. Patient characteristics are summarized
in Supplementary Table S1. Archival formalin-fixed paraf-
fin-embedded tumor blocks were retrieved, and tissue
microarrays prepared with sampling of three 1-mm-
diameter cores per patient. Immunohistochemistry for
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TP53 expression was performed on the same platform as for
the prospective community series. For this cohort, tumor
DNA mismatch repair status was assigned based on stan-
dard immunohistochemistry diagnostic assays for mismatch
repair proteins (MLH1, MSH2, PMS2, and MSH6) by
pathologist DSW [94]. Mismatch repair-deficient was
defined as absence of nuclear staining in tumor cells but
positive nuclear staining in stromal cells and lymphocytes
for at least one mismatch repair protein.

Statistical methods

Statistical analyses were conducted using the statistical
computing software R (R Development Core Team, 2011).
Receiver operator curves were used to determine the optimal
Allred score cutoff for TP53 immunohistochemistry to detect
TP53 missense mutations (see Supplementary Methods).
Interobserver reproducibility for determination of TP53
expression status between reviewers was assessed using
Cohen’s kappa statistic. For univariate analyses, differences
between groups were assessed using the Fisher’s exact test
for categorical variables and the Kruskal–Wallis test for
continuous variables. Outcome analyses were conducted for
5-year disease-free survival. Disease-free survival was
defined as time from surgery to the first confirmed relapse,
with censoring done when a patient died or was alive without
recurrence at last contact. Survival curves were generated
according to the method of Kaplan and Meier. Cox propor-
tional hazard models were used to assess the associations of
TP53 expression status with disease-free survival in the
context of patient characteristics, DNA mismatch repair sta-
tus and adjuvant treatment. Hazard ratios and 95% con-
fidence intervals were calculated. All statistical analyses were
two-sided and considered significant if p < 0.050.

Results

Patient characteristics of the prospective
community-based cohort

Of the 264 patients with stage III adenocarcinoma, 102
(39%) were female, and the median patient age was 70
(range 39–91) years (Supplementary Table S1). A total of
106 (40%) cancers were from the proximal colon and 158
(60%) from the distal colon or rectum; 168 (64%) exhib-
ited low and 96 (36%) high grade. All patients underwent
surgical resection, and 189 (72%) patients received
5-fluorouracil-based adjuvant chemotherapy. A total of 91
(34%) patients experienced a disease recurrence. The
median follow-up duration was 26.6 (range 3.4–60.0)
months for individuals with recurrence and 60.0 (range
0.3–60.0) months for individuals without recurrence.

Overexpression of TP53 was scored based on the
intensity and percentage of stained tumor nuclei using a pre-
determined Allred score cutoff of ≥6, optimized to identify
TP53 missense mutations in a set of 66 colorectal cancer
cell lines (Supplementary Methods, Supplementary Figs. S1
and S2). Nonneoplastic colonic mucosa, inflammatory, and
stromal cells exhibited weak staining and served as positive
internal controls. Overall, 53% (140 of 264) of the tumors
exhibited TP53 overexpression, termed TP53+. For mis-
match repair status 20% (52 of 264) of the tumors were
mismatch repair deficient.

Compared with TP53− tumors, the TP53+ tumors were
associated with distal location (odds ratio 1.7, 95% con-
fidence interval 1.0–2.9, p= 0.044) and mismatch repair-
proficient status (odds ratio 2.1, 95% confidence interval
1.1–4.1, p= 0.021) (Table 1). There was no association of
TP53 expression status with gender, age at presentation or
grade. Mismatch repair-deficient status was positively cor-
related with proximal tumor location (odds ratio 6.4, 95%
confidence interval 3.1–14.1, p < 0.001) and high grade
(odds ratio 3.0, 95% confidence interval 1.6–5.9, p < 0.001).

TP53 expression status and disease-free survival

Overall, patients with TP53+ tumors had inferior 5-year
disease-free survival rates than patients with TP53−
tumors (54.5% vs 68.9%). The univariate hazard ratio for
disease-free survival for the TP53+ group versus the TP53
− group was 1.64 (95% confidence interval 1.08–2.52;
p= 0.020). In addition, proximal tumor location and high
grade were associated with reduced disease-free survival
while adjuvant treatment was associated with improved
disease-free survival (p < 0.020 for all univariate analyses).
Patient gender, age at diagnosis, and mismatch repair
status were not associated with outcome in our cohort.
In multivariate analysis adjusting for clinicopathological
variables significant in the univariate models, TP53
expression remained an independent predictor of poor
prognosis (hazard ratio 1.93, 95% confidence interval
1.25–2.97, p= 0.003).

Adjuvant treatment benefit by TP53 expression
status

We next examined whether tumor TP53 expression status
was associated with differential benefit from adjuvant
treatment. Notably, patients who had received adjuvant
treatment were significantly younger than individuals who
had not received adjuvant treatment (66 vs 82 years; p <
0.001); this trend was similar across the TP53 subgroups
(data not shown). The duration of follow-up according to
adjuvant treatment was similar between TP53 subgroups
(p > 0.066).
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Considering patients grouped by adjuvant treatment,
association of TP53 expression status with outcome
appeared restricted to individuals receiving chemotherapy.
Among adjuvant therapy treated patients, TP53+ tumors
showed significantly poorer outcomes than TP53− tumors
with a univariate hazard ratio for disease-free survival of
2.09 (95% confidence interval 1.23–3.56, p= 0.005) and 5-
year disease-free survival rates of 55.7% (95% confidence
interval 46.5–66.7%) and 76.3% (95% confidence interval
67.8–86.0%), respectively (Fig. 1a). In multivariate analysis
adjusting for clinicopathological variables significant in
univariate analysis, the hazard ratio for TP53+ tumors in
the adjuvant treatment group was 2.59 (95% confidence
interval 1.50–4.47; p < 0.001). No difference in outcome by
TP53 expression status was apparent for patients treated
with surgery alone (univariate hazard ratio 1.02, 95% con-
fidence interval 0.49–2.12, p= 0.956, Fig. 1b).

For groups of patients by TP53 expression status, adju-
vant treatment benefit was evident for TP53− tumors, but
not for TP53+ tumors. Among patients with TP53−
tumors, the hazard ratio for disease-free survival for adju-
vant treatment as compared with surgery alone, adjusting
for variables significant in univariate models, was 0.41
(95% confidence interval 0.19–0.75; p= 0.008) (Fig. 2a). In
contrast, among TP53+ patients, the univariate hazard ratio

for disease-free survival for adjuvant treatment was 0.79
(95% confidence interval, 0.44–1.42; p= 0.434) (Fig. 2b).

Independent retrospective community cohort

We validated the differential outcome associations for
TP53 expression by adjuvant treatment in an independent
retrospective population of 274 patients with stage III
colorectal cancer, 66% (181 of 274) of whom had received
adjuvant chemotherapy (Supplementary Table S1). A total
of 108 (39%) of patients in this cohort had experienced
relapse. The median follow-up duration was 36.0 (range,
4.3–60.0) months for individuals with recurrence and 59.0
(range, 0.7–60.0) months for individuals without recur-
rence. Patients in this cohort showed a similar proportion
of TP53+ tumors (52%, 142 of 274) as compared with our
prospective cohort; again, TP53 overexpression was
inversely associated with mismatch repair-deficient status
and proximal tumor location (p < 0.001 for both compar-
isons, Table 1).

Outcomes among the treatment groups mirrored the
findings from the prospective cohort: TP53+ tumors
exhibited inferior disease-free survival than TP53− tumors
for patients receiving adjuvant chemotherapy (multivariate
hazard ratio 1.73, 95% confidence interval 1.07–2.79,

Table 1 Clinicopathologic and
molecular characteristics of
patients with stage III colorectal
cancer according to TP53
expression status

Prospective cohort Retrospective cohort

TP53− TP53+ p TP53− TP53+ p

n= 124 n= 140 n= 132 n= 142

Age (years)

Mean ± SD 69.5 ± 10.9 68.8 ± 11.8 0.626 69.2 ± 3.2 68.3 ± 1.8 0.572

Median 70 69 70.5 71

Range 39–90 40–91 28–94 42–94

Gender

Male 78 (63) 84 (60) 0.704 78 (59) 68 (48) 0.070

Female 46 (37) 56 (40) 54 (41) 74 (52)

Site

Proximal 58 (47) 48 (34) 0.044* 92 (70) 63 (44) <0.001*

Distal 66 (53) 92 (66) 40 (30) 79 (56)

Grade

Low grade 76 (61) 92 (66) 0.522 80 (61) 91 (64) 0.618

High grade 48 (39) 48 (34) 52 (39) 51 (36)

Adjuvant

No 34 (27) 41 (29) 0.785 50 (38) 43 (30) 0.203

Yes 90 (73) 99 (72) 82 (62) 99 (70)

Mismatch repair status

Proficient 92 (74) 120 (86) 0.021* 97 (73) 133 (94) <0.001*

Deficient 32 (26) 20 (14) 35 (27) 9 (6)

Data are for the prospective cohort (n= 264) and retrospective cohort (n= 274). Percentages for columns are
shown in round brackets.

*p < 0.05
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p= 0.026, Fig. 1c), while similar outcomes were observed
for patients treated with surgery alone (multivariate hazard
ratio 0.94, 95% confidence interval 0.48–1.82, p= 0.847,
Fig. 1d). Again, adjuvant treatment benefit appeared limited
to patients with TP53− tumors (multivariate hazard ratio
0.48, 95% confidence interval 0.27–0.88, p= 0.018,
Fig. 2c), with no apparent benefit in TP53+ patients
(multivariate hazard ratio 1.08, 95% confidence interval
0.61–1.90, p= 0.798, Fig. 2d).

In combined cohort-stratified analysis, multivariate ana-
lysis adjusted for all clinicopathological variables and
mismatch repair status confirmed a significant interaction
between TP53 expression status and adjuvant treatment for
disease-free survival (pinteraction= 0.030). The 5-year dis-
ease-free survival rate was highest for patients with TP53-/
adjuvant treated tumors (71.6%, 95% confidence interval
64.9–78.9%), while disease-free survival rates were sig-
nificantly lower for patients with TP53+/adjuvant treated
tumors (52.9%, 95% confidence interval 46.3–60.6%),
patients with TP53+/surgery alone tumors (48.1%, 95%
confidence interval 36.1–64.0%) and patients with TP53-/
surgery alone tumors (47.5%, 95% confidence interval
36.1–62.7%) (Fig. 3). For the combined cohort, the

multivariate hazard ratio for TP53 overexpression among
patients receiving adjuvant chemotherapy was 2.03 (95%
confidence interval 1.41–2.95, p < 0.001, Table 2), while
the multivariate hazard ratio for adjuvant treatment among
patients with TP53− tumors was 0.42 (95% confidence
interval 0.24–0.71, p= 0.001, Table 3). The relationship
between TP53 overexpression and inferior outcome among
patients receiving adjuvant chemotherapy was maintained
when extending the multivariate analysis to include further
available National Comprehensive Cancer Network high-
risk features, T4 stage and extramural venous invasion
(Supplementary Table S2). Improved survival rates for
patients with TP53-/adjuvant treated tumors were found
when separately analyzing patients with proximal and
distal cancers, or when restricting the analysis to patients
with mismatch repair-proficient tumors (Supplementary
Table S3).

Discussion

The present study sought to clarify the clinical potential of
TP53 overexpression as a predictor of outcomes for patients

Fig. 1 Kaplan–Meier plot for
disease-free survival in patients
with stage III colorectal cancer
according to TP53 expression
status for a individuals treated
with adjuvant therapy from the
prospective cohort (n= 189), b
individuals treated with surgery
alone from the prospective
cohort (n= 75), c individuals
treated with adjuvant therapy
from the retrospective cohort
(n= 181), and d individuals
treated with surgery alone from
the retrospective cohort (n= 93)
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with stage III colorectal cancer in the context of current
adjuvant treatment practice. We examined a total of 538
patients across two independent cohorts drawn from pro-
spective and retrospective community-based patient popu-
lations. Among patients receiving adjuvant chemotherapy,
TP53+status was associated with shorter disease-free sur-
vival for both cohorts, while no difference in outcomes
between TP53+ and TP53− cases was observed for
patients treated with surgery alone. Considering patients
with TP53- tumors, those receiving adjuvant treatment had
better outcomes as compared those treated with surgery
alone, while no significant benefit from adjuvant treatment
was apparent for patients with TP53+ tumors. Combined
cohort-stratified analysis adjusted for clinicopathological
variables and mismatch repair status confirmed a significant
interaction between tumor TP53 expression status and
adjuvant treatment for disease-free survival. Taken together,
these data are consistent with TP53 overexpression-related
resistance to 5-fluorouracil-based adjuvant chemotherapy,
highlighting TP53+ patients as a subset to consider
for more aggressive treatment or follow-up. Activation of

Fig. 2 Kaplan–Meier plot for
disease-free survival in patients
with stage III colorectal cancer
according to adjuvant treatment
for a individuals with TP53−
tumors from the prospective
cohort (n= 124), b individuals
with TP53+ tumors from the
prospective cohort (n= 140), c
individuals with TP53− tumors
from the retrospective cohort
(n= 132), and d individuals
with TP53+ tumors from the
retrospective cohort (n= 142)

Fig. 3 Kaplan–Meier plot for disease-free survival in patients with
stage III colorectal cancer according to TP53 expression status and
adjuvant treatment for the combined patient cohort (n= 538)
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wild-type TP53 plays a pivotal role in triggering apoptosis
in response to chemotherapeutic agents, and the predictive
value of TP53 overexpression may be related to mutated
protein impairing downstream transcriptional activity and
abrogating TP53 interaction with pro-survival BCL-2
family proteins [95–98].

Missense mutations in TP53 are common in
sporadic colorectal cancer, and often result in accumulation
of TP53 protein. However, there is presently no standar-
dized clinical scoring system for evaluating TP53 status
by immunohistochemistry. Studies using the DO-7
antibody report TP53 overexpression in between 30
and 63% of colorectal cancers [18–20, 22, 30, 34–
36, 38, 42, 45, 47, 54, 57, 61, 64, 65, 88, 99]. Using a
separate training cohort of 66 colorectal cancer cell lines
with known TP53 mutation status, we determined that an
Allred score of ≥6, which considers both proportion of
stained cells and stain intensity, optimally identified cases

with TP53 missense mutations. Applying this cutoff to our
prospective and retrospective patient cohorts, we identified
TP53 overexpression in 53% and 52% of cases,
respectively. Multiple reports have discussed the relation-
ship of TP53 aberrations with location of the tumor
[18–20, 30, 34, 39, 41–48]. Consistent with these studies,
we found that the frequency of TP53 overexpression was
reduced in tumors from the proximal colon as compared
with the distal colon and rectum. We also observed the well-
established negative association between TP53 aberrations
and mismatch repair deficiency [39, 44, 70–72].

Data regarding the prognostic role of TP53 expression in
colorectal cancer are heterogeneous. Several studies have
reported that TP53 overexpression is an adverse prognostic
factor [19, 20, 26–28, 31–33, 35, 39, 40, 49–58], and this
overall trend was evident in our study for combined cohort-
stratified multivariate analysis with baseline variables (Sup-
plementary Table S4) and with additional inclusion of

Table 2 TP53 expression status and disease-free survival in patients with stage III colorectal cancer according to adjuvant treatment for the
combined patient cohort (n= 538)

Surgery only Adjuvant therapy

n= 168 n= 370

Hazard ratio 95% confidence interval p Hazard ratio 95% confidence interval p

TP53 status (TP53+ vs TP53−) 0.88 0.51–1.51 0.639 2.03 1.41–2.95 <0.001*

Age (decades) 0.99 0.76–1.29 0.926 1.00 0.85–1.19 0.973

Gender (male vs female) 1.31 0.74–2.32 0.349 1.32 0.94–1.86 0.113

Site (proximal vs distal) 1.05 0.59–1.86 0.863 1.48 1.03–2.13 0.034*

Grade (high vs low) 1.31 0.78–2.20 0.301 2.14 1.51–3.01 <0.001*

Mismatch repair status (deficient vs
proficient)

0.69 0.34–1.40 0.303 0.80 0.47–1.37 0.418

Data are for multivariate cohort-stratified analysis

*p < 0.05

Table 3 Adjuvant treatment and
disease-free survival in patients
with stage III colorectal cancer
according to TP53 expression
for the combined patient cohort
(n= 538)

TP53- TP53+

n= 256 n= 282

Hazard ratio 95% confidence
interval

p Hazard ratio 95% confidence
interval

p

Adjuvant (yes vs no) 0.42 0.24–0.71 0.001* 0.99 0.61–1.63 0.983

Age (decades) 1.00 0.98–1.02 0.699 1.00 0.98–1.02 0.966

Gender (male vs
female)

1.79 1.14–2.81 0.011* 1.03 0.71–1.49 0.867

Site (proximal vs
distal)

1.27 0.78–2.08 0.331 1.31 0.89–1.93 0.168

Grade (high vs low) 1.10 0.68–1.77 0.694 2.48 1.72–3.57 <0.001*

Mismatch repair status
(Deficient vs
Proficient)

0.51 0.27–0.97 0.039* 1.40 0.80–2.44 0.239

Data are for multivariate cohort-stratified analysis

*p < 0.05
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T4 stage and extramural venous invasion (Supplementary
Table S5). Nonetheless, other studies found no relationship
with outcome [18, 22, 25, 30, 37, 41, 45, 46, 48, 59–65] and a
few reports observed the opposite association [34, 38, 66–68].

Besides differences in TP53 assay methodologies, scor-
ing schemes, cohort heterogeneity, study sizes and duration
of follow-up, in vitro studies have highlighted TP53
aberration-associated resistance to 5-fluorouracil and oxa-
liplatin as a potential major confounding factor of colorectal
cancer prognostic studies [78–83]. In agreement with these
observations, we found that for patients receiving adjuvant
chemotherapy, individuals with TP53+ tumors had sig-
nificantly poorer outcomes than individuals with TP53−
tumors. For patients grouped by TP53 expression status,
adjuvant treatment was associated with improved outcomes
for individuals with TP53− tumors, but not for individuals
with TP53+ tumors. Improved survival rates for patients
with TP53-/adjuvant treated tumors were observed irre-
spective of tumor location and when restricting the analysis
to patients with mismatch repair-proficient tumors. How-
ever, these results should be interpreted with caution
because of the non-randomized use of adjuvant che-
motherapy. In addition, we considered all FU-based treat-
ment regimens as one group, although TP53 aberrations
may show different predictive values according to the exact
type of treatment used [47]. Bearing in mind these caveats,
our results support the contention that the benefit from
adjuvant chemotherapy depends on TP53 expression status.
Consistent with our data, several cohort studies have
reported an apparent lack of benefit from chemotherapy for
early-stage and metastatic tumors with TP53 overexpression
[20, 38, 84, 85]. However, other reports of patients with
early-stage colorectal cancer did not reproduce this obser-
vation [30, 55, 86–88], although these differed in methods
or cut-offs for scoring TP53 status and included patients
with stage II tumors. These studies lacked validation
cohorts, and in one study inspection of the Kaplan–Meier
curves shows a trend towards chemotherapy benefit in the
TP53-ve group [87]. Another study of adjuvant che-
motherapy treated patients identified poorer outcomes for
TP53+ tumors only if these were also high for BAX
expression [72].

In our study, we ensured technical quality by performing
the immunohistochemistry detection in an accredited diag-
nostic laboratory, using the Allred scoring system with a
pre-determined TP53 overexpression cutoff optimized to
detect TP53 missense mutations. Reproducibility of TP53
immune-staining scores was confirmed by two reviewers
blinded to all clinical data. Clinicopathologic and outcome
associations with TP53 status were validated across two
independent cohorts. Immunohistochemistry is an attractive
approach for detecting biomarkers due to its applicability to
routine archival clinical specimens, relatively low cost,

rapid test turn-around time, straightforward methodology
and analysis. Immunohistochemistry can be readily incor-
porated into existing panels of biomarkers for specific
cancer subtypes.

Limitations of this study include that our cohorts were
derived from population-based series treated according to
standard-practice for adjuvant therapy, not a randomized
clinical trial. As a result of this study design, there is
potential bias for poorer outcomes in the untreated popu-
lation group, likely to be older, frailer or subject to more
comorbidities. For this reason, disease-free survival was
chosen as the preferred measure for response to therapy
rather than overall survival, since disease-free survival is
less likely to be impacted by age, frailty, or comorbidities.
The study was not standardized for adjuvant treatment
regimen, with single-agent 5-fluorouracil and 5-fluorouracil/
oxaliplatin combination treatments used as per routine care.
As stage III patients cannot ethically be randomized to
adjuvant chemotherapy versus surgery alone, analysis of
tumor samples from previous randomized clinical trials
would be the most appropriate approach for validation of
our findings and further examination of TP53 predictive
value by treatment regimen. Another limitation of our study
is that TP53 immunohistochemistry assessment was based
on tissue microarray cores, which may not be representative
of the entire tumor due to heterogeneity. Sampling of at
least three cores from different regions of tumor should
have addressed this issue to some extent. Consistent with
most previous reports, our study focused on scoring TP53
overexpression, associated with missense mutations; this
excludes loss events due to nonsense, frameshift or splice-
site mutations (bi-allelic or with loss of heterozygosity)
which account for a subset of ~6% of TP53 mutated col-
orectal cancers as estimated from The Cancer Genome Atlas
whole-exome sequencing data on colorectal cancers [11].
Conversely, posttranscriptional stabilization processes such
as those induced by DNA damage can lead to accumulation
of wild-type TP53 protein [100].

In conclusion, our examination of the predictive value of
TP53 expression in the context of current adjuvant treatment
practice suggests that overexpression of TP53 protein is
associated with minimal adjuvant chemotherapy benefit in
patients with stage III colorectal cancer. Notably the disease-
free survival rate for patients with TP53+ tumors receiving
adjuvant treatment was similar to the disease-free survival
rates in patients with TP53+ or TP53− tumors treated with
surgery alone. Our findings indicate patients with TP53+
tumors as a subset to consider for more aggressive treatment
or follow-up. Further evaluation of TP53 expression status as
a predictive biomarker for adjuvant therapy appears war-
ranted, utilizing tumor samples from previous randomized
clinical trials to determine an optimal diagnostic approach
using standardized immunohistochemistry scoring methods
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and comparison with sequencing-based testing. Allred scores
of 7–8 have very high specificity for TP53 mutation, and
immunohistochemistry can serve as a cost-effective primary
screen to identify these cases. Sequencing might optimally be
used to identify non-responders to chemotherapy in equivocal
(Allred 6) cases, or for tumors lacking TP53 expression which
may harbor inactivating TP53 mutations.
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