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Abstract
An electronic tongue (E-tongue) comprises a series of sensors that simulate human perception of taste and embedded
artificial intelligence (AI) for data analysis and recognition. Traditional E-tongues based on electrochemical methods
suffer from a bulky size and require larger sample volumes and extra power sources, limiting their applications in in
vivo medical diagnosis and analytical chemistry. Inspired by the mechanics of the human tongue, triboelectric
components have been incorporated into E-tongue platforms to overcome these limitations. In this study, an
integrated multichannel triboelectric bioinspired E-tongue (TBIET) device was developed on a single glass slide chip to
improve the device’s taste classification accuracy by utilizing numerous sensory signals. The detection capability of the
TBIET was further validated using various test samples, including representative human body, environmental, and
beverage samples. The TBIET achieved a remarkably high classification accuracy. For instance, chemical solutions
showed 100% identification accuracy, environmental samples reached 98.3% accuracy, and four typical teas
demonstrated 97.0% accuracy. Additionally, the classification accuracy of NaCl solutions with five different
concentrations reached 96.9%. The innovative TBIET exhibits a remarkable capacity to detect and analyze droplets with
ultrahigh sensitivity to their electrical properties. Moreover, it offers a high degree of reliability in accurately detecting
and analyzing various liquid samples within a short timeframe. The development of a self-powered portable
triboelectric E-tongue prototype is a notable advancement in the field and is one that can greatly enhance the
feasibility of rapid on-site detection of liquid samples in various settings.

Introduction
The sense of taste is an essential biological function that

enables humans to perceive a wide range of flavors. This
ability to discern a wide range of tastes with relatively
small few taste buds is facilitated by the integration of
signals generated at taste buds and subsequent analysis
and recognition by neural networks inside the brain1. The
electronic tongue (E-tongue) utilizes nonselective sensors
to replicate taste receptors and employs artificial

intelligence (AI) algorithms to simulate the analytical
processes of the brain2 and was developed with inspira-
tion from mechanisms underlying natural taste percep-
tion. In contrast to natural taste, the concept of “artificial
taste” demonstrates a wide range of responses and offers
the benefits of objectivity and reproducibility2. These
prominent features have facilitated the widespread
implementation of E-tongues in diverse sectors. For
instance, in the food industry, E-tongues are used to dif-
ferentiate the quality of red wine3 and beer4 as well as to
identify the production regions of rice5 and ginger6. In the
field of environmental monitoring, E-tongues are
employed to detect heavy metal ions7. Similarly, in the
pharmaceutical industry, these devices are used to adjust
the taste of medications8.
Traditional E-tongues are currently being developed

using electrochemical methods, which include voltam-
metry9,10 and potentiometry2. In these processes, the
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sensing electrodes of E-tongues need to be immersed in a
liquid sample, often requiring more than 15mL of sample,
and they need to be continuously powered by external
energy sources. Additionally, the bulky nature of the
instrument requires a considerable amount of space, as
observed with an industrial E-tongue (TS-5000Z2) with
dimensions of 470 × 530 ×. 510mm and a weight of 26 kg.
Consequently, the testing of E-tongue technology is
conducted mainly within laboratory settings, utilizing
commercially available products2,9. This limitation
severely hinders its feasibility for portable, on-site, or real-
time applications. Therefore, it is crucial to explore novel
detection techniques and develop miniaturized devices to
advance the modernization of E-tongue technology. The
triboelectric nanogenerator (TENG) was first introduced
at Georgia Tech in 201211. It represents a novel approach
for energy harvesting and self-powered sensing, which is
characterized by its cost-effectiveness, simple fabrication
process, and notable efficiency in converting kinetic
energy into electrical energy12–15. In addition, solid‒solid
TENGs have been employed as sensors for detecting wind
speed and direction16, vector motion monitoring17, and
3D tactile sensing18. Furthermore, multichannel TENGs
can be integrated with AI technology for material iden-
tification19 and distinguishing human gestures20.
Recently, based on the principle of solid‒liquid contact

triboelectrification, researchers have developed TENGs as
liquid energy harvesters21–24 and have further utilized
these sensors for droplet detection, wherein features of
liquid samples are extracted from the generated electrical
signal25–28. Triboelectric-based liquid sensors have
demonstrated promising potential for applications across
various fields29,30. Hu et al. developed prototypes of a
drainage bottle droplet sensor and a smart intravenous
injection monitor to enable real-time monitoring of
clinical drainage operations and intravenous infusion31.
Liu et al. developed a highly sensitive and self-powered
acid rain sensor using a doping technique, and their
sensor facilitated the real-time detection of acid rain in
actual environments32. Our research has been motivated
by these prior investigations, leading us to propose a novel
approach for evaluating the effectiveness of E-tongue
technology. The integration of the triboelectric principle
into the E-tongue may yield significant insights and
contributions. In contrast to the electrochemical-based E-
tongue system, the triboelectric-based E-tongue system is
considered a pioneering advancement with notable tech-
nological advantages, including the capability of self-
powered sensing33, the utilization of an ultrasmall sample
volume (e.g., ~3 μL) per analysis33, the exploitation of the
electrical properties of the liquid sample derived from
natural bionics, and the miniaturized and portable
packaging of the device. In a recent study, Dr. Wang and
his team introduced a new triboelectric E-tongue34, which

employs a range of polymer materials to construct inde-
pendent triboelectric electronic nose gauging cells,
allowing the measurement of the triboelectric effect of
droplets independently within different units. Although
this method effectively provides efficient droplet tribo-
electric responses, it is time-consuming and labor-inten-
sive, rendering it less suitable for practical applications.
Furthermore, other factors, such as the flow state and
adsorption capacity when different polymer materials and
droplets come into contact, significantly affect the clas-
sification accuracy. Therefore, the development of a
multichannel triboelectric bionic E-tongue for synchro-
nous measurements is a pivotal step toward the realiza-
tion of practical applications using triboelectric
E-tongues.
As depicted in Fig. 1, a conceptually designed tribo-

electric electronic tongue is presented and compared to
a natural tongue. There are five types of taste cells1

located on the surface of the tongue. The signals col-
lected by these cells upon tasting a sample are trans-
mitted to the brain through nervous tissue. These
signals are then combined into a map and subjected to
analysis to ascertain the taste profile of the sample.
Motivated by this human taste perception system, we
initially developed an on-chip triboelectric bioinspired
E-tongue (TBIET) device, which was combined with AI
to create an ‘artificial taste’ system that is portable, self-
powered, and capable of lossless detection. To evaluate
the classification capabilities of the TBIET across var-
ious domains, a series of tests were conducted using
samples from the chemical, environmental, and food
sectors. The experimental findings exhibit a high clas-
sification accuracy ( ≥ 97.0%). Moreover, the sample
concentration classification accuracy (e.g., NaCl solu-
tions) of TBIET reached 96.9%. These results indicate
that the TBIET system is viable for specific application
scenarios. The development of the proposed TBIET may
afford new possibilities in next-generation self-powered
liquid sensing technologies.

Materials and methods
Liquid sample preparation
To evaluate the classification capability of the TBIET

system for different types of samples, three types of liquid
samples were prepared to evaluate the classification cap-
abilities of the TBIET device. Chemical samples (DIW,
HCl solution, NaOH solution, and NaCl solution) were
purchased from Sinopharm Chemical Reagent Co. and
diluted to a concentration of 1 mol/L. Environmental
samples (COD-1, COD-25, and T-N at 1 mg/L and T-P at
1 mg/L) were purchased from China Grinm Group Cor-
poration Limited and diluted to their respective con-
centrations. Food samples (white tea, black tea, dark tea,
and oolong tea) were purchased from a public market.

Liu et al. Microsystems & Nanoengineering           (2024) 10:57 Page 2 of 12



These samples were then weighed to 0.3 g and subse-
quently mixed with 30mL of DI water.
To assess the classification capability of the TBIET

system for samples of the same type but at different
concentrations, we prepared five NaCl solutions with
concentrations of 0 (DIW), 0.05, 0.1, 1.0, and 5.4
(saturated) mol/L.

Fabrication of the TBIET device
The TBIET device consists of four distinct layers, as

shown in Fig. 2a, b: a glass substrate, a metal electrode, a
polydimethylsiloxane (PDMS) buffer layer, and a tribo-
electric film. The size of the glass substrate was
75*25mm. A thick layer (300 nm) of aluminum electrode
was deposited onto the surface of the substrate. The
formation of the electrode film pattern was achieved by
employing a metal mask to cover the substrate during the
magnetron sputter deposition process. The width and
spacing of each electrode were 8 and 6mm, respectively.
To prevent penetration of the testing liquid between the
dielectric films and the electrodes, an 80 μm thick PDMS
buffer layer was spin-coated onto the electrode layer.
Then, each triboelectric film was attached to the PDMS
buffer layer in its liquid state. Finally, the device under-
went an air drying process for 72 h to facilitate the curing
of the PDMS buffer layer. This process led to the fixation
of the dielectric films onto the PDMS layer. The tribo-
electric materials selected for this study were polytetra-
fluoroethylene (PTFE), fluorinated ethylene propylene
(FEP), polyethylene (PE) with a thickness of 100 nm, and
spin-coated PDMS. The films deposited on the fifth and

sixth electrodes were considered supplementary
components.

Characterization of the TBIET device
The TBIET device was mounted on a 3D-printed

bracket at an 80° angle (with respect to the horizontal
plane), as shown in Fig. 2c. Two graduated sliders were
used to adjust the spatial orientation of the dropper
relative to the device. To ensure consistent separation
between the first droplet and the triboelectric polymer
film, the dropper tube was positioned approximately 6 cm
from the 4th electrode of the TBIET. The four electrodes
were connected to an oscilloscope (RTB2004, Rohde
Schwarz) to establish a 4-channel triboelectric sensor
array. Optical images depicting these configurations are
presented in S1. To process the output signal from the
TBIET, three algorithms, linear discriminant analysis
(LDA)35, support vector machine (SVM)36, and random
forest (RF)37, were used to analyze the acquired data.
These algorithms were implemented in Python (version
3.8, Python Software Foundation, Delaware, USA) using
the machine learning library scikit-learn (version 1.0.2).

Work mechanism of the TBIET device
The operational procedure of the TBIET device com-

prises three distinct steps: initial, unsaturated, and satu-
rated stages38. In the initial stage, the system surface is
uncharged. When the droplet falls on the surface of the
TBIET, charge accumulation begins, indicating an unsa-
turated stage. After the surface charges are saturated, the
entire system transitions into the saturation phase38. The

a

b

c
Chemical analysis

Brain analysis

Tongue

DIW NaCl

HCl NaOH

Environment monitoring

Samples
T-NCOD-1

COD-25 T-P

Food detection

Dark tea Black tea

Triboelectric
sensor

White tea Oolong tea

AI

Fig. 1 Conceptual diagram of the TBIET device combined with AI for droplet detection. a Functional bionics of human taste perception and
data analysis. b Structural diagram of an artificial taste system using a triboelectric sensor array. c Differential application of the TBIET
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maintenance of a stable and consistent signal output is of
utmost importance for the system when utilized as a
sensor, highlighting the critical aspect of surface repro-
ducibility in determining sensor performance. Thus,
employing the preliminary phase as the operational phase
improves the replicability of the sensor surface and pre-
vents long-term charge accumulation, thereby facilitating
rapid detection. To achieve rapid detection of samples
and ensure consistent results at the solid‒liquid interface,
the initial stage is employed as the operational phase for
the triboelectric sensor.
Figure 2d depicts the charge transfer process between

the water droplet and the sensing polymer. When the
water droplet falls and contacts the polymer surface, the
droplet and polymer surface will be positively and nega-
tively charged, respectively. Additionally, the continuous
sliding of the droplet on the film surface results in the
accumulation of positive charges on the droplet surface.
As the water droplet slides toward the metal electrode
position, the excess charge on the droplet induces a

charge on the electrode. Simultaneously, the excess
charge on the polymer film surface induces another
charge after the water droplet moves away from the
electrode position. This process repeats as the droplet
slides across other surfaces of the sensing film until the
water droplet eventually drops off the sensor. The cor-
responding voltage-time (V-t) response curve was
obtained by monitoring the potential difference between
the metal electrode and the ground environment during
the process of droplet rolling.
A computational analysis was conducted using COM-

SOL 5.6 to simulate the potential liquid distribution
during the motion of a droplet across two triboelectric
sensors. The simulation results are shown in Fig. 2e.
Initially, the droplet is assumed to be positively charged as
a spherical ball. Upon contact between the droplet and the
film, a charge transfer process occurs, causing the droplet
to acquire a positive charge and the polymer film to
acquire a complementary negative charge. As the sliding
motion progresses, the charge on the droplet gradually
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Fig. 2 Structural schematic diagram and working mechanism of the TBIET device. a A cross-sectional review showing four layers of the TBIET.
b A three-dimensional structure of the TBIET device. c A position adjustable support stage for fixing the TBIET and dropper tube. d Work principle of
the TBIET. e The potential distribution across the electrodes and droplets was simulated using COMSOL Multiphysics
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intensifies. Subsequently, the presence of residual charge
within the film creates charge attraction within the metal
electrode through electrostatic induction, resulting in the
generation of an induced current.
The theoretical model for charge distribution and

transfer between solids and liquids was effectively
described by the hybrid model proposed by Prof. Wang’s
group, which considers the electric double layer (EDL)
model based on the Gouy-Chapman-Stern theory38–40

and the “electron-cloud potential well” model41. Electron
exchange is considered to be induced by the overlap of
electron clouds of solid and liquid particles (atoms or
molecules). Different materials and droplets possess dis-
tinct electronic affinities, which represent variations in
their capability to gain or lose electrons. This factor
influences the quantity of charge transferred from the
droplets to the film per unit area42. Moreover, the varying
hydrophobicity of materials influences the contact angle
between the droplet and the film, resulting in diverse rates
of change in the contact area over time43. The output
waveforms of the TBIET represent the voltage response
over time. With a constant external load, the signal
strength is directly proportional to the total charge
transferred per unit time44. This quantity is equivalent to
the contact area multiplied by the charge transferred per
unit area43,45.

To recognize different samples, we employ AI methods
to analyze the overall signal variances, bypassing the need
to establish accurate analytical models. Inspired by bio-
mimicry, we used diverse film materials to detect a single
droplet sample simultaneously, resulting in comprehen-
sive signal changes. This multidimensional observation
enhances the sample’s classification capability.

Results and discussion
Data preprocessing for the original data
Figure 3 shows our process flow diagram for the col-

lection, preparation, and classification of the output signal
of the TBIET device. The data obtained from the TBIET
device are initially processed to extract relevant feature
values. These feature values are then further classified
using AI algorithms. To construct the model, it is
necessary to collect a minimum of 30 samples for each
category of data during the data collection phase. Figure
3b illustrates four distinct sets of unprocessed signals
acquired from the initial three droplets captured by the
triboelectric sensor array when exposed to solutions of
deionized water (DIW) and sodium chloride (NaCl). Each
peak in the figure corresponds to the flow of liquid sample
droplets through the sensing polymer film, and any signal
changes observed outside these peaks are attributed to
system noise. Considering that the test environment
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remained unchanged throughout the experiment, the
results of the data analysis are deemed reliable. Notably,
the signal peak observed for DIW is greater in magnitude
than that of NaCl, consistent with previous research
findings on the triboelectric series42. The V-t response
signals for all the samples are depicted in S3 and S5,
exhibiting their characteristic behavior.
During the data analysis process, as shown in Fig. 3c, the

initial step involves the identification of the local extre-
mum within the dataset. Subsequently, the location of the
time-domain signal in close proximity to the extremum is
determined by considering its extremum position. The
final analysis step includes the fusion of the 4-channel
signals into eigenvalues. Notably, the flow regime in
which droplets roll over the sensor array leads to distinct
temporal positions of signal peaks across various chan-
nels. Thus, during the preliminary stage of data prepara-
tion, a single electrode is used to identify the local
extremum, while the remaining channels derive feature
values based on the selected time series without repeating
the local extremum identification process.
The selection of suitable eigenvalues is of utmost

importance when creating a predictive model that exhibits
high classification performance and desirable robustness.
To conduct a comprehensive evaluation of the output
signal, we employed two feature extraction approaches to
provide input values for the machine learning algorithm.
The initial approach uses the original data (ORI) as fea-
ture values subsequent to the aforementioned data pre-
paration procedure. The second approach computes the
difference between the data acquired using the first
approach and then applies window sweep filters to reduce
noise. The outcome of these difference data (DIF) is
commonly referred to as the eigenvalue, which can be
mathematically expressed as follows:

Y i ¼ 1
W

Xi

j¼i�Wþ1

Xj � Xj�1
� �

ð1Þ

where W represents the window size, which is set to 20; Y
represents DIF data; and X represents ORI data. Both “X”
and “Y” are time series data.

AI results for different types of liquid samples
Results of LDA analysis
First, the LDA method is employed to visualize the

extracted feature values. LDA is a well-established classic
supervised dimensionality reduction method that has
been widely used in the field of electronic tongue sys-
tems46,47. LDA aims to maximize the difference between
classes by decreasing the intraclass dissimilarity. The
detailed calculation process and formula of LDA are
outlined in S2.

Figure 4a–c presents the LDA outcomes using the fea-
ture values of ORIs for chemical, environmental, and food
samples. The results of LDA analysis using DIF feature
values for the aforementioned samples are shown in Fig.
4d–f. Regardless of the values assigned to the features, the
samples are classified into four distinct zones in the
context of chemical and environmental analysis. In the
case of food samples (e.g., tea), there is a small area of
overlap between black tea and oolong tea when the ORI
feature values are used. However, when utilizing DIF
feature values, these samples are further categorized into
four distinct regions. The obtained visualization results of
the LDA algorithm demonstrate the efficacy of the TBIET
device in accurately classifying chemical, environmental,
and food samples.

SVC and RF classification results
The results of the LDA algorithm technique demon-

strate that the investigated samples can be classified,
although this technique provides only approximate clas-
sification data. To achieve more precise results, we apply
two well-established machine learning algorithms, SVM
and RF, for in-depth analysis. Figure 3a shows the cor-
responding process of data classification. First, the data
are split into two parts, with one part designed as the
training set. In this set, the sample labels are retained for
model training by machine learning algorithms. The
remaining data are assigned to the test set, assuming that
the sample labels are unknown and can be predicted by
the trained model. Finally, the predicted labels are com-
pared with the actual labels of the test set to assess the
precision of the model.
The leave-one-out approach (LOO) was employed to

partition the data. In this approach, one data point is
reserved for testing, while the remaining data points are
utilized for training. The test data points are then
successively shifted across the entire dataset. The final
classification result is determined by calculating the
average of all test samples. Given the nature of this task,
the support vector classification (SVC) approach of
SVM is utilized to address the multiclassification pro-
blem. The fundamental principle underlying the SVM
approach is the identification of a hyperplane between
samples. In contrast, the RF method focuses on aver-
aging individual leaf nodes. The detailed procedures
and formulas for the SVM and RF approaches are
given in S2.
The evaluation of the classification outcomes of these

two algorithms is conducted using confusion matrices, as
shown in Fig. 5 and Fig. S3 (in S4). The confusion matrix
is a tabular representation where the predicted labels are
represented by rows and the true labels are represented by
columns. A sample is considered to be accurately pre-
dicted when the label predicted by the model aligns with
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the true label. Thus, the elements located along the
diagonal of the matrix correspond to the fraction of
samples that were accurately predicted. The classification
outcomes of the SVC and RF algorithms with ORIs as the
feature values are presented in Fig. 5. The results indicate
that all chemical samples were predicted correctly by both
algorithms. For environmental samples, both algorithms
achieved high classification accuracy, with a correct pre-
diction rate (CPR) per sample exceeding 95.1%. In the
case of food samples, excluding the CPR of dark tea
(which was 84.4% when using the RF algorithm), the CPRs
of other types of tea samples exceeded 93.8%. The clas-
sification results of SVC and RF with DIF as feature values
are provided in S4. The findings indicate that the accurate
prediction of all chemical samples was achieved, regard-
less of the method employed.
The CPR of the RF algorithm for COD-25% in envir-

onmental samples was found to be 84.9%. In contrast, the
CPR of the RF method for other types of samples was
greater than 92.7%. Compared with the RF algorithm, the
SVC algorithm achieved greater classification accuracy.
Specifically, the SVC approach attained a classification
accuracy rate of over 96.2% for all samples. The CPR for
all food samples, with the exception of black teas,
exceeded 93.8%. Notably, the RF algorithm misclassified
12.5% of the black teas.

The metric of classification accuracy (ACC) denotes the
ratio of correctly predicted samples to the overall number
of samples, as listed in Table 1. In the context of envir-
onmental data, when employing the ORI as the eigenvalue,
the SVM algorithm exhibits little ACC compared to the RF
approach. Specifically, the ACCs achieved by the SVM and
RF algorithms are 98.2% and 98.3%, respectively. In other
cases, the accuracy of the SVM algorithm is greater than or
equal to the accuracy of the RF approach.
Additionally, the classification accuracy of individual

electrodes for these samples is presented in Table S1.
Among the 48 classification results, only five individual
electrode results slightly exceeded the final output results.
Notably, these instances were related to measurements of
environmental samples using PE and PDMS, as well as tea
samples using PTFE. In all other cases, the classification
accuracy of the individual electrodes was significantly
lower than that achieved after the fusion of the four
electrodes.
Overall, the ACC in all experimental cases was con-

sistently greater than 92.7%. These robust classification
outcomes are consistent with the visual representations of
the LDA algorithm, as depicted in Fig. 4. These findings
confirm that the TBIET device exhibits proficient classi-
fication capabilities across chemical, environmental, and
food sample scenarios.
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AI results for the same sample at different concentrations
To demonstrate the classification capability of the

TBIET system for the same sample at various con-
centrations, NaCl solutions with concentrations of 0
(DIW), 0.05, 0.1, 1.0, and 5.4 (saturated) mol/L were
tested. The LDA and SVM classification results utilizing
the ORI feature values are shown in Fig. 6, while the RF
method results are presented in Fig. S4. In the LDA plot,

the five sample classes distinctly occupy distinct regions.
When employing SVC for classification, excluding the
0.1 mol/L sample (which was accurately classified at a rate
of 93.5%), the proportions of correctly classified samples
for all other concentrations exceeded 96.3%. When uti-
lizing RF classification, all sample types were correctly
classified at a rate exceeding 94.4%. Furthermore, the
LDA, SVM, and RF results obtained using DIF as the
feature value are provided in Figs. S6 and S7. The DIF
feature value still proves effective when classifying the
samples, and the SVM and RF classifiers achieved accu-
racy rates exceeding 88.9% and 93.5%, respectively.
Moreover, a comparison of the ACCs for the individual

electrodes and the combined electrodes is shown in Table
S2. Crucially, in contrast to the results of the different
types of samples presented in Table S1, all eight results
exhibited accuracies noticeably lower than the ultimate
classification accuracy. The individual electrode accuracy
ranged from 43.5% to 85.1%, markedly below the aggre-
gated accuracy exceeding 92.9%.
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Table 1 Classification accuracy for the three types of
samples

Feature values Chemical

samples

Environmental

samples

Food

samples

SVC RF SVC RF SVC RF

ORI 100.0 100.0 98.2 98.3 97.0 93.2

DIF 100.0 100.0 97.3 92.7 96.3 93.3
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These findings highlight the efficacy of the TBIET sys-
tem in categorizing varying concentrations of the same
solution. The fusion of multiple channels significantly
increased the classification accuracy.

Discussion
We combined triboelectric sensing arrays and AI to

develop a portable, self-powered liquid sensor with broad-
spectrum responsiveness. Table 2 presents a comparison
between our EBIET system and a standard E-tongue
system, highlighting the differences in sensor types. Tra-
ditional E-tongue functions are based on different sensor
principles, including potentiometry, voltammetry, optical
addressing, and impedance spectroscopy48. The sensing
array of the potentiometry E-tongue comprises a working
electrode array and an Ag/AgCl reference electrode. The
structure of the working electrode comprises different
types of lipid membranes. During the experiments, the
electrical potential on the surface of the lipid membrane
was measured and compared to the potential of the
reference electrode. The voltammetry sensing array uti-
lized a three-electrode configuration, consisting of an Ag/
AgCl reference electrode, a working electrode array, and a
counter electrode. The working and counter electrodes
are commonly fabricated using stable metals such as sil-
ver, titanium, gold, and platinum. Optical addressing
sensors utilize different color-developing agents that react
with metal ions in solution for color development.
Additionally, it incorporates E-tongue technology, which
is based on the principles of stripping voltammetry. An
impedance spectrum sensor is usually composed of
ultrathin films that are fabricated using different materials
deposited on interdigital electrodes. In comparison to the
aforementioned E-tongues, TBIET offers the most con-
venient structure and the most accessible sensing material
because it only requires a simple process of attaching
commercial dielectric films onto metal electrodes. In

addition, EBIET offers the advantages of simple operation
and rapid response time. Furthermore, unlike the
E-tongues that necessitate the immersion of electrodes in
the droplets, the EBIET sloley requires the identification
of the droplets, rendering it an almost non-invasive
detection method.
The detecting capabilities of an E-tongue are con-

siderably influenced by the physical or chemical informa-
tion present in response signals. The detecting capabilities
of the E-tongue increase in proportion to the number of
mechanisms incorporated in the response signals. The
conventional E-tongue is capable of identifying the elec-
trochemical characteristics of the samples, such as their
chemical potential (related to electron exchange ability),
the diffusion capacity of specific particles within the
sample, and the double layer phenomenon, which is often
explained using the Gouy‒Chapman–Stern model39,40.
The impact of the electron exchange ability38 and surface
double layer40 on the response signals of TBIET has been
demonstrated. The EBIET device stands out as the sole
electronic tongue (E-tongue) capable of detecting signals
emitted by flowing droplets. The distribution of surface
charges on droplets is influenced by various flow states,
leading to modifications in the response signals42,43. Thus,
the TEBIET is distinguished as the sole E-tongue platform
with a response signal that is subject to the impact of the
flow characteristics of the liquid. Furthermore, compared
to the most recent triboelectric E-tongue34, we adopted a
biomimetic approach that uses different materials to
mimic the various taste buds on the human tongue1 and
constructed an E-tongue system. Our experimental results
indicate that the multielectrode fusion system exhibits
superior classification capability in comparison to systems
using a single sensitive material. Moreover, the enhance-
ment in the classification ability became more pronounced
in the multielectrode system as the sample compositions
became more similar.

LD
 3

a bDIW
0.05
0.1
1.0
saturated

Saturated

Saturated

Predicted label

SVC

0.8

0.6

0.4

0.2

0.0

T
ru

e 
la

be
l

LD 1

LD
 2

0 0.0%96.3%

93.5%

98.9%

98.7%

97.5%

2.8%

0.0%

0.0%

0.0% 0.0%

0.0%

4.3%

0.0% 1.3%

0.0%

0.0%

0.0% 0.9%

0.0%

1.1%

1.2% 1.2%

2.2%0.0%

0

0.05

0.05

0.1

0.1

1.0

1.0

0

0

0–8

Fig. 6 Classification of the ORIs of NaCl solutions at five different concentrations. a LDA visualization of dimensionality reduction. b Confusion
matrix of the SVC results

Liu et al. Microsystems & Nanoengineering           (2024) 10:57 Page 9 of 12



In summary, the TBIET system exhibits a highly con-
venient structure, possesses practically non-invasive
qualities, demonstrates self-powering capabilities, and
provides response signals that encompass a wide variety of
mechanistic information. This novel sensor has the
potential to broaden the scope of application for the initial
electronic tongue utilized in laboratory settings.
The successful classification of chemical samples based

on ion samples supports the potential applicability of
utilizing groundwater sample analysis for mineral
exploration purposes. In the analysis of environmental
samples, we successfully classified varying quantities of
COD, thereby indicating the potential for realizing a real-
time and on-site monitoring system for tracking envir-
onmental conditions. Moreover, the achievement of
effective categorization demonstrated the feasibility of
implementing the TBIET in agricultural fields, specifically
for establishing an internet-connected, self-sustaining
monitoring system. Such a system would enable real-
time tracking of plant development as well as identifica-
tion and management of pest and disease infestations
throughout the growth cycle. In addition, it is possible to
optimize the design of TBIET to facilitate the identifica-
tion of human bodily fluids, such as urine and blood, for
the early diagnosis of certain medical diseases.
To establish the TBIET for commercial applications, it

is necessary to overcome some current limitations. The
primary concern is that TBIET is dependent on the
accurate identification of spectra and requires a detection
environment that is highly stable and capable of produ-
cing consistent results. Nevertheless, even when con-
sidering droplets of the same type, the contact states with
the triboelectric sensing film might vary, including dif-
ferent locations, angles, and velocities. Consequently,
these variations can lead to distinct spectra. The presence
of variability in the data can potentially result in mis-
identification by the system, thus presenting a significant
obstacle in attaining outcomes that are both consistent
and dependable. To address this challenge, a possible
approach involves integrating the microfluidic system
with TBIET to regulate the contact parameters between
the droplet and the triboelectric sensing film. This inte-
gration would reduce the influence of the aforementioned
variations on the resulting spectra. Consequently, the
enhancement of the sensor’s responsiveness leads to
increased consistency and repeatability. An alternative
approach includes extensive data collection from real-
world scenarios. By systematically collecting a diversified
array of data across different contact states, it is possible
to develop a comprehensive and diverse database. Such a
database can be combined with advanced deep learning
models, such as convolutional neural network (CNN)49

and transformer50 algorithms, to improve the classifica-
tion accuracy of the system and expand its range ofTa
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applications. These data-driven techniques can help
establish robust models capable of accurately identifying
and classifying liquids by analyzing their spectral char-
acteristics. Moreover, in real-world scenario applications,
when dealing with interference from unknown samples, to
enhance the specificity of recognition, considering clas-
sification as open-state recognition and choosing appro-
priate methods can be beneficial51.

Conclusion
In this paper, we presented a triboelectric bioinspired

E-tongue that combines liquid‒solid power generation
with artificial intelligence to realize an artificial taste-
sensing device. The device integrates four different tri-
boelectric polymer films for sensing four series of droplets
on a single glass chip. The performance of the TBIET was
evaluated using three types of liquid materials, including
chemical, environmental, and food samples. Additionally,
liquid samples with identical solute compositions but
varying concentrations were also examined to assess the
system’s classification capabilities at different concentra-
tions. Signal analysis was performed utilizing the LDA,
SVC, and RF algorithms. The experimental findings
demonstrated a classification accuracy exceeding 92.7%
across all categories. Through careful selection of an
optimal algorithm, we achieved a classification accuracy of
100% for ion-type DIW, HCl, NaOH, and NaCl in che-
mical solutions. The device attained a high accuracy of
98.2% in identifying chemical oxygen demand (COD) and
total nitrogen (T-N) in environmental samples char-
acterized by concentrations as low as 1 mg/L. The device
demonstrated a classification accuracy of 97.0% for
identifying four prevalent varieties, including white, black,
dark, and oolong teas, and an accuracy of 96.9% for the
classification of NaCl solutions with five different con-
centrations. The results preselected in this study indicate
that the TBIET device exhibits a high level of accuracy in
classifying data, thus confirming its potential suitability
for use in the specified scenarios. This self-powered and
portable detection device represents a significant
advancement in liquid sensor technology, offering a ver-
satile and practical solution for E-tongue applications.
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