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Exceptional points enhance sensing in silicon
micromechanical resonators
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Abstract
Exceptional points (EPs) have recently emerged as a new method for engineering the response of open physical
systems, that is, systems that interact with the environment. The systems at the EPs exhibit a strong response to a small
perturbation. Here, we show a method by which the sensitivity of silicon resonant sensors can be enhanced when
operated at EPs. In our experiments, we use a pair of mechanically coupled silicon micromechanical resonators
constituting a parity–time (PT)-symmetric dimer. Small perturbations introduced on the mechanically coupled spring
cause the frequency to split from the EPs into the PT-symmetric regime without broadening the two spectrum
linewidths, and this frequency splitting scales with the square root of the perturbation strength. The overall signal-to-
noise ratio is still greatly enhanced, although the measured noise spectral density of the EP sensing scheme has a
slight increase comparable to the traditional counterpart. Our results pave the way for resonant sensors with ultrahigh
sensitivity.

Introduction
The concept of microelectromechanical system (MEMS)

resonators that mechanically vibrate at resonance has a long
history of research dating back to the 1960s1. The resonator
is often utilized for resonant sensors that generate significant
development and commercial applications associated with
charge, mass, displacement, acceleration, and magnetic
sensing2. Parameters of interest to be sensed, i.e., small
perturbations, induce the effective stiffness change or mass
change of the resonator, leading to its resonant frequency
shift or vibrating amplitude variation. Traditionally, the
resonant sensor in the form of a frequency shift as an output
signal has a quasidigital nature. As a result, it is basically
independent of analog levels and minimizes the inaccuracies
that arise in an analog output as well as its converted digital
format3,4. However, the frequency shift is proportional only
to small perturbations, leading to low sensitivity. By biasing
the resonant sensor in a nonlinear state or in high-order
frequency mode, the enhanced sensitivity has been

explored5,6. Based on the mode localization effect of weakly
coupled resonators, a resonant sensor in the form of an
amplitude ratio as an output signal has been extensively
developed7–9. For the often used mode-localized resonators
shown in Fig. 1a, where two identical resonators of proof
mass m, mechanical spring constant k, and loss strength γ
are weakly coupled through a mechanical spring constant kc,
a perturbation induces the effective stiffness change Δk or
mass change Δm for one of the two resonators, resulting in
amplitude variations. This class of sensors offers high sen-
sitivity, but monitoring the voltage or current amplitude for
the analog output is challenging at the same level of preci-
sion as in tracking the frequency shift.
The development of a resonant sensor that offers high

sensitivity while maintaining high precision is funda-
mentally needed. Here, we propose a PT-symmetric
scheme in which an equivalent amount of gain, con-
trolled actively by a closed-loop feedback circuit, is
incorporated into one resonator that serves as a PT-
reversed counterpart to the other resonator with loss (Fig.
1b). We theoretically propose and experimentally
demonstrate that the frequency splitting of PT-symmetric
resonators when operated at EPs scales with the square
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root of the perturbation strength, in contrast to the linear
frequency shift of the traditional scheme (Fig. 1c).
The PT-symmetry concept originated in the context of

quantum mechanics10,11 and has been extensively
explored in classic wave systems, such as optics and
photonics12–15, acoustics16,17, mechanics18,19, and elec-
tronics20,21. PT-symmetric systems have two dis-
tinguished phases, an exact PT-symmetric phase with real
eigenvalues and a broken PT-symmetric phase with
complex-conjugate eigenvalues. EPs where both eigenva-
lues and eigenvectors coalesce separate the exact phase
from the broken phase. Systems at the EPs exhibit strong
responses to a small perturbations. Therefore, EP-based
sensors have recently received significant attention22–25,
although there is an ongoing debate about their funda-
mental limits26–28. In the case of PT-symmetric inductor-
capacitor (LC) resonators, classic noises are more relevant
than quantum noises. The enhanced sensitivity of PT-
symmetric LC sensors has been experimentally demon-
strated by biasing them at the exact phase29,30, EPs31,32,
and broken phase33. Moreover, through optimizing the
design of low pass circuits, thermal noises have been
alleviated to an identical level as that achieved by the
corresponding traditional sensing scheme34. Inspired by
these works, in this paper, we explore the consequence of
PT-symmetric silicon micromechanical resonators for EP-
enhanced sensing.

Principle of EPs-enhanced sensitivity
To describe how EPs enhance sensing in silicon

micromechanical resonators, we present an analysis based

on a PT-symmetric dimer11 consisting of two identical
resonators of mass m, spring constant k, and resonance
frequency ω0 ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
, as shown in Fig. 1b. In the PT-

symmetric dimer, one resonator has a loss γ ¼ c=
ffiffiffiffiffiffiffi
mk

p
,

and the other has a gain g ¼ cg=
ffiffiffiffiffiffiffi
mk

p
, with c and cg

representing the damping coefficients of the loss and gain
resonators, respectively. The resonators are coupled
together with the coupling strength μ ¼ kc=k, where kc is
the coupling spring constant. The system is described by

1þ μ� iωg � ω2 �μ

�μ 1þ μþ iωγ � ω2

� �
x1
x2

� �
¼ 0

ð1Þ
where ω is the frequency scaled by ω0, the subscript 1 (or
2) refers to the gain (or loss) resonator, and x1;2 are the
eigenstates describing displacements. In the case of weak
coupling, Eq. (1) may be cast into the following coupled-
mode model (see Methods):

�i
d
dt

x1
x2

� �
¼ 1þ μ�ig

2 � μ
2

� μ
2 1þ μþiγ

2

" #
x1
x2

� �
: ð2Þ

To find the eigenfrequencies, taking x1;2 / eiωt , we
obtain the characteristic equation

1þ μ� ig
2

� ω

� �
1þ μþ iγ

2
� ω

� �
� μ2

4
¼ 0: ð3Þ

Given a delicate balance between gain and loss, g ¼ γ,
the eigenfrequencies and the corresponding eigenstates
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Fig. 1 Principle of the frequency monitoring of two coupled micromechanical resonators. The two resonators with identical mass m and
identical stiffness k are coupled with the coupling strength μ ¼ kc=k where kc is the coupling spring constant. a Traditional scheme. Two coupled

resonators with the same loss γ ¼ c=
ffiffiffiffiffiffi
mk

p
where c is the damping coefficient. b PT-symmetric dimer. One resonator with loss γ and the other

resonator with an equivalent amount of gain g. c Comparison of the frequency splitting Δω of the two coupled resonators operated at the diabolic

point (DP) and the exceptional point (EP) when the coupling spring is subject to an external perturbation δ ¼ Δkc=kc . The response Δω / δ1=2 for
the EP resonators whereas Δω / δ for the DP resonators. d Comparison of the sensitivity of frequency splitting to perturbation. For small
perturbations, the sensitivity of the EP resonators is enhanced by an order of magnitude with respect to that of the DP resonators. In computation,
the gain/loss coefficient g ¼ γ ¼ 0:01 and the initial coupling coefficient μ ¼ 0:01 are set for the EP resonators. The line and dots in (c) and (d)
indicate the theoretical and simulated results, respectively
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are given by

ω± ¼ 1þ μ

2
±
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 � γ2

p
: ð4aÞ

x1
x2

� �
þ
¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cosφ
p e�iφ2

�eþiφ2

" #
ð4bÞ

x1
x2

� �
�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cosφ
p eþiφ2

e�iφ2

" #
ð4cÞ

with φ ¼ tan�1 γffiffiffiffiffiffiffiffiffiffi
μ2�γ2

p , where φ is the phase difference

between resonator 1 and resonator 2.

Note that the eigenfrequencies depend upon the cou-
pling strength μ relative to the gain/loss parameter γ. In
the exact phase μ>γ, the coupling between the gain and
loss resonators is sufficiently strong. The eigenfrequencies
are real, which is characterized by equal magnitudes for
the superposition oscillations on the gain and loss sides.
In the broken phase μ<γ, the coupling is too weak for the
system to remain in equilibrium, and the eigenfrequencies
become complex with a single real frequency and con-
jugate imaginary parts, which indicates that it grows
exponentially in one mode and decays exponentially in
the other. When μ ¼ γ ¼ μEP, the eigenfrequencies are
merged into ωEP ¼ 1þ μ=2, i.e., EPs at which the eigen-
frequencies and the corresponding eigenstates coalesce.
Figure 2a shows the evolution of the real and imaginary
parts of the eigenfrequencies with coupling strength μ.
When the coupling spring is subjected to an external
perturbation, the coupling spring constant kc is altered to
kc þ4kc, corresponding to the coupling strength ð1þ
δÞμ, where δ ¼ 4kc=kc. Solving Eq. (2)∼(3) under the
perturbation yields the frequency splitting near EPs,
4ωEP ¼ μ

ffiffiffiffiffi
2δ

p
, and its sensitivity to perturbation,

∂4ωEP=∂δ ¼ μ=
ffiffiffiffiffi
2δ

p
. Physically, an external perturbation

pushes the system away from the EP and consequently
lifts the non-Hermitian degeneracy of the eigen-
frequencies and the corresponding eigenstates, triggering
frequency splitting10,11. In our scheme, the perturbation δ
is positive because of the electrostatic force, which is
always attractive. Therefore, the eigenfrequency and its
splitting are real during operation. The perturbation in
the previous EP sensing scheme causes the systems to
break, giving rise to complex frequencies22–25. The pre-
sence of the imaginary part of the eigenfrequencies leads
to broadening and further overlapping of the two adjacent
spectra and sets a fundamental resolution limit on the
sensitivity27. In fact, the perturbation in our scheme drives
PT-symmetric resonators to move from the EP into PT-
symmetric regimes. This indicates that silicon micro-
mechanical resonators that operate at EPs can be

exploited for enhanced sensing using frequency splitting
as a measure, as shown in Fig. 2c. In contrast, traditional
resonators utilize a diabolic point (DP) at which the
eigenfrequencies, but not the eigenstates, coalesce, as
described in the Methods section. The traditional reso-
nators become trivially degenerate when uncoupled from
each other, μ ¼ 0. When coupled and subject to the same
perturbation δ, the resulting frequency splitting is pro-
portional to the perturbation strength, 4ωDP ¼ μδ, as
shown in Fig. 2b. Hence, for sufficiently small perturba-
tions, the splitting at the EP is larger than that at the DP.
We use finite-element simulations to validate the above
results, as provided in the Supplementary Material
Fig. 1c, d (dots) show the frequency splitting and its
sensitivity as a function of the perturbation for the EP and
DP resonators, respectively. Figure 2a (dots) shows the
real and imaginary parts of the eigenfrequencies as a
function of the coupling strength. These results confirm
the coupled-mode model.

Experiments of EP-enhanced sensitivity
We demonstrate the theory presented above using a

pair of mechanically coupled silicon micromechanical
resonators. A scanning electron micrograph (SEM) image
of the structure is shown in Fig. 3. Both resonators consist
of double-ended tuning forks (DETFs). Previously, a pair
of electrically coupled nearly identical DETFs were used
to demonstrate the mode localization effect7,8. Our work
differs in that we aim to demonstrate a scheme of EP-
enhanced sensitivity. The gain resonator is regulated
actively by external proportional feedback control. During
external feedback, the resonator motion is transduced
into a capacitance variation, leading to a current variation
that is then filtered, phase shifted, and finally applied to
drive the resonator35. Here, the DETF on the left is con-
figured as a gain resonator, with the feedback circuit
connected to its sense electrode. The DETF on the right is
designed as a loss resonator, and the readout circuit is
connected to its sense electrode (Supplementary Fig. 5a).
Gain is finely tuned by adjusting the amplitude of the

feedback force that is in phase with the mechanical velocity
so that a delicate balance between gain and loss can be
achieved. As shown in Fig. 3, the two DETFs are weakly
coupled by a serpentine flexure beam connected to their
ends. The equivalent spring stiffness of the flexure beam can
be electrostatically adjusted36. The counter electrode and
flexure beam are directly designed to be opposite to each
other with a gap of 3 μm. To demonstrate the physical
phenomenon of EP-enhanced sensing in resonators, the
voltage applied across them can precisely adjust the
equivalent spring stiffness of the flexure beam to generate
small perturbations (Supplementary Fig. 3c).
Through simulations, we fabricated a pair of mechani-

cally coupled nearly identical DETF resonators, as shown
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in Fig. 3. The gain resonator was driven and sensed using
parallel-plate capacitive transduction, while the loss
resonator with parallel-plate capacitive transduction was
constructed only for measurement. The fabricated

resonators were tested under a vacuum (≈1.65 Torr) in a
custom vacuum chamber. The frequency response was
recorded using a lock-in amplifier connected to the loss
resonator. Both the alternating current (AC) driving
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Fig. 2 Sensitivity enhancement of silicon micromechanical resonators biased at EP. a The real and imaginary parts of the eigenfrequencies for
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operation of the DP resonators is usually required to be lossless, and, hence, its frequency is independent of loss. c The real frequency evolutions of
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respond to the coupling. The magnitude of the response of the resonators is defined by the frequency splitting Δω
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signal and feedback control signal were simultaneously
applied to the gain resonator. A quality factor of
approximately 350 was measured, and the corresponding
lossγ and damping coefficient c were estimated as 0.00285
and 4.77 × 10−6 N·s/m, respectively. Due to manufactur-
ing process tolerances, there is a deviation between the
initial frequencies of the two resonators. By adjusting the
feedback amplitude, the coupled resonators were brought
closer to the EPs, at which the resonance frequency was
measured to be approximately 302.36 kHz. The pertur-
bation was then applied by regulating the direct current
(DC) voltage across the flexure beam and its counter
electrode.
Figure 4a shows the frequency response of the PT-

symmetric resonator biased initially near the EPs as a
function of perturbation. Figure 4b shows the dependence
of the extracted frequency splitting on the perturbation
strength. For comparison, the frequency response of the
resonator operated at the DP was also collected by moving
external feedback away. Overall, the frequency splitting of
the EP resonator is larger than that of the DP resonator
subject to the same small perturbations, as expected. For
δ ¼ 4%, as shown in Fig. 4b, an enhancement of
approximately 5 times is experimentally observed. This
shows that the experimental results align well with the
theoretical expectations and simulations. Moreover, the
sensitivity can be enhanced by an order of magnitude
compared to that of the DP resonator for sufficiently small
perturbations. The inset in Fig. 4b displays a logarithmic
plot of the dependence of ΔωEP and ΔωDP on δ. The DP
resonator exhibits a slope of 1, whereas the EP resonator
exhibits a slope of 1/2, confirming the square-root
topology of EPs.
Although our PT-symmetric resonators with loss and

gain elements have high sensitivity to small perturbations
when biased at EPs, the loss and gain elements are prone
to adding noise to the system. This issue has raised an
ongoing debate concerning the effectiveness of EP sensing
schemes26–28. There is technical noise and fundamental
noise in PT-symmetric systems. Technical noise refers to
thermal noise and electronic noise. Fundamental noise
refers to the excess noise caused by the eigenbasis collapse
in non-Hermitian systems. In the classic system, technical
noise is more common. The total root mean square
(RMS) noise voltage, vPT, can be expressed as a sum of
various terms associated with different noise sources that
might affect the precision of the measurements:

v2PT ¼ v2t þ v2f þ v2DC ð5Þ
where vt, vf, and vDC are the thermal RMS noise voltage of
mechanical resonators, the electronic RMS noise voltage
of gain resonators due to external feedback circuits, and
the electronic RMS noise voltage due to bias voltage

sources, respectively. Typically, vDC is dominated by the
other terms in the equation. To characterize the noise
level of micromechanical resonators, the noise power
spectral density (PSD) was measured for traditional and
PT-symmetric schemes. During the measurements, the
driving signal was turned off, and a noise analyzer (Zurich
Instruments HF2LI) was used to measure the noise PSD
around the EPs at the readout channel. As shown in Fig. 5,
the average values of the noise voltage spectral density for
the traditional and PT-symmetric schemes are 0.69 × 10−5

V=
ffiffiffiffiffiffi
Hz

p
and 1.05 × 10−5 V=

ffiffiffiffiffiffi
Hz

p
, respectively. The
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measured noise spectral density of the EP sensing scheme
is slightly greater than that of the traditional scheme. This
shows that the noise voltage of the gain resonators due to
external feedback circuits is dominant. Noise limits the
minimum signal that the sensors can detect; however, vt
and vf do not experience strong variations around EPs,
while the sensitivity is enhanced. As a result, the overall
signal-to-noise ratio is still greatly enhanced, which is
desirable for various sensors2.

Higher sensitivity can potentially be achieved by redu-
cing the noise of the external proportional feedback
control circuits, which is currently dominated by circuit
parasitics. Detuning of coupled DETF resonators due to
process tolerance induces a baseline bifurcation that
limits the smallest Δω that can be detected. This corre-
sponds to zero outputs in general sensors.
Resonators for resonant sensors are usually made to be

as lossless as possible to exhibit high quality factors9, or
the effective quality factor of the resonators is further
improved by external proportional feedback control35. For
our demonstration, we have utilized the same configura-
tions, including implementing the same closed-loop
feedback design as those in mode-localized resonators8,9.
In principle, hence, the EP resonator presented here does
not bring any additional noise relative to the mode-
localized resonators. However, shifts in amplitude may
not be as accurately measured as those in frequency. EPs
also exist in coupled resonators with unbalanced gain and
loss14,15. Such unbalanced systems could be exploited to
enhance the sensitivity of high-loss resonators. Previous
EP-based sensors in which the perturbation is exerted on
one of the coupled resonators cause PT symmetry to
break during operation, leading to complex frequency
splitting25. The perturbation in our scheme is exerted on

the coupling spring, which is symmetric about the two
coupled resonators, leading to real frequency splitting.
However, the proportional coefficient in the symmetric
perturbation is not as large as that in the asymmetric
perturbation32. The application of EP-based silicon
micromechanical resonators as well as their noise prop-
erties remains an important direction for future work.

Conclusions
In summary, we present both theoretical and experi-

mental studies of a PT-symmetric micromechanical
resonator. We show that the frequency splitting induced
by a perturbation at an exceptional point has a square-
root dependence on the perturbation strength, in contrast
to the linear dependence in traditional resonators, leading
to enhanced sensitivity for small perturbations. Simula-
tions and measurements from a pair of mechanically
coupled micromechanical resonators support the theore-
tical predictions. By replacing the perturbation with
acceleration or magnetic signals, our scheme may find
applications in accelerometers and magnetometers.

Methods
Coupled-mode equations for micromechanical resonators
Applying Newton’s law to coupled micromechanical

resonators in Fig. 1b yields the following equations:

m€x1 � c _x1 þ kx1 þ kc x1 � x2ð Þ ¼ 0

m€x2 þ c _x2 þ kx2 þ kcðx2 � x1Þ ¼ 0
ð6Þ

where m, k, and c are the mass, spring constant, and
damping coefficient of a single resonator, respectively, and
kc is the coupling spring constant. xn (n= 1,2) denotes the
vibration displacements of the two resonators. Taking
xn tð Þ ! xneiωt , we rewrite Eq. (6) as

1þ μ� iωg � ω2 �μ

�μ 1þ μþ iωγ � ω2

� �
x1
x2

� �
¼ 0

ð7Þ

where μ ¼ kc=k is the coupling strength,γ ¼ c=
ffiffiffiffiffiffiffi
mk

p
is

the loss strength, g ¼ c=
ffiffiffiffiffiffiffi
mk

p
is the gain strength, and ω is

scaled by ω0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
.

If the coupling is weak, i.e., μ � 1, μ and γ can be taken
as the same order, and we make the following approx-
imations: ω2 � 2ω� 1, ωγ � γ , and ωg � g. Equation (7)
is then reduced to

1þ μ�ig
2 � ω � μ

2

� μ
2 1þ μþiγ

2 � ω

" #
x1
x2

� �
¼ 0 ð8Þ

Equation (8) is equivalent to the coupled-mode equations
in Eq. (2) with time-harmonic displacement xn tð Þ ! xneiωt .
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Solving Eq. (8) yields

ω± ¼ 1þ μ

2
þ i

�g þ γ

4
� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 � g þ γ

2

� �2
r

ð9Þ

When under a delicate balance between gain and loss
g ¼ γ, i.e., the PT-symmetric dimer, the eigenfrequencies
and the corresponding eigenstates are defined by
Equation (4).

For the PT-symmetric dimer, the frequency splitting
near EPs is described by

4ωEP ¼ ωþ � ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 � γ2

p ð10Þ

When the coupling spring is subjected to an external
perturbation, the coupling spring constant kc is altered to
kc þ4kc, corresponding to the coupling strength ð1þ
δÞμ, where δ ¼ 4kc=kc. The frequency splitting at
EPs (μ ¼ γ) due to the perturbation is given by

4ωEP ¼ ωþ � ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δð Þ2μ2 � γ2

q
� μ

ffiffiffiffiffi
2δ

p

ð11Þ

The sensitivity of the frequency splitting to perturbation
is given by

SEP ¼ ∂4ωEP

∂δ
� μffiffiffiffiffi

2δ
p ð12Þ

Taking g ¼ γ ¼ 0 in Eq. (8), we obtain the Hermitian
Hamiltonians

1þ μ
2 � ω � μ

2

� μ
2 1þ μ

2 � ω

" #
x1
x2

� �
¼ 0 ð13Þ

The characteristic equation is then expressed as

1þ μ

2
� ω

� �2
� μ

2

� �2
¼ 0 ð14Þ

Solving the characteristic equation yields

ω± ¼ 1þ μ

2
±
μ

2
ð15Þ

For the Hermitian system, the frequency splitting near
DPs is described by

4ωDP ¼ ωþ � ω� ¼ μ ð16Þ

The DPs appear when μ ¼ 0. Hence, the traditional
resonators become trivially degenerate when uncoupled
from each other, μ ¼ 0. Under coupling and subject to the
perturbation δ, the resulting frequency splitting at the DPs

is given by

4ωDP ¼ μδ: ð17Þ

Fabrication of silicon micromechanical resonators
Silicon micromechanical resonators were fabricated

using n-type (100) silicon-on-insulator (SOI) wafers. The
process flow is presented in Supplementary Fig. 4. Each of
the tines in the tuning-fork resonators was designed to be
20 μm thick, 300 μm long, and 8 μm wide, with a gap of
6 μm between the tines. The drive and coupling gaps were
designed to be 3 μm wide.

Gain resonators
A gain resonator was achieved by applying a feedback

force proportional to its velocity _x. This force is expressed
as

Fv ¼ ce _x ð18Þ

Under the feedback force, the dynamic equation is given
by

m€xþ c _xþ kx ¼ Fv ð19Þ

Note that due to the presence of the feedback force, the
effective damping coefficient of the resonator is modified
into

ceff ¼ c� ce ð20Þ

Therefore, the damping coefficient can be adjusted by
regulating the feedback force (Supplementary). In the
vibration equation, a positive damping coefficient repre-
sents a loss, and a negative damping coefficient represents
a gain.

A perturbation approach
Weak coupling between two silicon micromechanical

resonators was achieved by using a flexure beam. The
flexure beam was designed with a long beam 50 μm long
and 5 μm wide and a short beam 25 μm long and 5 μm
wide. Two DETFs were weakly coupled by a flexure beam
connected to their ends. The initial coupling coefficient
kc/k was 0.00285. The counter electrode was designed in a
gap of 3 μm relative to the flexure beam. The equivalent
spring stiffness keff of the flexure beam can be electro-
statically adjusted. keff is expressed as

keff ¼ kc þ ke ¼ kc þ4kc ¼ ð1þ δÞμ ð21Þ
where kc and ke ¼ 4kc are the mechanical-spring
stiffness and the electrical spring stiffness, respectively,
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and a perturbation δ ¼ 4kc=kc. By changing the voltage
across the counter electrode and the flexure beam, the
perturbation can be adjusted (Supplementary Fig. 3c).

Measurement setup
Micromechanical resonators were placed in a custo-

mized vacuum chamber. The gain resonator was con-
trolled and sensed using parallel-plate capacitive
transduction. In the feedback circuit of the gain resonator,
a transimpedance amplifier (TIA) (OPA656) was used to
convert the motion signal of the resonator into an elec-
trical signal. A bandpass filter (BPF) was used to prevent
the possible occurrence of unwanted oscillator modes.
The voltage control amplifier (VCA810) was used for the
voltage amplitude control, and the subsequent electrical
signal flowed to the phase modulation, enabling the phase
to be consistent with the movement velocity of the reso-
nator. The final output electrical signal was used as the
driving signal of the resonator together with the AC
source of 20 mVpp. The gain resonator was biased by a
DC voltage of 25 V. The feedback circuit was powered by
+5/−5 V DC voltage. The loss resonator with parallel-
plate capacitive transduction was used only for measure-
ment. The frequency response was recorded using a lock-
in amplifier (HF2LI, Zurich Instruments) connected to
the loss resonator. The gain resonator and the loss reso-
nator were both connected to GND. A photograph of the
experimental setup is provided as Supplementary Fig. 5b.
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