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MXene/PPy@PDMS sponge-based flexible pressure
sensor for human posture recognition with the
assistance of a convolutional neural network in
deep learning
Hui Xia1, Lin Wang2, Hao Zhang1, Zihu Wang1, Liang Zhu2, Haolin Cai1, Yanhua Ma1, Zhe Yang2✉ and
Dongzhi Zhang 1✉

Abstract
The combination of flexible sensors and deep learning has attracted much attention as an efficient method for the
recognition of human postures. In this paper, an in situ polymerized MXene/polypyrrole (PPy) composite is dip-coated
on a polydimethylsiloxane (PDMS) sponge to fabricate an MXene/PPy@PDMS (MPP) piezoresistive sensor. The sponge
sensor achieves ultrahigh sensitivity (6.8925 kPa−1) at 0–15 kPa, a short response/recovery time (100/110 ms), excellent
stability (5000 cycles) and wash resistance. The synergistic effect of PPy and MXene improves the performance of the
composite materials and facilitates the transfer of electrons, making the MPP sponge at least five times more sensitive
than sponges based on each of the individual single materials. The large-area conductive network allows the MPP
sensor to maintain excellent electrical performance over a large-scale pressure range. The MPP sensor can detect a
variety of human body activity signals, such as radial artery pulse and different joint movements. The detection and
analysis of human motion data, which is assisted by convolutional neural network (CNN) deep learning algorithms,
enable the recognition and judgment of 16 types of human postures. The MXene/PPy flexible pressure sensor based
on a PDMS sponge has broad application prospects in human motion detection, intelligent sensing and wearable
devices.

Introduction
Flexible pressure sensors have attracted great attention

because of their detection capabilities and wide applica-
tion prospects1–3. Moreover, such devices can be attached
to various key parts of the body to monitor various
activities. To date, various categories of pressure sensors,
such as capacitive4–6, piezoresistive7–9, piezoelectric10–12,
and triboelectric13–15 sensors, are beginning to be used in
the next generation of wearable electronic devices.

Among these categories, pressure sensors based on the
piezoresistive effect have the advantage of easy signal
processing and dynamic sensing16. Ding et al. constructed
flexible piezoresistive sensors with higher sensitivity and
better stability by modulating sensitive materials and
designing microstructures17. However, low sensitivity,
poor flexibility, slow response/recovery and narrow
measurement range still limit the practical application of
flexible pressure sensors. Therefore, establishing more
sensitive materials and advanced technologies for the
fabrication of high-performance flexible pressure sensors
remains a challenge.
Currently, typical substrate materials for piezoresistive

sensors include hydrogel18–21, polydimethylsiloxane
(PDMS)22–24, and sponge25–28. Yang et al. used aerogels
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to prepare flexible sensors, but these materials are espe-
cially difficult to apply because of their high production
cost and irreversible deformation29. Contrary to the rigid
characteristics of traditional pressure sensing materials,
sponges have gained increasing attention due to their
good flexibility and high porosity30. PDMS is often further
broadened by structural design due to its flexibility and
ease of preparation31. In this work, the use of a PDMS
sponge as the substrate of the sensor provides the possi-
bility for its large-scale preparation.
MXene is currently one of the most promising materials

in the sensor field due to its excellent electromechanical
properties, abundant active sites, and good hydro-
philicity32–34. The 2D transition metal carbide and nitride
family (MXene, denoted as Mn+1XnTx, where M denotes
transition metal, n= 1, 2 or 3, X is C and N or N, while T
denotes surface functional group) exhibit fine mechanical
strength and superior metallic conductivity. However, in
air, oxygen attacks the Ti atoms in MXene to oxidize it,
which affects the electrical conductivity. Therefore, the
key to improving the stability of MXenes depends on
blocking the contact between oxygen and Ti atoms.
Conductive polymers have become exciting research
materials in sensing, energy storage, electromagnetic
shielding, and metal corrosion because of their out-
standing properties35,36. Common conductive polymers
include polypyrrole (PPy)37, polythiophene (PTH)38, and
polyaniline (PANi)39. Among them, PPy has remarkably
good conducting properties. However, it presents diffi-
culty when dissolving in organic solvents, which causes
difficulties in the preparation of subsequent sensors. By an
in situ polymerization method, PPy can form a con-
tinuous coating or film on many types of materials,
thereby solving the problem of PPy agglomerating in
solution and its difficulty in adhering to sensors. The
in situ polymerization and uniform deposition of pyrrole
nanoparticles in the MXene solution resulted in a pro-
tective Ti atomic coating of pyrrole. Meanwhile, the
binary self-assembly of MXene nanosheets and PPy
nanoparticles increases the conductive contact sites
within the sensing layer, thus improving the conductivity
of the sensor.
Here, we prepared MXene/PPy@PDMS (MPP) sponges

by dipping-coating an MXene/PPy composite solution
with a PDMS sponge to construct flexible pressure sen-
sors. The PDMS sponge was prepared by the sacrificial
sugar template method, and a composite MXene/PPy
solution was prepared by in situ polymerization of PPy
adsorbed on an MXene solution. This flexible pressure
sensor achieves short response and recovery times and of
100ms and 110ms, respectively. It also exhibits a good
piezoresistive response with a sensitivity of 6.8925 kPa−1

in 0–15 kPa and a maximum measuring range of
0.43 Pa–275 kPa. In addition, the effectiveness of the MPP

sensor in detecting the movement of various joint parts of
the body was investigated. A convolution neural network
(CNN) deep learning algorithm was used to analyze the
movement data and further recognize different kinds of
human postures. Accordingly, the capabilities of MPP
sensors in the fields of health monitoring and artificial
intelligence were demonstrated.

Experimental
Material
PDMS and curing agent were obtained from Dow

Corning, USA. Pyrrole (C4H5N), ferric chloride hexahy-
drate (FeCl3-6H2O), hydrochloric acid (HCl, analytical
purity), and lithium fluoride (LiF, ≥99%) were provided by
Sinopharm Chemical Reagent Co. Titanium aluminum
carbide powder (Ti3AlC2, 98%, 200 mesh) and dode-
cylbenzene sulfonic acid (DBSA) were obtained from
Shanghai Maclean Biochemical Technology Co. All che-
micals were available without further purification. Deio-
nized water was applied throughout the experiment.

Preparation of the MXene/PPy composite
Preparation of the MXene/PPy composite solution

mainly includes two stages. The first stage is the pre-
paration of the MXene nanosheet solution. The pre-
paration approach is based on the etching method we
employed before40. The specific procedure is as follows.
Two grams of LiF was added to 20ml of hydrochloric acid
(9M) and stirred for 5 min to dissolve it. Two grams of
Ti3AlC2 was slowly added and stirred thoroughly at 35 °C
for 24 h to ensure that the force between the Al layer and
Ti3C2 was weakened so that the Al layer could be peeled
off more easily. The etching reaction products were cen-
trifuged at 3500 rpm for 5 min, and the supernatant was
poured out. This process was repeated several times until
the pH of the supernatant was >6. The purpose is to
ensure that the byproducts of the etching reaction are
completely washed away to obtain MXene nanosheets.
The second stage is the adsorption of PPy nanoparticles

on MXene nanosheets. DBSA and pyrrole monomer were
stirred for 1 h in an ice water bath. Then, 40ml of 10mg/
ml MXene solution was added. The addition of DBSA
served to increase the electrical conductivity of PPy,
enabling it to be deposited more adequately on MXene
nanosheets by electrostatic adsorption. After 1 h, FeCl3-
6H2O was added and stirred in an ice water bath for 6 h.
During that period, the pyrrole monomer commenced to
self-polymerize on the surface of the MXene nanosheets
and form a continuous conductive layer. Finally, the
reaction product was centrifuged several times to remove
DBSA and FeCl3 to obtain the MXene/PPy composite
solution. In addition, the ratio of MXene to PPy in the
composite solution was controlled by adding different
volumes (0.2, 0.3, 0.4, 0.5, and 0.6mL) of pyrrole monomer.
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Preparation of the MPP sensor
PDMS sponges were prepared by the sacrificial sugar

template method. As shown in Fig. 1a, white granulated
sugar was placed in a hexahedral container with an open
top of 2 cm in length and width. These sugar granules
were compressed into regularly shaped cuboids
(2 cm × 2 cm × 1 cm), and then the PDMS and curing
agent mixture was injected into the container at a ratio of
10:1. After 2 h of vacuum drying, the pores inside the
sugar cube were filled with the PDMS mixture. When the
PDMS was cured, porous PDMS sponges of the same size
as the original sugar cube were obtained by immersing the
sugar/PDMS cuboid in water to remove the white
granulated sugar. MPP sponges were prepared by coating
MXene/PPy composites on a PDMS sponge skeleton by
solution impregnation and low-temperature drying. The
hydrogen bonds formed by the hydrogen atoms on PPy
and the hydrogen atoms on MXene and the electrostatic
interaction between PPy and MXene together led to a
large intermolecular force between the MXene/PPy

composites for stable adsorption (bottom left of Fig. 1a).
An image of the MPP sponge is shown in Fig. 1b. For
comparison, MPP sponges with different material ratios
(as the concentration of PPy increased, the sponge was
defined MPP-1–MPP-5), MPP sponges with different
porosities, MXene@PDMS (MP) sponges and
PPy@PDMS (PP) sponges were additionally fabricated by
the same preparation process.

Results and discussion
Characterization of the MPP sensor
The phase analysis of the as-prepared materials was

performed by X-ray diffraction (XRD, Rigaku D/Max
2500PC). As shown in Fig. 1c, after etching by HCl/LiF,
the peaks at 34.0° (101), 38.8° (104), 41.7° (105), and 48.4°
(107) distributed on Ti3AlC2 disappear in the MXene
mode. Moreover, peak broadening and a negative shift are
observed on the (002) crystal plane, indicating that
Ti3AlC2 was etched out of the Al layer and successfully
converted to MXene. The morphology of the samples was
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Fig. 1 The preparation process and characterization of the MPP sensor. a Preparation process of MPP sponge as well as microscopic and
molecular morphology schematic of MXene/PPy. b The MPP sponge digital image graph. c XRD patterns of MXene and Ti3AlC2. d SEM image of the
MXene/PPy composite materials

Xia et al. Microsystems & Nanoengineering           (2023) 9:155 Page 3 of 12



characterized by scanning electron microscopy (SEM,
Hitachi S-4800, Japan), which was performed at 10 kV and
15,000x. As shown in Fig. 1d, the MXene presents an
accordion-like multilayer structure with PPy nano-
particles (particle size <1 μm) attached to its surface. The
SEM images of MPP sponges with different porosities
prepared by different particle sizes (344, 544, 910 µm) of
sugar are shown in Fig. S1.

Mechanical properties of the MPP sensor
Evaluation of the mechanical properties of flexible

pressure sensors is essential because it is necessary to
maintain good flexibility along with superior mechanical
properties. Figure 2 shows the mechanical properties test
of the sponge sensors. The comprehensive performance
for stress‒strain tests of the devices is performed by a ZQ-
900A tensile tester, Agilent data acquisition instrument
(B2902A) and computer (Fig. 2a). Figure 2b shows the
compressive stress‒strain curves of the MPP sponge, MP
sponge and PP sponge. The MP and PP sponges exhibited
compressive pressures of 20.7 and 10.9 kPa under 70%
compression strain. MPP sponges with MXene and PPy
composites exhibit a compressive stress enhancement of
121.74 kPa, and the combination of MXene nanosheets
and PPy nanoparticles promotes effective energy dissipa-
tion in the device, thereby improving the mechanical
strength and toughness of the sponge. Figure 2c shows the
compression performance of MP, PP sponges and MPP
sponges with different material ratios at 80% strain. The
data clearly show that the compressive strength and

modulus of the composite sponge sensors are superior to
those of the single material sponges, and the higher the
concentration of PPy is, the higher the compressive
strength of the composite sponges. This occurs mainly
due to the layer-sphere support architecture between
MXene and PPy, which allows for effective load transfer
upon compression. However, an excessively high PPy
concentration in turn decreases the modulus of the
composite sponge due to the excessive accumulation and
shedding of PPy nanoparticles. Figure 2d shows the cyclic
compression stress‒strain curves of the MPP sponge at
10, 20, 40, 60, and 80% strain. The curves can generally be
divided into two phases. The first stage is 0–40% strain
(inset of Fig. 2d), when the stress and strain are almost
linear. This occurs due to the large number of pores inside
the sponge at this stage. The stress mainly depends on the
supporting force of the sponge skeleton. The second stage
is 40–80% strain, where the stress and strain are non-
linear. The reason is that most of the pores inside the
sponge disappear at this point, and the sponge skeleton
begins to contact each other. In addition, the stress‒strain
curves during compression and release basically coincide,
and the maximum hysteresis of the MPP sponge is only
10% (Fig. S2).
Figure S3 shows the stress‒strain curves of 100 con-

secutive compressions at 60% strain. The pressure of the
MPP sensor only decreases slightly with an increasing
number of cycles, and the curves corresponding to dif-
ferent cycles almost overlap. The above results prove that
the porous PDMS sponge prepared by the sacrificial sugar
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template method has satisfactory stability. The MPP
sensor with 100 compression stress‒strain is further
analyzed (Fig. 2e). The maximum pressure at which the
sensor attains 60% strain (61.23 kPa at the first cycle and
58.74 kPa at the hundredth cycle) does not change sig-
nificantly with the number of cycles. The decrease in
stress is attributed to the stress relaxation in the sponge
skeleton. In addition, the MPP sensor still exhibits a high
dissipation energy of 0.02174 kJ m−3 after 100 compres-
sive stress‒strain cycles, which further demonstrates the
excellent anti-fatigue and repetitive stability of the
structure.
Six identical MPP sponges were fabricated by the same

preparation method, and stress‒strain tests were carried
out on the six sponges under equivalent conditions. All
six sensors exhibit a nearly homogeneous stress response
(the maximum difference between devices is only 4%) at
large strains (70%) and small strains (5%) (Figs. S4 and
S5), indicating the potential for large-scale preparation
and standardized production of MPP sensors.

Electrical properties of the MPP sensor
The problem of improving the pressure-sensitive per-

formance has become the focus issue in next-generation
flexible pressure sensors. Our MPP sponge is prepared by
dipping-coating the MXene/PPy composite solution and
low-temperature drying, and the current collectors are
encapsulated on the top and bottom sides of the sponge to
complete the device preparation (Fig. 3a). Figs. 3b–e
shows the internal skeleton movement and sensitive
material contact of the sponge under pressure, where Figs.
3c–h shows SEM images of the MPP sponge at pressures
of 0, 20, and 100 kPa. The composite structure of 0D and
2D materials can increase the conductive contact sites and
further increase the conductive path inside the sensor.
When no pressure is applied, the conductive pathways
only exist through the mutual contact of sensitive mate-
rials located on the same sponge skeleton. When a pres-
sure is applied, the different sponge skeletons begin to
contact each other. The pores inside the sponge gradually
shrink. When the pressure is further increased, most of
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Fig. 3 Mechanism of preparation and sensing of MPP sensors. a Schematic diagram of the preparation process of MXene/PPy in the MPP
sponge sensor. b Schematic diagram of the piezoresistive sensing mechanism of the MPP sponge. SEM images of the MPP sensor at pressures of
0 kPa (c, f), 20 kPa (d, g), and 100 kPa (e, h)
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the air inside the sponge is squeezed out by the contact
and mutual stacking of the skeletons.
A simple circuit is composed by connecting the MPP

sensor to a light-emitting diode (LED), as shown in Fig.
S6. The LED bulb shines brighter as a finger squeezes the
MPP sensor, which occurs due to the decrease in resis-
tance caused by the increase in the internal conductive
path during compression in the sensor. The light and dark
behavior of the LED bulb prove that the sensor has a
negative piezoresistive characteristic. The electrical per-
formance of the MPP sensors was further quantified by
first testing the sensitivity performance of five MPP sen-
sors (MPP-1–MPP-5) at different PPy concentrations, and
MPP-4 had the best sensing performance (Fig. S7), with
subsequent MPP sensors referring specifically to MPP-4.
The electrical properties of MPP sponges were examined
in more detail, as shown in Fig. 4. The most sensitive

pressure regions of the MPP, MP and PP sponges are
0–25, 0–25, and 25–50 kPa, respectively (Fig. 4a). The
stress response of the MPP sponge and MP sponge rapidly
reaches the maximum sensitivity in the initial stage and
then linearly increases until the turnaround point, while
the PP sponge presents a resistance hysteresis space. This
difference is attributed to the following reasons. Under
pressure, the MXene nanosheets that are stacked with
each other contact and separate. The contact separation
and tunneling effect between the nanoscopic distances
create local conductive pathways, which makes the elec-
trical properties of the MPP sponge and MP sponge sig-
nificantly different from those of the PP sponge.
Sensitivity is defined as the variation in relative resistance
per unit variation in pressure, which can be written as
S=ΔR/(R0 × P), where ΔR denotes the difference between
the current resistance and the initial resistance, R0
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denotes the initial resistance, and P denotes the current
pressure value. S determines the sensitivity performance
of the pressure sensor; the larger S is, the better the
sensing performance of the sensor. The maximum sen-
sitivities of the MPP, MP and PP sponges are 6.8925,
1.3888, and 1.2601 kPa−1, respectively. This occurs due to
the tendency of MXene to overaccumulate and shed, as
well as the tendency of its sheet-like structure to crack
under small radius bending, hindering electron transfer
between MXene nanosheets. Similar to MXene, PPy tends
to form random aggregates, leading to its shedding. The
combination of MXene and PPy facilitates not only the
transfer of electrons but also their good adhesion to the
PDMS sponge, improving the properties of the composite
through a synergistic effect.
The curve in Fig. 4b shows the variation in the relative

resistance of the MPP sponge with pressure. The curve is
generally divided into two main parts. The first part is the
pressure range of 0–25 kPa, where the sensor sensitivity is
6.8925 kPa−1. There are many pores inside the sponge
space, and the sponge skeleton collapses rapidly with
increasing pressure. The folded MXene nanosheets bond
to each other during the collapse process, and the PPy
nanoparticles come into contact with each other, resulting
in a rapid increase in the conductive pathway inside the
sensor, and the sensitivity is significantly higher than that
in other stages. The second part is the pressure range of
the 25–275 kPa interval with a sensor sensitivity of
0.0236 kPa−1. At this stage, most of the air inside the
sponge is squeezed out, and the sponge skeletons are
tightly bound to each other. Only some of the sensing
materials have not yet contacted each other, resulting in a
very slow drop in the relative resistance of the sensor.
Figure S8 reflects the relationship between the change in
relative resistance and pressure for MPP sponges with
different porosities, where excessive porosity results in a
long contact travel of the conductive material, while a
small porosity MPP sponge results in low sensitivity due
to the low amount of sensitive material attached to the
sponge and severe agglomeration build-up.
Figures S9 and 4c show the variation in the current from

−1 V to 1 V for the MPP sponge in the strain states of 0, 5,
10, 20, 30, 40, 50, 60, 70 and 80%. The response is a
straight line regardless of the strain state, indicating that
the resistance of the sensor remains relatively stable under
the applied pressures. Moreover, the slope of the I-V
curve increases with increasing strain, which further
verifies the sensing mechanism in which the resistance of
the MPP sensor decreases with increasing pressure and
reflects good linearity. Step strains of 5, 20, 40, 60, and
80% are applied to the MPP sponge (Fig. 4d). The MPP
sponge shows excellent discrimination for different strain
states. In addition, the resistance response under the
released pressure state is basically the same as that under

the applied pressure state, which broadens the application
scenario of the sensor. Figure 4e shows the instantaneous
30% strain applied to the MPP sensor, where the response
time and recovery time are 100 and 110 ms, respectively.
Figure 4f compares the sensitivity and pressure sensing
range of the MPP sponge sensor with those of pressure
sensors in the literature41–51. Prior literature data include
nine sponge-type41–45,47–50 and two nonsponge-type
sensors46,51. Our MPP sensors demonstrate some com-
petitive strengths in terms of sensitivity and sensing range,
particularly in low pressure detection performance. The
cyclic response behavior of the MPP sponge at different
frequencies is investigated. As shown in Figs. 4g and S10,
the compression speed of the tensile machine at 40% fixed
strain is set to 10, 20, 30, 40, 50, 100, 150, 200 and
300mm/min to adjust the frequency. At the same strain
and different compression frequencies, the resistance
response remains stable, and the curve shapes all remain
consistent, which indicates the favorable frequency sta-
bility of the MPP sponge. The MPP sponge is subjected to
pressure cycling tests at different strains of 5, 20, 40, 60,
and 80% (Fig. 4h). The signal shape and peak value of the
device remain constant under different strains, and the
variation in resistance has good repeatability. In addition,
the MPP sensor was tested for 5000 continuous
compression-release cycles (Fig. 4i). The sensor still has an
extremely stable signal output, which effectively proves the
excellent long-term stability of the MPP sponge and pro-
vides stability assurance for its application in human
motion. To explore the minimum detectable pressure of
the MPP sponge, a polyurethane sponge (0.01 g) is placed
on the MPP sensor to assess the change in resistance of the
device, as shown in Fig. S11. The sensor produces a sig-
nificant response when the polyurethane sponge is placed
and removed at 2 and 8 s, indicating that the minimum
detection limit of the MPP sensor is lower than 0.43 Pa.

MPP sensor for human motion detection
The MPP sponge sensor can detect human motion

based on its high sensitivity and stability. The sensors are
attached to different parts of the body to detect their
activity during human movement. The resistance changes
of the pressure sensor with different movements are
shown in Fig. 5. The MPP sensor can detect not only
small human movements, such as index finger activity
during mouse clicks and double clicks (Fig. S12); throat
vibrations when swallowing and uttering the words
“MXene” and “sponge” (Fig. 5a); and the force of occlusal
muscles (Fig. 5b). It can even detect the tiny pulse signal
of the human radial artery (Fig. 5c) and a larger range of
human articular movements, such as head tilt (Fig. 5d),
elbow bend (Fig. 5e), finger bend at different angles (0,
20°, 40°, 60°, 80°, 90°) (Fig. 5f), knee bending (Fig. 5g), and
walking state (Fig. 5h).
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In the pharyngeal activity test, the MPP sensor shows a
single characteristic peak when swallowing and two peaks
with differences when spelling “MXene” and “sponge”,
indicating that the MPP sensor can distinguish different
pharyngeal activities. The device resistance response is
nearly consistent with good repeatability when swallowing
and spelling words repeatedly. In the mouse single- and
double-click tests, single peaks (tester clicks the mouse)
and double peaks (tester double-clicks the mouse) can be
clearly determined. Therefore, the MPP sponge sensor
can be employed to detect the single or double mouse
clicks of the tester. In the radial artery pulse test, the MPP
sensor detects the P, T and D peaks in the pulse signal.
The ratio of peak width to peak height between the PT
and TD is analyzed to provide a preliminary assessment of
the cardiovascular status. In the human walking condition
test, the frequency of the signal is used to identify the

movement of the tester, with the signal frequency being
lower when walking and higher when running. In sum-
mary, MPP sponge pressure sensors have been proven to
have promising applications in the field of body detection.
Wearable sensors need to exhibit strong environmental

adaptability in practical applications. Figure S13a, b evalu-
ates the pressure and response of the MPP sponge sensor at
50% strain after washing in deionized water for 1 h com-
pared with before washing. The pressure, resistance wave-
form and peak value did not change significantly. Figure
S13c, d shows the changes in the resistance of knee bending
and finger bending before and after washing the MPP sensor
with deionized water. The signal response of the sensor after
washing is essentially the same as that before washing,
except that the deionized water increases the resistance of
the device. This excellent environmental adaptability is
attributed to the stable combination of MXene and PPy.
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Human fitness movement posture recognition
Recently, deep learning has been increasingly resear-

ched in combination with other fields because of its
advantages of high-level learning ability, wide coverage,
adaptability, and resistance to interference52–54. Seven
identical MPP sponge pressure sensors were prepared and
fixed to the heels, knees, elbows, and skin on the back of
the neck (Fig. 6a) of the tester (a healthy adult male) to
detect joint movement or contact with the ground. The
MPP sensors can detect specific signals from different
areas of activity when the tester performs four fitness

movements: deep squat, push-up, high leg lift, and arrow
squat (Fig. 6b). When performing deep squatting, for
example, the part of the sensor excluding that touching
the knee joint does not significantly move, so only two
MPP sensors in the knee area produce clear signals. The
above results demonstrate that the MPP sensor can dis-
tinguish the activity of different parts. To further validate
the potential applications of MPP sensors in fitness pos-
ture recognition, a multi-input CNN deep learning algo-
rithm was constructed to train and analyze the data
generated by MPP sensors. To ensure that the deep
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learning algorithm can fully learn the characteristics of
different fitness postures and reduce the influence of
human factors and systematic noise of the sampling
equipment, 800 repetitions of sampling were performed
for the seven corresponding sensor response changes to
four movements: deep squats, push-ups, high leg raises,
and arrow squats. Each of the actions is configured with
one correct action and three incorrect actions, totaling 16
actions (Figs. S14–S17). The waveforms of the same
action show similar characteristic peaks, indicating that
the sensor has excellent reliability.
A multi-input deep convolutional neural network

(CNN) deep learning algorithm was applied to model the
sampled data after feature normalization. The basic
structure of the multi-input deep CNN in this work is
shown in Fig. 6c. In a ratio of 4:1 training set to test set,
640 randomly selected resistance response data from the
fitness posture database were used as the training set to
train the CNN model. The remaining 160 data points
were used as the test set to verify the final recognition
ability of the model. The data are normalized before being
imported into the input layer. The addition of a con-
volutional layer to increase the depth of the neural net-
work improves the network performance. Table 1
summarizes the hyperparameters. Each convolution is
followed by a ReLu activation function to prevent the
gradient from exploding and disappearing. The first
convolution contains 8 convolutional kernels with a size
of 8 × 1 and a stride of 1. The number of convolutional
kernels in the second convolution is 16, and the other
parameters remain unchanged. In addition, the size of the
maximum pooling windows is 2 × 2 with a stride of 2. The
optimizer of the CNN model is Adam. The combination
of values for the hyperparameters is determined by using a
grid search.
Deep learning models require continuous learning and

tuning to obtain optimal performance54,55. First, the
multi-input CNN model is trained through a large
amount of measurement data from different fitness
movements. The models are then trained iteratively using
the errors on the dataset to obtain an appropriate model
that fits the dataset. Figure 6d depicts the basic archi-
tecture of the training and testing system, including data
acquisition, feature extraction, and target identification

classification. In the training phase, the training data
obtained from MPP sensors are normalized and input into
the CNN deep learning algorithm for fitness posture
training. Finally, the recognition accuracy of the test set
reaches 95% (Fig. 6f). This demonstrates the feasibility of
CNN deep learning algorithms to assist MPP pressure
sensors in human motion posture recognition and the
enormous potential of MPP sensors for human-computer
interaction and intelligent sensing applications.

Conclusion
In summary, MPP sensors were constructed through

the preparation of PDMS sponges by the sugar sacrificial
template method and an MXene/PPy composite solution
by in situ polymerization. The PDMS sponge enhances
the flexibility and stability of the sensor. The addition of
PPy and MXene provides the sensor with excellent elec-
trical conductivity, mechanical properties, repeatability
and sensitivity (6.8925 kPa−1) over the 0–15 kPa excita-
tion range. The MPP sensor achieves maximum sensi-
tivity at the initial pressure stage, which gives the sensor
excellent micropressure monitoring performance. The
MXene and PPy adhere more stably to the surface of the
sponge skeleton through strong intermolecular forces,
ensuring that the conductive sponge is wash-resistant and
maintains excellent reproducibility under different
degrees of repeated testing. With its excellent mechanical
and conductive properties, the MPP sponge can detect
human movement in a variety of situations, including
head lifting, swallowing, finger bending, elbow bending
and knee bending. In addition, the MPP sensor combined
with deep learning methods achieves a 95% correct
recognition rate for different human movement postures,
which proves the potential value of the sensor in practical
applications. In conclusion, MPP sponge sensors offer
great potential for applications in smart wearable devices
and human movement detection.
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