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Research progress of electronic nose technology in
exhaled breath disease analysis
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Abstract
Exhaled breath analysis has attracted considerable attention as a noninvasive and portable health diagnosis method
due to numerous advantages, such as convenience, safety, simplicity, and avoidance of discomfort. Based on many
studies, exhaled breath analysis is a promising medical detection technology capable of diagnosing different diseases
by analyzing the concentration, type and other characteristics of specific gases. In the existing gas analysis technology,
the electronic nose (eNose) analysis method has great advantages of high sensitivity, rapid response, real-time
monitoring, ease of use and portability. Herein, this review is intended to provide an overview of the application of
human exhaled breath components in disease diagnosis, existing breath testing technologies and the development
and research status of electronic nose technology. In the electronic nose technology section, the three aspects of
sensors, algorithms and existing systems are summarized in detail. Moreover, the related challenges and limitations
involved in the abovementioned technologies are also discussed. Finally, the conclusion and perspective of eNose
technology are presented.

Introduction
Human exhaled gas is composed of 150mL of ‘dead

space gas’ and approximately 350 mL of ‘alveolar gas’1.
‘Alveolar gas’ refers to the headspace gas of human blood,
which can dynamically reflect the trend of blood meta-
bolism2. Exhaled gases of healthy humans contain nitro-
gen, oxygen, carbon dioxide, water vapor, rare gases, and
various compounds produced during metabolism3–6.
These compounds contain trace amounts of volatile
organic compounds (VOCs) and some nonvolatile com-
ponents, usually between one trillionth (ppt) and one
millionth (ppm)7. Various gases have different types,
concentrations, volatilities, fat solubilities, diffusion rates
in the blood circulation, passing rates through alveolar
cell membranes, and other characteristics8. When one or
more gas concentration exceed a certain range or some

specific gases are produced, they often cause changes in
the body’s disease or metabolic function9–11. Significant
changes in breath markers can be detected in many dis-
eases, among which Helicobacter pylori breath detection
has become a clinical basis12,13, and exhaled NO detection
can also be used as an auxiliary means of asthma
clinical14.
As noninvasive medical diagnostic and therapeutic

technologies continue to advance, exhaled breath analysis
is the most likely alternative to noninvasive and portable
health diagnosis. It has the advantages of being non-
invasive, painless, safe and convenient, and simple
operation. Moreover, it can also avoid the discomfort and
embarrassment caused by blood and urine tests. In
summary, breath analysis is a highly a promising medical
detection technology15–17. Thousands of different gases
contained in human exhaled breath are products of
human metabolism and exposure to exogenous com-
pounds. These exhaled breath biomarkers can character-
ize the effects of external factors on human health. By
testing the relative levels of certain biomarkers, the health
status of the human body can potentially be determined.

© The Author(s) 2023
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Xiangyang Wei (weixy@bistu.edu.cn) or
Rui You (yourui@bistu.edu.cn)
1School of Instrument Science and Opto-Electronics Engineering, Beijing
Information Science and Technology University, Beijing 100192, China
2Laboratory of Intelligent Microsystems, Beijing Information Science and
Technology University, Beijing 100192, China
Full list of author information is available at the end of the article

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

www.nature.com/micronano
http://orcid.org/0000-0001-6809-9455
http://orcid.org/0000-0001-6809-9455
http://orcid.org/0000-0001-6809-9455
http://orcid.org/0000-0001-6809-9455
http://orcid.org/0000-0001-6809-9455
http://creativecommons.org/licenses/by/4.0/
mailto:weixy@bistu.edu.cn
mailto:yourui@bistu.edu.cn


The detection of human exhaled breath is usually based
on mass spectrometry and gas chromatography. However,
this related equipment is expensive, complicated to
operate, and not portable enough, which limits its prac-
tical application in the field of breath diagnosis18,19.
Unlike the traditional methods of testing human exhala-
tion described above, the electronic nose (eNose) usually
does not require expensive components or skilled
operators. In addition, the operation time is relatively
short, with results available in a few minutes.
eNose is an intelligent system that combines a cross-

sensitive chemical sensor array with an effective set of
pattern recognition algorithms to detect, identify or
quantify various gases/odors. First, a series of gas-sensitive
sensors with good resolution and selectivity to the target
analytes are selected to form a sensor array. Then, the
response curve of this sensor array is obtained through a
data acquisition card to extract feature parameters after
denoising of these response signals. Finally, the extracted
feature parameters are fed into the pattern recognition
system to identify the type and concentration information
of the gas/odor. The utilization of eNose technology in
noninvasively diagnosing human exhalation provides sig-
nificant advantages, such as low technical costs and
excellent discrimination capabilities.
With the continuous development of gas sensing tech-

nology and artificial intelligence, the human exhaled
breath detection method based on eNose technology has
the potential for large-scale early diagnostic screening and
long-term monitoring and diagnosis. eNose technology
has the advantages of miniaturization, easy integration,
economic benefits, and simple operation. The develop-
ment of eNose technology in the field of health care has
greatly expanded20. The application of eNose in clinical

medicine mainly includes early screening of various can-
cers21, lung diseases, such as pneumonia and upper
respiratory tract infection22, diabetes23, identification of
bacterial pathogens24, and microbial metabolites released
from superficial wounds25.
After nearly three decades of development, eNose

technology has made great progress. However, several
challenges persist. One such challenge is the presence of
the drift phenomenon, where the sensor response and
pattern recognition algorithm (PRA) gradually deviate
over time. This drift hinders the alignment between the
sensor response and the algorithm’s performance, leading
to decreased matching accuracy. Furthermore, the col-
lected data from sensor arrays for the same detection
target consist of multivariate time series signals with
complex structures. In addition, a priori response func-
tions and accurate mathematical models for gas-sensitive
sensors are difficult to obtain due to the complexity of the
response mechanism. Consequently, researchers still rely
on empirical approaches when choosing signal processing
and pattern recognition algorithms. These unresolved
issues have impeded the widespread utilization and
advancement of eNose technology. Therefore, exploring
and researching solutions for real-time, fast, efficient, and
accurate gas identification within the eNose domain
remains an imperative research direction.
Here, an overview and analysis of the research con-

ducted on eNose technology for noninvasive breath
diagnosis is presented. Its working schematic diagram is
shown in Fig. 1. In this review, the significance of utilizing
human exhaled breath as a diagnostic tool for various
diseases is initially highlighted. The correlation between
certain diseases and specific biomarkers present in human
exhaled breath are elucidated. Then, several existing
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Fig. 1 Schematic diagram of the noninvasive breath detection via the eNose system
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methods for detecting expiratory breath and their
underlying principles are summarized and demonstrated.
Through a comparative analysis of their practical advan-
tages and limitations, the expiratory breath detection
method based on eNose emerges as an ideal noninvasive
diagnostic approach. In the subsequent section, the gas
sensors and PRA used within the eNose system are two
technological aspects that serve as crucial components,
and each are thoroughly discussed. Then, the research
progress of eNose technology for disease breath analysis is
introduced, and the applications of eNose technology in
this field are provided. Finally, the main challenges
existing at present and the prospect of future develop-
ment are presented.

Application of human exhaled breath components
in disease diagnosis
Exhalation is a process of gas exchange between the

human body and the outside environment. It is one of the
most important metabolic activities of organisms. Exhaled
gas contains much information related to body health. In
1971, Linus et al. published a significant article in which
more than 200 ppm levels of VOCs were detected in
exhaled gas through gas chromatography26. This dis-
covery paved the way for various methods of exhalation
analysis. With the development of exhaled breath analysis
and detection, the study of VOC biomarkers in human
exhaled breath for metabolic diseases has attracted wide
attention. Currently, more than 3000 different VOCs have

been identified in breath samples19,27–29, with over 500
VOCs detected in single breath samples27,30,31.
In addition, inorganic and organic compounds have also

been found in human exhaled breath. Inorganic com-
pounds in human exhaled breath include nitric oxide
(NO), carbon monoxide (CO), ammonia (NH3), and
hydrogen sulfide (H2S). Organic compounds mainly
include hydrocarbons (such as ethane, pentane, and iso-
prene), oxygen-containing compounds (such as acetone,
alcohols, and aldehydes), nitrogen-containing compounds
(such as dimethylamine and trimethylamine) and sulfur-
containing compounds (such as methyl mercaptan, ethyl
mercaptan, and dimethyl sulfide)4,32–34. The prevalent
compounds detected in human exhaled breath are sum-
marized in Table 1, as well as their corresponding disease
types and exhaled breath concentrations observed in
healthy people. These are expected to become potential
biomarkers for disease diagnosis.
Inorganic compounds, such as NO, have been used as

biomarkers of lung inflammation and have shown
potential in the study of various lung diseases. Their
clinical value for the diagnosis of patients with lung
cancer (LC) is considerable35. As shown in Fig. 2a, breath
samples were collected from healthy people (H) and LC
patients. The H subjects exhibited a considerably higher
count of individuals with exhaled breath NO levels below
20 ppb compared to the LC group. Furthermore, the H
subjects demonstrated a maximum level of exhaled breath
NO below 60 ppb, while the LC group showed a

Table 1 Potential disease biomarkers in human exhaled breath

Biomarker Disease Exhaled concentration of healthy people

Nitric oxide Asthma7,53,159,160, COPD7, cystic fibrosis160 ~10 ppb35 ; ~30 ppb36; 10~50 ppb161

Carbon Monoxide Asthma162, COPD7, airway inflammation160 0~6 ppm161; 1~2 ppm162

Carbon dioxide Helicobacter pylori infection163 4~5%160

Methane Intestinal malabsorption164, visceral fat accumulation165 2~10 ppm161

Ethane COPD2,7,160, asthma2,160, ulcerative colitis10 0~10 ppb161

Pentane COPD2, asthma2,160, cystic fibrosis160, breast cancer46,

ulcerative colitis10
0~10 ppb161

Isoprene LC160, cholesterol metabolism166 22~234 ppb7; Average 100 ppb44; ~105 ppb161;

12~580 ppb166

Acetone Diabetes18,52,53 0.3~0.9 ppm44,51,83; 0.3~1 ppm161

Methanol LC, cystic fibrosis11 ~1 ppm160; 160~2000 ppb166

Ethyl alcohol Cystic fibrosis, diabetes11 ~1 ppm160; 13~1000 ppb166

Formaldehyde LC7,167 Average 48 ppb167

Ammonia Kidney disease53,159, liver disease2,7,159, asthma159, halitosis7 248~2935 ppb7; 425~1800 ppb45; 50~2000 ppb47;

0.5~2 ppm161

Hydrogen sulfide Halitosis52,53 0~1.3 ppm161; 150 ppb168
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maximum level of exhaled breath NO surpassing 100 ppb.
Exhaled NO detection has been approved by the U.S.
Food and Drug Administration as a diagnostic criterion
for asthma, thus positioning it as a valuable adjunctive
tool for asthma assessment and treatment36. Exhaled CO
may be associated with obstructive sleep apnea (OSA), a
common sleep-disordered breathing disorder character-
ized by recurrent complete or partial collapse of the upper
airway during sleep37. The resulting intermittent hypoxia
can lead to airway inflammation and oxidative stress.
Endogenous CO is mainly a byproduct of heme

oxygenase-catalyzed heme degradation38. It is a marker of
oxidative stress. Studies have shown elevated levels of
exhaled circulating CO in patients with OSA39. The
exhaled CO content in patients with different types of
OSA is demonstrated in Fig. 2b.
Hydrocarbons are compounds derived from lipid per-

oxidation40 and can serve as biomarkers of oxidative
stress2. Oxidative stress is the most frequent pathological
state in major diseases such as asthma, chronic obstruc-
tive pulmonary disease (COPD) and LC. They can be
characterized by chronic inflammation and oxidative
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stress, which can be diagnosed by endogenous vola-
tiles41,42. Specifically, most of the VOCs in COPD are
aldehydes or hydrocarbons43. The saturated aldehydes in
the exhaled breath of patients with LC showed distinctive
disparities compared to those of the H subjects (Fig. 2c1,
red bars). Oxidative stress metabolites are considered to
be the main components of abnormal exhaled breath in
LC44. Additionally, hydrocarbons, such as methane,
ethane and pentane, can serve as biomarkers for asthma,
breast cancer, liver disease, and intestinal and colon-
related diseases34,45. The exhaled breath of breast cancer
patients contains volatile alkanes (such as pentane, hexane
and long-chain alkanes) and alkane derivatives, which are
derived from oxidative stress associated with breast can-
cer lesions30 or induced activation of polymorphic cyto-
chrome mixed oxidase46. Isoprene is the main
hydrocarbon found in human exhaled gas34 and is asso-
ciated with cholesterol metabolism45.
Many studies have shown that acetone is one of the

most abundant VOCs in human respiration4,47–49. The
research results show that acetone in human exhaled
breath can be used as the main characteristic marker of
diabetes due to its high sensitivity and specificity50.
Ketones in the human body are produced when the liver
decomposes fat and are special intermediate products of
fat metabolism. Among them, 3-β-hydroxybutyric acid
and acetoacetic acid are not volatile; thus, the ketone
present in exhaled air is mainly acetone. The concentra-
tion of acetone in the exhaled breath of diabetic patients
can reach 2–6 times higher than that of the H subjects, as
shown in Table 151–53. Ethanol and methanol in the
human body are derived from microbial fermentation of
carbohydrates in the gastrointestinal tract34,54. Increased
levels of reactive oxygen species in cancer cells promote
lipid peroxidation, leading to the production of various
aldehydes55. Therefore, the content of ethanol, ketones
and aldehydes in the exhaled breath of cancer patients is
significantly higher than that of the H subjects56. In
addition, formaldehyde has also been proposed as a
marker for LC7.
Ammonia is the main nitrogen-containing volatile

compound. Abnormal levels of ammonia in breath are
associated with liver or kidney dysfunction57, which could
also be used to diagnose peptic ulcers of the stomach or
duodenum caused by Helicobacter pylori58. Additionally,
elevated concentrations of dimethylamine and trimethy-
lamine are detected in the exhaled breath of uremic
patients (Fig. 2c2)59–61. There are two different modes of
ammonia metabolism in the human body: the urea cycle
and hemodialysis. The detailed process is presented in
Fig. 2d. Endogenous ammonia is a product of protein
metabolism and is converted to urea in the liver and
subsequently eliminated by the glomerulus (urea cycle);
this results in its depletion in the exhaled breath of the H

subjects. However, in patients with impaired renal func-
tion, the proportion of ammonia in the exhaled breath is
elevated, indicating an altered exhaled breath profile.
Remarkably, hemodialysis treatment has been found to
effectively reduce the level of ammonia7.
Sulfur compounds found within the human body are

derived from the incomplete metabolism of methionine
through the transamination pathway. They serve as the
main markers for liver failure62. Remarkably, patients who
have undergone liver transplantation or are affected by
liver disease exhibit comparatively high concentrations of
sulfur compounds in their exhaled breath. Specifically, the
exhaled breath of individuals with liver disease shows
significant increases in the levels of dimethyl sulfide,
acetone, 2-butanone and 2-pentanone63. Importantly,
liver disease is an important extraoral cause of halitosis62.
In fact, approximately 85% of halitosis cases stem from
lesions located within the oropharynx, such as tongue
coating, gingivitis, periodontitis, and tonsillitis. These
conditions are associated with sulfur-containing com-
pounds, such as hydrogen sulfide, methyl mercaptan, and
dimethyl sulfide64,65.

Exhaled breath analysis technology
Exhaled breath analysis in academic research entails the

utilization of several prevalent techniques. Notably, gas
chromatography (GC) and mass spectrometry (MS) are
extensively used, relying on substantial analytical instru-
ments. Another prevalent approach is cavity ring-down
spectroscopy (CRDS) based on spectral analysis. Addi-
tionally, gas sensor analysis grounded in electrochemical
principles constitutes a significant methodological ave-
nue18,66. Herein, a concise summary of the detection
methods and underlying principles specific to each tech-
nique is provided below.
GC separates various components based on their dif-

ferential distribution coefficients in the relative motion of
two phases. In terms of reliability, GC is recognized as the
best standard solution for gas detection67. The acetone
content in the breath of diabetic patients can be effectively
analyzed by GC (Fig. 3a). Currently, gas detection meth-
ods utilizing GC primarily include thermal desorption-gas
chromatography (TD-GC)68, gas chromatography-
hydrogen flame ionization detector (GC-FID)50, gas
chromatography-ion mobility spectrometry (GC-IMS)69

and gas chromatography-mass spectrometry (GC-MS)62.
The distribution of the acetone-butanol-ethanol (ABE)
fermentation substrate was tested based on the GC-FID
method, as well as the product concentration (Fig. 3b1-2).
However, due to the limited qualitative capacity of GC, it
was imperative to combine GC with other detectors for
more precise analysis. Furthermore, GC exhibits draw-
backs, such as lengthy detection times, complex opera-
tional mechanisms, and the requirement for skilled
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personnel, causing it to be less suitable for point-of-care
testing in medical diagnostics70.
MS entails the ionization of gases into charged particles

via an ion source, followed by their separation based on
the mass-to-charge ratio utilizing electric and magnetic
fields. It has the advantages of fast response and no pre-
treatment. At present, proton transfer reaction-mass
spectrometry (PTR-MS)71, selective ion flow tube-mass
spectrometry (SIFT-MS)72 and IMS-MS73 are widely
employed for exhaled gas analysis. Thermal desorption
electrospray ionization-IMS-MS can also be used to
detect VOCs in breath (Fig. 3b3-4). Tarik’s research team
performed noninvasive diagnosis of chronic kidney dis-
ease, diabetes, and H subjects using eNose and GC-MS
coupled analysis63. Breath samples were measured with an
eNose system specifically developed for breath analysis
purposes (Fig. 3c1). Typical responses produced by the
MQ-137 sensor in the presence of different breath sam-
ples (chronic kidney disease, diabetics and H subjects with
high/low creatinine) are shown in Fig. 3c2. However,
many kinds of trace gases are present in human exhaled
breath, which leads to the inevitable formation of
numerous ionic clusters. Consequently, when there were
components with identical mass-to-charge ratios in
exhaled breath samples, clearly distinguishing these
components by MS alone was difficult. In addition, MS
has a great requirement of a high vacuum level within the
test chamber. Therefore, the equipment structure is
complex, limiting the development of portability and
miniaturization.
CRDS stands out for its remarkable sensitivity. It is

widely used in the trace detection of gases as well as
absorption spectroscopy of molecules, atoms and clusters.
Wang et al. from Mississippi State University first used
CRDS technology to systematically study acetone in
human exhaled gas and its correlation with blood glucose
concentration in 201074. CRDS leverages gas-specific
optical absorption peaks to detect trace gases. Moreover,
it is not affected by the laser intensity fluctuation. How-
ever, its utilization is constrained by the availability of
laser light sources and high reflectivity mirrors. Acquiring

CRDS instruments for multiple wavelength ranges can be
challenging. Additionally, the equipment needs to be
highly calibrated and is expensive.
The abovementioned three methods have high

requirements for experimental instruments and environ-
mental conditions. Typically, the detection and analysis
processes take a long time and cannot be monitored in
real time. Additionally, the equipment structures are
complex, impeding progress in terms of portability and
miniaturization. Furthermore, the large cost associated
with these methods hinders their widespread adoption
and development across various fields.
Compared with the above methods, the gas sensor

analysis method can quickly obtain qualitative and
quantitative gas detection results. They provide high
sensitivity, small size, ease of packaging, and low price. By
using a sensor array comprising multiple sensors, colla-
borative analysis of gas samples can also be achieved.
Based on the principles of biological olfaction, eNose
technology utilizes gas sensor arrays and PRA for gas
detection and has shown excellent performance and sig-
nificant application potential. Notably, it has been applied
in clinical medicine, including early screening of diverse
cancers75, lung diseases76, diabetes77, bacterial pathogen
identification78,79, and in the analysis of microbial meta-
bolites from superficial wounds25,80.
Respiratory acetone levels were investigated in diabetic

and nondiabetic patients by using an eNose system
(Fig. 3d1, 3-4). As expected, diabetic patients exhibited
high levels of respiratory acetone (greater than 0.8 ppm)
compared to their nondiabetic counterparts (less than
0.8 ppm). The applications of eNose in distinguishing
non-small cell lung cancer (NSCLC) and COPD patients
are shown in Fig. 3d2. The eNose system was able to
distinguish the LC patients from the COPD patients and
H subjects from the breath test experimental results. This
result confirmed that eNose has the potential to become a
noninvasive diagnostic tool for LC patients in the future.
Recent studies have demonstrated the ability of eNose
technology to test for bacterial infections (Fig. 3e1). The
eNose analysis exhibited the ability not only to detect

(see figure on previous page)
Fig. 3 Detection of human exhalation based on different analysis techniques. a Acetone content in the breath of diabetic patients analyzed by
GC68. Copyright 2019 Springer Nature. b Optimization and verification of the GC-FID determination method. b1, b2 Concentration distribution of ABE
fermentation substrate and product50. Copyright 2014 Oxford University Press. b3, b4 Detection of VOCs in breath using thermal desorption
electrospray ionization-IMS-MS73. Copyright 2021 American Chemical Society. c Exhaled breath analysis using eNose and GC-MS63. Copyright 2018
Elsevier. c1 Experimental setup of the eNose system. c2 Electrical conductance changes in the presence of 4 VOC samples using the MQ-137 sensor.
d Application of eNose in the exhaled breath of diabetic, NSCLC and COPD patients. d1 Scatter plot for plasma breath acetone in type 2 diabetic (left)
and nondiabetic mellitus patients (right)23. Copyright 2019 MDPI. d2 eNose results for the discrimination of patients with NSCLC and COPD75.
Copyright 2009 Elsevier. d3, d4 Novel method for diabetes diagnosis based on eNose77. Copyright 1997 Elsevier. e Application of eNose in upper
respiratory tract infection and wound bacteria detection. e1 Identification of upper respiratory bacterial pathogens with eNose24. Copyright 2009
John Wiley & Sons. e2, e3 Development of CP sensor arrays for wound monitoring25. Copyright 2008 Elsevier
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common upper respiratory pathogens but also to dis-
criminate between bacterial species when compared to
the control group. Moreover, eNose sensor arrays based
on conductive polymers can also be used for wound
monitoring (Fig. 3e2-3).
Breath analysis technology based on eNose possesses

the advantages of high sensitivity, rapid response, real-
time monitoring, and user-friendly portability. As a non-
invasive diagnostic model, it presents an ideal approach
for the rapid screening of diseases through breath detec-
tion. The eNose system consists of two key technologies:
the sensor array responsible for the detection of chemical
substances and the algorithm for providing the analytical
software model within the system.

Gas sensors for eNose systems
eNose technology relies on gas sensors to obtain the

composition information of gas samples. To enable pre-
cise detection of breath-related diseases with complex
components, integration of multiple specific sensors into
a sensing array is needed to achieve high-precision
detection81. In the field of exhalation analysis, sensor
arrays have been recognized for their considerable appli-
cation potential82. In the field of clinical practice, several
types of gas sensors find widespread utilization in eNose
systems. These include the following: chemical resistance
sensors, such as metal oxide semiconductor (MOS) sen-
sors and conductive polymer (CP) sensors; the widely
used piezoelectric sensors, such as quartz crystal micro-
balance (QCM) sensors and surface acoustic wave (SAW)
sensors; electrochemical (EC) sensors; and optical sen-
sors19,70,82–85. Typical schematics are shown in Fig. 4.

Chemical resistance gas sensor
The MOS sensor, a member of the chemical resistance

gas sensor category, is the most commonly used sensor
type used in eNose systems7,81. It has the advantages of
high sensitivity, rapid response, miniaturization, low cost,
user-friendliness, and good compatibility with micro-
electronic processes18. MOS sensors operate by utilizing
the adsorption of the targeted gas to modify the con-
ductivity of the semiconductor material. According to the
difference in charge carriers, they can be divided into
N-type and P-type semiconductor materials. Notably,
these two semiconductor materials have different sensing
responses to reducing gas and oxidizing gas, as shown in
Table 2.
At present, a range of MOS sensing materials, such as

SnO2, ZnO, CuO, TiO2, WO3, NiO, In2O3, WO3, TiO2,
Fe2O3, and MoO3, are commonly used to detect various
gases, such as acetone, ethanol, formaldehyde, H2S, NH3,
NO2, and CO19,28,82,83. The performance of the MOS
sensor is influenced by the morphology of the sensing
material as well as surface additives. Semiconductor

materials are generally polycrystalline materials contain-
ing lattice gaps between the crystalline structures. During
the charge transport process, the grain boundary barrier
affects the material resistance to a certain extent.
Therefore, the selectivity and sensitivity to the target gas
can be increased by increasing the porosity or reducing
the grain size to the nanoscale level; these methods
expand the specific surface area and generates oxygen-
rich vacancies2,18,83. The sensitivity can be defined as
Ra/Rg (for reducing gases) or Rg/Ra (for oxidizing gases),
where Ra represents the resistance of the gas sensor in the
reference gas (generally air) and Rg represents the resis-
tance of the gas sensor in the reference gas containing the
target gas86.
Nanostructured materials, such as nanowires, nanosh-

eets, nanospheres, and nanopetals, have been used for
VOC detection87–90,91. Additionally, modifying the sur-
face of the material by adding a certain number of addi-
tives is another way to enhance the performance of MOS
sensors and improve their selectivity, sensitivity and
response speed2,83. Examples of such additives include Pt-
In2O3, Pt-Fe2O3, Co-SnO2, Au-ZnO, Si-WO3

92–96, and
composite metal oxides, such as La2O3-SnO2, In-WO3-
SnO2, and ZnO-SnO2

97–99. Chen et al. designed and
developed gravure-printed WO3/Pt-modified rGO
(reduced Graphene Oxide) nanosheets for the detection
of acetone88. As shown in Fig. 5a, the transient response
to 10 ppm acetone was shown for three different samples
and provided response/recovery times of approximately
15.2/9.6 s and 14.1/6.8 s for WO3/GNs and WO3/Pt-GNs,
respectively. Notably, the gas response/recovery times
were much lower than those of WO3/GMs. The fast
response recovery characteristics were attributed to the
large number of p-n junction active sites present at the
WO3/rGO interface, which facilitated the rapid charge
carrier transport into the conduction band. Liu’s group
designed an acetone gas sensor based on a porous plati-
num (Pt)-doped In2O3 nanofiber structure (Fig. 5b)92.
Similar work was performed by Zhang’s group to design
and fabricate an acetone sensor based on nanosized Pt-
loaded Fe2O3 nanocubes (Fig. 5c)93. Additionally,
Homayoonnia et al. developed metal-organic framework
(MOF)-based nanoparticles for VOC detection (Fig. 5d)89.
CP sensors are also chemical resistance sensors100 that

provide high sensitivity, high selectivity and the ability to
function at room temperature19. The material properties
of CP are similar to those of some metal and inorganic
semiconductor materials, while retaining the flexibility of
the polymer and having the advantage of easy processing
and synthesis101. Common examples of CPs include
polypyrrole (PPy), polyaniline (PANI), and polythiophene
(PT)102–104. Researchers have explored the potential of CP
sensors within eNose for detecting VOCs. Chatterjee et al.
developed an eNose system by integrating 5 carbon
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nanotube (CNT)-based CP nanocomposite (CPC) sensors
with a CNT sensor105. The system was able to successfully
detect 18 different LC VOC biomarkers at the ppm level;
thus, its application performance was confirmed. João
et al. used the commercial Cyranose 320 (Sensigent,
Baldwin Park, CA, USA) eNose device to effectively dis-
tinguish asthma patients through the analysis of their
breath VOCs. The device utilized a NoseChip nano-
composite array consisting of 32 CP sensors. The sensor
consisted of a carbon black film dispersed in a polymer
matrix, which was deposited onto two metal electrodes to
form an electrical connection. The relative resistance
change of sensors was measured upon exposure to
VOCs106. Finnegan et al. proposed a miniature, low-cost,
and battery-free wearable eNose based on a CP sensor
array107. This device could be used to detect 6 VOCs:
pyridine, tetrahydrofuran, ethanol, methanol, acetic acid
and ammonium hydroxide107.

Piezoelectric gas sensor
SAW and QCM sensors are two widely used piezo-

electric sensors in eNose applications19. SAW sensors use
the mutual conversion of electrical energy and mechanical
energy to generate sound waves through piezoelectric
materials. When sound waves propagate through the
piezoelectric substrate or on the surface of the piezo-
electric substrate, any change in the propagation path
characteristics leads to changes in the SAW character-
istics, which can be associated with the measured physical
(or chemical) quantities82. SAW technology has evident
advantages of high sensitivity and low energy consump-
tion. However, the process of manufacturing patterned
metal electrodes on piezoelectric substrates is expensive
and complex, requiring specialized equipment. Addi-
tionally, it is very sensitive to environmental factors, such
as temperature and humidity, limiting its application85,108.
FundaKus et al. studied the molecular recognition

properties of Calix arene-modified gold nanorods (AuNR)
and silver nanoclusters (AgNC) on the surface of SAW
transducers (Fig. 6a)4. The sensitivity of the modified
sensor was 6–8 times higher when used to detect acetone,
ethanol, chloroform, n-hexane, toluene and isoprene. The
use of zeolitic imidazolate framework (ZIF) nanocrystals
as a sensitive layer in SAW-based sensor arrays was
developed by Fabio et al. As shown in Fig. 6b, it could
detect and identify three diabetes-related breath markers
of acetone, ethanol and ammonia with a detection limit of
5 ppm109.
QCM is a type of bulk acoustic wave (BAW) device

made of quartz, which is mainly cut by AT110. It has
received considerable attention due to its high precision
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Fig. 4 Typical sensors for eNose technology. Schematic view of a typical QCM sensor (a), fiber-optic sensor (b), SAW gas sensor (c), and chemical
resistance gas sensor (d)129. Copyright 2019 MDPI

Table 2 Sensing response of n-type and p-type
semiconductor materials to reducing gas and oxidizing gas

n-type p-type Gas Ref.

Charge carrier Electron Hole /

Reducing gas Resistance

reduction

Resistance

rise

Ethanol,

acetone, NH3,

H2S, CO,

81,169

Combustion gas Resistance

rise

Resistance

reduction

NO2, O3
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and sensitivity111,112. As a piezoelectric mass sensor,
QCM measures changes in the resonance frequency when
specific gas molecules are adsorbed on the sensing
material’s surface. By measuring the change in resonance
frequency, the mass or concentration of a specific gas
adsorbed can be quantified70,81. The sensing performance
of QCM depends on the physical or chemical properties
of coating materials, such as zeolites, CNTs and polymers,
which have been used to detect gases on the surface of
QCM82. A QCM sensor coated with a colloidal PPy/
poly(N-vinylpyrrolidone) (PPy/PVP) nanorod/nanotube
film was used for the detection of alcohol vapors (Fig. 6c).

This sensor showed good detection sensitivity for alcohol
vapor.

Electrochemical sensor
The EC sensor operates by analyzing the concentration

of the gas being measured. It detects changes in the cur-
rent generated by the oxidation or reduction reaction of
gas molecules on the surface of the catalytic electrode.
This type of sensor is particularly effective in detecting
electrochemically active gases113,114. However, it has a
lower sensitivity to a variety of compounds, especially
aromatic hydrocarbons115. Obermeier et al. developed an
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93. c1 SEM images of pure Fe2O3 (top) and Pt-Fe2O3 (bottom). c2
Response curve of Pt-Fe2O3 exposed to a high concentration of acetone at 139 °C. Copyright 2019 Elsevier. d MOF-based nanoparticles for VOC
detection89. d1 SEM image. d2 Sensor sensitivity for methanol, ethanol, isopropanol and acetone at different concentrations of 250, 500, 1000 and
1500 ppm. Copyright 2016 Elsevier
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eNose system composed of three different EC sensors. As
shown in Fig. 7a, it could be used to detect ppb levels of
exhaled aldehydes and airway inflammation markers, such
as CO and NO116. The Nazir group developed a hexanol-
terminated AuNP-based eNose system for detecting
limonene (Fig. 7b), a biomarker of exhaled breath found in
patients with cirrhosis. The detection results of this system
provided an R2 value of 0.99. The qualitative and quanti-
tative detection results were close to those of GC-MS117.
Some EC sensors for breath gas detection are enzyme

sensors118–121. Due to the specific reactivity of enzymes,
they have high sensitivity and high selectivity. However,
an enzyme is sensitive to temperature and needs to be
stored at low temperature. Furthermore, the enzyme
sensor is disposable and cannot be repeatedly tested83. An
EC gas biosensor based on an enzyme immobilized on
chromatographic paper is shown in Fig. 7c. Ethanol vapor
could be measure in the concentration range of
50–500 ppm.

Optical gas sensor
Optical sensors have the advantages of high sensitivity,

good selectivity, and rapid response. They also have the
ability to monitor chemical and physical parameters on a
large scale122–124. These sensors can operate in colori-
metric, fluorescence, chemiluminescence or scattering
modes, converting the optical changes generated by the
interaction between the analyte and the biometric sub-
stance into measurable signals49,82.
In recent years, there have been highly sensitive fast

response gas sensors based on light reflection at the glass-
photonic crystal interface (Fig. 7d), which have a sensi-
tivity of 1 ppm for NH3, a rise time response of 100 ms,
and a recovery time of approximately 10 s. A schematic
diagram of the optical sensor ammonia sensing experi-
mental setup is shown in Fig. 7e. However, the optical
sensor equipment system is complex and costly to oper-
ate125. Additionally, the optical system results can be
easily affected by external factors, such as physical damage
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change of the QCM sensor when exposed to different concentrations of 1-propanol and 1-butanol and their calibration curves. c3 Frequency change
of the QCM sensor against exposure time for a constant concentration of ethanol, 1-propanol and 1-butanol vapor (184 mg L−1) and plot of Δft/Δf∞
against the square root of time. Copyright 2021 Elsevier

Li et al. Microsystems & Nanoengineering           (2023) 9:129 Page 11 of 22



a

b

c

d

(a1)

(b1)
(b2)

(a2) (a3)140
300

250

200

150

100

50

0
0 14 28 42 56 70 84 98 112 126 141 155 169

120

100

80

60

40

20

(c1)

(d1)

(c2)

f
(f2)

(f1)
H

H

H

HO HO OH

O

O

O

S

H

N O
O

O
O

O

O

O
+

O

OO

C

C

N

OH

OH

OH

OH

OH

S

S

S

2

2– H3C

H3C

CH3

SO3–

CH3

+

(d2) e

Colorimetric sensor

Optical sensor diagramOptical sensor

EC gas biosensor

EC sensor of limonene

EC sensor system: aldehydes, CO and NO

Time (hour) Time (hour)

A
ce

to
n

e 
(p

p
m

)

A
ce

to
n

e 
(p

p
m

)Fresh

Low

High

PBS containing
mediator

PBS containing
enzyme

Dry

ChrPr

ChrPr with enzyme

2

1.5

1

0.5

0

40

20

6

6

8

4

2

5

4

3

2

1

5

0 2 4 6 8 0 2 4 6 8

10 15

0 0 100 200 300 400 500 60020 40 60 80 100 120 140 160 180 200

ChrPr with mediator (Ferro)

Enzyme supporting layer
Screen printed electrode

PC

Sensing part

Potentiostat

Measurement
system

15 V

Eth=0 ppm
50 ppm

100 ppm
200 ppm
500 ppm

Mass Flow
Controller

NH3 N2

O2
CO2

Computer

Gas outlet

Gas inlet

UV Source

vent

Optical fibre
Optical fibre

Spectrometer

Collection lense

Absorption Cell

Thymol blue (Yellow) Thymol blue (Pink)

Sulfuric acid

Sulfuric acid

Acetone

Hydroxylamine sulfate Acetoxime

SIFT-MS
Acetone sensor

Angle (degree)

R
ef

le
ct

ed
 li

g
h

t 
in

te
n

si
ty

Analyte

1

3
2

4 5

4

3

6

Time (s)

Ethanol vapor
(t =20s)

V0= –0.2V R 2 = 0.9776

Is = 0.003Cs + 0.1924

Driving under the influence of 
78 ppm ethanol concentration

Ethanol gas concentration (ppm)

O
u

tp
u

t 
cu

rr
en

t 
(�

A
)

2

1.5

1

0.5

0

O
u

tp
u

t 
cu

rr
en

t 
(�

A
)

Breath gas Pump

Breath gas

ComputerCO-sensor

NO-sensor

Aldehyde-
sensor

Controls Diabetics

S
en

so
r 

am
p

lit
u

d
e 

(m
V

)

Time (min)

S
ig

n
al

 (
m

V
)

ppb 20 50 100 200 400 600 800 

Aldehydes

CO

NO

AuNPs surface

Thiols

Limonene

ReductionOxidation

2e–
2e–

2e–

2e–

2H+

2H+

2H+

2H+

Peak Repot TIC
Peak

1

2

3

4

5

6

7

8

9

10

I.Time

3.635

4.632

7.540

9.885

15.055

16.785

18.853

20.630

22.197

23.628

R.Time

3.710

4.664

7.584

9.917

15.111

16.814

18.877

20.652

22.222

23.652

F.Time

3.797

4.755

7.675

9.955

15.198

16.840

18.908

20.685

22.258

23.683

Area

89937632

2819556

10307822

388135

2308650

157603

136525

143876

153395

158300

Area%

18.39

0.58

2.11

0.08

0.47

0.03

0.03

0.03

0.03

0.03

Height

37993729

1411808

5943900

230937

536162

108826

98415

100673

114106

112896

Height%

35.22

1.32

5.57

0.22

0.50

0.10

0.09

0.09

0.11

0.11

A/H

2.39

2.00

1.73

1.68

4.31

1.45

1.39

1.43

1.34

1.40

Mark Name

1,5-Heptadien-3-yne

Methanesulfonyl chloride

1-Hexanethiol

D-Limonene

1-Decanethiol

Trisiloxane,1,1,1,5,5,5-hexamethyl

3-isopropoxy-1,1,1,7,7,7-hexamethyl

3-isopropoxy-1,1,1,7,7,7-hexamethyl

Trisiloxane,1,1,1,5,5,5-hexamethyl

Hexanesiloxane, tetradecamethyl-

3

4

7.540

9.885

7.584

9.917

7.675

9.955

10307822

388135

2.11

0.08

5943900

230937

5.57

0.22

1.73

1.68

1-Hexanethiol

D-Limonene

SIFT-MS
Acetone sensor

–
–

–

–

H

H

H

H

HS S

S

S

S
10.0 20.0 30.0 40.0 44.0

min

54,835,835
TIC

Fig. 7 (See legend on next page.)

Li et al. Microsystems & Nanoengineering           (2023) 9:129 Page 12 of 22



and sunlight; this greatly limits its miniaturization and
portability49,100.
Colorimetric sensors are optical sensors that produce

visible visual color changes when affected by external
stimuli. Gold, silver, copper and other nanoparticles are
widely used in colorimetric sensing because of their
favorable optical properties83. Colorimetric acetone sen-
sors have shown promising application potential in
detecting human exhaled VOCs due to their advantages
of simple production and rapid detection capabilities
(Fig. 7f)126,127.

Summary of this chapter
From the perspective of medical diagnosis, the ideal

sensor array in eNose should have the advantages of high
sensitivity, stable performance, rapid response, simple
portability, reusability and low cost19,83. The results of the
relevant studies are summarized in terms of chemical
resistance gas sensors, piezoelectric gas sensors and
electrochemical sensors in Table 3. Relevant target ana-
lytes, practical detection ranges and detection limits are
also detailed.

Pattern recognition algorithm used within the
eNose system
Pattern recognition refers to identifying trends or spe-

cific patterns in data81. The core processing technology in
the eNose system involves the qualitative or quantitative
analysis of gas information obtained by a sensor array
through a machine learning algorithm85,128. However, in
real-world disease breath diagnosis, the eNose system
must deal with a diverse array of complex and trace gases.
To address this challenge, researchers have incorporated
appropriate multivariate analysis technology into the
algorithm components of the eNose system, resulting in
improved selectivity in multivariate scenarios. This
approach effectively mitigates the problem of low cross-
sensitivity and poor selectivity observed in existing gas
sensors19. In addition, for various diseases, the detection
limits of the corresponding markers are different (Table
1). A single sensor has difficulty meeting the detection
limits of different markers alone, and the use of a sensor

array of the eNose system effectively solves this problem.
Then, the gas information obtained by the sensor array is
qualitatively or quantitatively analyzed by a machine
learning algorithm to meet the practical application of the
eNose system in the field of human breath. The practical
application of PRA in assisting eNose for disease breath
diagnosis in recent years is generalized in Table 4.
Abbreviations in Table 4 are summarized in Table 5.
Gas sensor arrays in the eNose system are typically

analyzed using classical machine learning algorithms,
such as principal component analysis (PCA)6,82,115,129,130,
linear discriminant analysis (LDA)6,19,82,130,131, support
vector machine (SVM)2,6,19,70,130,132,133, decision tree
(DT)2,130, K-nearest neighbor (KNN)2,6,19,130,134, cluster
analysis (CA)115, canonical discriminant analysis
(CDA)115, partial least squares regression (PLS)63, and
others.
Ensemble learning is a machine learning strategy inde-

pendent of the algorithm135. It can combine a group of
weak learners to form a strong one. The generation
method of the learner can be roughly divided into two
categories: Boosting, in which there is a strong depen-
dence between individual learners and serial generation
can only be used; and bagging, in which there is no strong
dependence between individual learners, and parallel
generation can be used. Paleczek et al. proposed a diabetic
breath detection method based on the XGBoost algorithm
(Fig. 8a). The system had high selectivity for low con-
centrations of acetone. Its accuracy and recall rates were
99% and 100%, respectively, which were superior to those
of other commonly used algorithms (such as SVM, KNN
and DT)136.
To investigate the potential of eNose in detecting head

and neck cancer through exhaled breath analysis, Rober-
ta’s research team used Cyranose 320 for sampling, as
depicted in Fig. 8b137. In the PCA diagram, patients with
head and neck cancer formed distinct clusters in relation
to both the control group and patients with allergic rhi-
nitis. The three groups were successfully discriminated
with a typical discriminant analysis, and a cross-validation
accuracy of 75.1% (p < 0.01) was achieved. The area under
the receiver operating characteristic (ROC) curve for

(see figure on previous page)
Fig. 7 Examples of electronic and optical sensors. a EC sensor system for breath analysis of aldehydes, CO and NO171. a1 Schematic of the sensor
system. a2 Comparison of the aldehyde signals from the breath of controls and diabetic patients. a3 Response of the sensor system to dry aldehyde
standards (20–800 ppbV) in clean ambient air. Copyright 2015 IOP Publishing. b EC sensor of limonene using thiol-capped gold nanoparticles117.
b1 Schematic diagram of limonene oxidation at the electrode surface. b2 Screening of limonene via GC-MS. Copyright 2022 Elsevier. c An EC gas
biosensor based on enzymes immobilized on chromatography paper120. c1 Synthesis of the sensitive materials and flow chart of the sensor
fabrication. c2 Typical current responses of modified chromatography paper enzyme electrodes for several ethanol gaseous concentrations.
Copyright 2017 MDPI. d Optical sensors with high sensitivity and fast response122. d1 Schematic of the experimental setup. d2 Measured angular
dependence of the reflected light intensity. Copyright 2015 Elsevier. e Experimental device diagram of ammonia sensing using an optical sensor183.
Copyright 2009 Elsevier. f Colorimetric sensor for detecting exhaled acetone127. Copyright 2021 American Chemical Society
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identifying patients with head and neck tumors from
other groups reached 0.87. In conclusion, eNose tech-
nology exhibits promising application potential in diag-
nostic contexts. Lei et al. proposed a high-precision PCA-
SVE ensemble learning framework that combined 11
four-type gas sensors to form an eNose system for rapid
noninvasive exhalation diagnosis of LC135. A set of single
machine learning models with excellent performance,
including SVM, DT, random forest (RF), logistic regres-
sion and KNN, were selected to construct the PCA-SVE
framework. Experiments were performed on 214 exhaled
breath samples (98 LC patients and 116 H subjects). The
accuracy, sensitivity and specificity of the proposed fra-
mework were 95.75%, 94.78% and 96.96%, respectively.
Due to their strong self-learning and adaptive ability, as

well as nonlinear expression ability, neural networks often
have better analysis results than traditional machine
learning methods when dealing with complex and trace
human exhaled breath data. The commonly used neural
networks in the eNose systems are artificial neural net-
works (ANNs)115, multilayer perceptron neural networks
(MLPs)138, convolutional neural networks (CNNs)138–140,
and radial basis functions (RBFs)115. Chen et al. diagnosed
ventilator-associated pneumonia (VAP) by sensor arrays
and machine learning technology (Fig. 8c)141. Eight
algorithms, including KNN, naive Bayes, DT, neural net-
work, SVM (including linear kernel, polynomial kernel
and radial basis kernel), and RF, were used. The results
were verified by using real exhaled samples from VAP
patients (n= 33) and a control group (n= 26), with an
average accuracy of 0.81 ± 0.04, a sensitivity of 0.79 ± 0.08,
and a specificity of 0.83 ± 0.00136. Hendrick et al. identi-
fied tuberculosis by using a sensor array combined with a
pattern recognition method. The classification effects of

SVM, XGBoost, ANN and RF were researched. The
accuracy rates were 92%, 88.24%, 94.87% and 84.24%,
respectively142,143.
Jin et al. selected four kinds of semiconductor chemical

sensors with different sensitive materials (Au/N-SnO2,
Au/N-WO3, N-WO3 and N-SnO2) and constructed a 20-
sensor array operating at five different temperatures (245,
285, 310, 325, and 340 °C)144. The work is shown in
Fig. 8d. PCA and Euclidean distance were used to identify
the best-performing sensor array combination and
enabled the accurate detection of five types of VOC gases,
including acetone. Twenty-five real exhalation samples
(12 diabetic patients and 13 H subjects) were successfully
distinguished. Although classical machine learning
methods are simple to design and have a relatively fixed
framework with few parameters, their generalization
ability is weak. Consequently, it is difficult to accurately
identify the gas atmosphere in high-noise environments,
such as exhaled breath detection.
By imitating the cognitive process of the human brain,

the neural network achieves high-precision recognition
and analysis of the target by designing parameters, such as
the number of network layers, the number of neurons,
and the activation functions. Typically, the performance
of neural networks improves with an increase in the
number of data samples acquired130.

Development of the eNose system
eNose has a documented history dating back to 1964145,

when Wilkens and Hartman used electrodes to chemically
react with gases to simulate the olfactory process of
organisms. Since then, a large number of experts and
scholars have been attracted to this field and carried out
research.

Table 3 Main features of various eNose sensors

Sensor type Working principle Advantage/Disadvantage Target

detector

Sensitivity Detection Range/

Limit

Ref.

Chemical resistance

gas sensor

Resistance change Low cost, easy to use, fast response

speed/high test temperature, poor

selectivity

Acetone 24.9@50 ppm 0.5–100 ppm

103 ppb

94

Ethanol 6.76@50 ppm 1–50 ppm

90 ppb

170

Methylbenzene >10@2.5 ppm – 105

Piezoelectric gas

sensor

Resonance frequency

change

High sensitivity/hard to implement,

poor signal-to-noise ratio

RH 29.0 Hz/%RH 0–97% 111

1-butanol 0.5709 Hz

mg/L

35.7–184mg/L

9.48 mg/L

171

EC sensor Gas reaction produces

ion movement

High sensitivity, low power

consumption/short life, integrated

packaging difficult

Nitrite – 0.5–50 μg/mL

4 μmol/L

113

Carbon dioxide ~0.132 mV/

ppm

160–2677 ppm 118
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A significant breakthrough in eNose research occurred
during the annual meeting of the European Chemical
Sensing Research Organization held at the University of
Warwick, England in 1987146. At this meeting, researchers
from the University of Warwick presented a paper on gas
sensors that introduced the concept of ‘pattern recogni-
tion’ and discussed the feasibility of using sensors for
detecting both composite and simple gases. Following
several years of exploration in eNose-related technologies,
the same research group published another article in
1994, in which the concept of ‘eNose’ was proposed and
defined in detail146. According to these studies, eNose is a
biomimetic detection instrument composed of a sensor

array that can react with multiple gases, and a specific
identification methodology enable the identification and
classification of individual or compound gases. The
introduction of this concept signaled the transition of
eNose technology from a phase of growth period to one of
maturity, leading to a stage of steady development. In the
same year, the world witnessed the emergence of the first
commercial ‘eNose’ instrument.
In recent years, due to the continuous development of

eNose technology, remarkable progress has been achieved
in the food, medicine, agriculture and other light indus-
tries. The Nahid group used an eNose system to classify
the maturity of berries into five levels in 2020147. ANN,

Table 4 Application of eNose technology in exhalation diagnosis of diseases

Disease Gas detection devicea PRA Sample status Result Ref

LC Cyranose 320 LRA Nonsmoking: PG n= 133; HG n= 132;

Smoking: PG n= 119; HG n= 91

Nonsmoking: Se= 96.2%;

Sp= 90.6%;

Smoking: Se= 95.8%;

Sp= 92.3%

172

LC Aeonose; ANN PG n= 52; HG n= 93 Se= 83%; Sp= 84% 173

LC TGS2600/2602/822;

MQ3

ANN PG n= 6; HG n= 10 A= 93.8%; Se= 85.7%;

Sp= 100%

174

COPD FGC eNose PCA PG n= 23; HG n= 33 A= 82.2%; Se= 96%; Sp= 91% 175

Asthma Cyranose 320 PCA combined with

penalized LRA

Asymptomatic:

CG n= 10; Controllable n= 9

Symptomatic:

Partially controlled n= 7.

Uncontrolled n= 12

Se= 79%; Sp= 84% 176

BO Aeonose ANN PG n= 129; GRP n= 141; CG n= 132 Se= 91%; Sp= 74% 177

CRC Aeonose ANN CRC n= 70; AAs n= 117; Non-AAS n= 117; HPs

n= 15; Colonoscopy normal n= 128

CRC: AUC= 0.84;

Se= 95%; Sp= 64%.

AAs: AUC= 0.73;

Se= 79%; Sp= 59%

178

ILD SpiroNose PLS-DA Sarcoidosis n= 141; IPF n= 85; ILD n= 33; CAP

n= 25; INIP n= 10; IPAC n= 11; Other ILD

n= 17; CG n= 48

ILD and Control group:

T/V set AUC= 1/1;

IPF and other ILD patients: T/V

set AUC= 0.91/0.87;

Individual diseases:

0.85 < AUC < 0.99

179

COVID-19 Gold nanoparticles (8)

sensor array

QDA; LDA; ROC curve

analysis

COVID-19 PG n= 49; NCPIG n= 33; HG n= 58 Patients and HG:

T/T set A= 94%/76%;

COVID-19 and NCPIG: T/T set

A= 90%/95%

180

LC, COPD TGS2600/2610/2620/

822/826

SVM LC n= 27; COPD n= 22; HG n= 39 LC: A= 88.79%; Se= 89.58%;

Sp= 88.23%.

COPD: A= 78.70%; Se= 72.50%;

Sp= 82.35%

181

aCyranose 320 (Smith’s Detection, Pasadena, CA, USA); Aeonose (the eNose Company, Zutphen, the Netherlands); TGS2600, TGS2610, TGS2620, TGS2602, TGS822,
TGS826 (Figaro, USA); MQ3 (Parallax, USA); FGC eNose (HERACLES II, Alpha MOS Company, Toulouse, France); SpiroNose (Breathomix, Leiden, The Netherlands)
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PCA and LDA were applied to the recognition mode of
the sensor array. Among them, the performance of ANN
was the best, achieving a 100% discrimination rate for
blackberry and 88.3% for bayberry. PCA achieved dis-
crimination rates of 97% for blackberry and 93% for
bayberry, while LDA exhibited the lowest efficacy (Fig.
9a). Cevoli et al. used an eNose equipped with six MOS
sensors and ANN methods to successfully classify Italian
cheese (Fig. 9b). The final accuracy was 100%148.

Machado et al. utilized the Cyranose 320 eNose to
analyze the exhaled gas composition of 14 patients with
bronchial cancer and 45 H subjects21. By combining with
SVM, it achieved an accuracy of 72% and specificity of
92% for LC detection. The Cyranose 320 eNose was also
used to distinguish NSCLC, COPD, and H control sub-
jects. The results showed that the olfactory characteristics
of LC patients could be distinguished from those of
COPD patients and H subjects75. Horvath et al. utilized an
eNose system to distinguish different VOCs produced by
ovarian cancer and normal tissues. It obtained a
remarkable recognition accuracy of 100% when using
15 samples for each tissue type149.
Recently, Wang’s group from Zhejiang University

applied an eNose to detect pests during crop storage and
early bollworm infestation in cotton150. It could effectively
distinguish healthy crops from pest-infested crops151.
Dian et al. developed a rapid noninvasive eNose based on
expiratory breath fingerprinting recognition for sniffing
out COVID-19152. Notably, the eNose system exhibited
high levels of systematic detection accuracy (88–95%),
sensitivity (86–94%), and specificity (88–95%), as shown
in Fig. 9c. These findings indicated the potential of the use
of GeNose C19 as a highly effective breath testing device
for rapid COVID-19 screening. In a related study, the
outcomes of COVID-19 detection within a local hospital
were detailed utilizing a developed electronic setup
incorporating commercial VOC gas sensors153. ROC
curves were generated for a cohort of 50 samples, con-
sisting of 33 COVID-19-infected patients and 17 H. Four
detection algorithms of SVM, KNN, RF, and neural net-
work, were examined, as illustrated in Fig. 9d.
Chen et al. proposed a novel eNose model based on a

virtual array SAW sensor154. The image recognition
method and improved neural network were utilized to
analyze the output response of the sensor. This eNose
system successfully detected 11 LC-related marker VOCs
and achieved promising diagnostic results in hospitalized
patients. Zakaria et al. utilized an eNose system com-
prising 32 sensors combined with probabilistic neural
networks (PNNs) to differentiate honey from various
floral sources, pseudo-honey and syrup (Fig. 9e). It was
able to compositionally classify different samples with an
accuracy of 92.59%155.
Through the above research, the emergence of various

commercial eNoses and self-developed eNoses have been
widely used in various fields. According to the analysis of
the literature in recent years, the application of the eNose
system in the field of clinical medicine is increasing. In
addition to the early cancer screening, bacterial pathogen
identification and analysis of superficial wound micro-
organisms mentioned in the manuscript, several research
teams have also developed respiratory tests for COVID-19
in the last three years156,157. The Helicobacter pylori

Table 5 List of abbreviations (in alphabetic order)

Abbreviation Full-title

A A Accuracy

AAS Advanced adenomas

ANN Artificial neural network

AUC The area under the receiver operating curve

B BO Barrett’s esophagus

C CAP Chronic allergic pneumonia

CG Control group

COPD Chronic obstructive pulmonary disease

COVID-19 Corona Virus Disease 2019

CRC Colorectal cancer

CRF Chronic renal failure

G GRP Gastroesophageal reflux patients

H HG Healthy group

HPs Hyperplastic polyps

I ILD Interstitial lung disease

INIP Idiopathic nonspecific interstitial pneumonia

IPAC Interstitial pneumonia with autoimmune

characteristics

IPF Idiopathic pulmonary fibrosis

L LC Lung cancer

LRA Logistic regression analysis

N NCPIG Non-COVID pulmonary infection control group

P PCA Principal component analysis

PG Patients’ group

PLS-DA Partial least squares discriminant analysis

Q QDA Quadratic discriminant analysis

R ROC Receiver operating characteristic

S Se Sensitivity

Sp Specificity

SVM Support vector machine

T T/T Training/test

T/V Training/validation
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breath test is also widely used in clinical practice158. The
sensors and algorithms complement each other. Based on
these test results, the high integration of gas sensor arrays
and intelligent algorithms in the future will provide great
prospects for the application of eNose systems in the field
of respiratory diagnosis.

Conclusion and perspective
In the pursuit of early diagnosis and timely treatment of

diseases, breath testing has gained considerable attention

due to its inherent safety, noninvasiveness, and con-
venience. eNose is capable of providing rapid qualitative
or semiquantitative results and considered an ideal device
for swift breath screening in disease detection. In this
review, a comprehensive examination of gas sensor arrays
and pattern recognition algorithms employed in eNose
systems that have been widely utilized for expiratory
diagnosis in recent years is presented.
The widespread clinical application of eNose systems

requires the synchronized advancement of physiological
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mechanisms and sensing technologies. The primary
challenge is achieving selective detection within the
complex human exhaled environment while avoiding the
impact of other VOCs and humidity. Therefore, it is
essential to further improve the selectivity of the eNose
system. Furthermore, to ensure their suitability for the
human expiratory environment in clinical applications,
the influence of high humidity needs to be addressed. This
can be accomplished by further exploring potential bio-
chemical and metabolic mechanisms underlying expira-
tory markers while considering the pathological
conditions of patients.

Additionally, the selection of appropriate sensing
materials and processing techniques for gas sensors
within eNose systems should be guided by the device’s
intended purpose and operational requirements. The
implementation of targeted pattern recognition algo-
rithms will enable the identification of correlations
between the sensor response signals and physiological
indicators and can improve the robustness of the exhaled
biomarkers for clinical diagnosis. Moving forward, the
high integration of gas sensor arrays and intelligent
algorithms holds great promise for enhancing the appli-
cations of eNose systems in the field of breath diagnosis.
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