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Abstract
Scanning probe lithography (SPL) is a promising technology to fabricate high-resolution, customized and cost-
effective features at the nanoscale. However, the quality of nano-fabrication, particularly the critical dimension, is
significantly influenced by various SPL fabrication techniques and their corresponding process parameters. Meanwhile,
the identification and measurement of nano-fabrication features are very time-consuming and subjective. To tackle
these challenges, we propose a novel framework for process parameter optimization and feature segmentation of SPL
via machine learning (ML). Different from traditional SPL techniques that rely on manual labeling-based experimental
methods, the proposed framework intelligently extracts reliable and global information for statistical analysis to fine-
tune and optimize process parameters. Based on the proposed framework, we realized the processing of smaller
critical dimensions through the optimization of process parameters, and performed direct-write nano-lithography on a
large scale. Furthermore, data-driven feature extraction and analysis could potentially provide guidance for other
characterization methods and fabrication quality optimization.

Introduction
Direct-write nano-lithography is a maskless, serial tech-

nique in which beams or probes are scanned through
photoresists to create intricate and fine structures at the
nanoscale. This technique plays a pivotal role in the fab-
rication of ultimately scaled devices and photomasks for
high volume semiconductors manufacturing, such as deep
ultraviolet lithography (DUV) and extreme ultraviolet
lithography (EUV)1. Currently, the most widely used
direct-write nano-lithography methods mainly include
electron beam lithogram (EBL)2, focused ion beam (FIB)3,
and scanning probe lithography (SPL)4. A practical
advantage of EBL and FIB is that they support nano-
lithography at a variety of materials, such as polymers5,6,

alloys7, metals and metal-containing ceramics8. However,
the equipment of EBL is relatively expensive and complex
due to electron-compatible optics. Another issue with EBL
and FIB are affected by proximity effects, which can
negatively impact the accuracy of fabricated nano-
structures9. Additionally, these techniques require opera-
tion in an ultra-high vacuum (UHV) environment. SPL, on
the other hand, is a versatile player in the nano-lithography
field as it supports various fabrication methods without
harsh requirements for materials or environments. Fur-
thermore, SPL is cost-effective, compact, and enables in-
situ characterization while maintaining nano-lithography
capability. Depending on the interaction mechanism
between the probe and the sample surface, SPL can be
categorised into close-to-atomic scale SPL10,11, oxidation
SPL (o-SPL)12,13, thermal SPL (t-SPL)1,14, thermochemical
SPL (tc-SPL)15,16, dip-pen SPL (d-SPL)17,18, bias-induced
SPL (b-SPL)19,20 and mechanical SPL (m-SPL)21–23.
The fabrication results of the above-mentioned SPL

approaches are significantly affected by the conditions and
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parameters associated with sample preparation and nano-
lithography. Ideal sample preparation is an essential pre-
requisite for producing fine nano-structures in nano-
lithography. Notably, the lithography mechanism is
directly affected by the sample material and probe type.
Additionally, the critical dimensions of features are sig-
nificantly correlated with the thickness of the polymeric
resist on the substrate, while the spin coating speed is the
principal factor determining the thickness of polymeric
resist. Furthermore, environmental conditions also have
the potential to affect the fabrication results. And the
existing results indicate a link between critical dimensions
of nano-structures and process parameters in nano-
lithography. As illustrative cases, we here consider
b-SPL and m-SPL. Bias voltage, current and scanning
speed have been identified as major contributing factors
to the feature size of b-SPL19,24. And the fabrication result
of nano-lithography with m-SPL can be attributed to the
parameters of drive amplitude, tip radius and scanning
speed.
The fabrication results of nano-lithography are sub-

stantially impacted by various process conditions and
parameters. In particular, there may be complex coupling
relationships between different parameters. In order to
achieve the desired critical dimensions and uniform fea-
tures, it is essential to establish a comprehensive and
unified in-situ characterization and metrology of the
nano-lithography results. Although selecting one or more
cross-sectional lines for manual measurement of nano-
structures is a commonly used method25–27, fully char-
acterizing and measuring the entire nano-structures is
often difficult and time-consuming. This presents a sig-
nificant challenge for improving and optimizing process
parameters.
Recent advances in artificial intelligence (AI) are shap-

ing the future of nearly every industry. Machine learning
(ML) techniques have been developed and applied to
manufacturing for modeling28, optimization29,30, con-
trol31, monitoring32, and prediction33,34. In terms of fab-
rication and characterization of the nanoscale, ML plays a
pivotal role in aspect of identification of nanotubes35,
image super-resolution36, nano-structure detection37,
feature segmentation38 and electrostatic characteriza-
tion39. It should be noted that existing studies of ML-
based approaches for the nanoscale have mainly focused
on improving imaging and analysis. Therefore, there is an
urgent need yet a crucial challenge to propose a frame-
work for optimizing process conditions and parameters
with reliable and global information for statistical analysis
in SPL.
In this paper, we propose a novel ML-based framework

for optimizing process conditions and parameters,
thereby accelerating nano-fabrication process with in-situ
characterization. The proposed framework consists of a

semantic segmentation approach to extract global infor-
mation and features from the in-situ characterization
results of SPL. This enables automatic real-time acquisi-
tion of global information for statistical analysis. More-
over, we provide reliable, uniform and reasonable statistic
metrics for nano-lithography, which is simply employed
to improve and optimize process conditions and para-
meters. In addition, the data-driven feature extraction and
analysis could potentially be applied to other character-
ization methods and optimization of fabrication quality.
Different from existing experimental methods that rely on
manually labeled and processed data, our framework
enables rapid optimization of process conditions and
parameters in nano-lithography based on automatically
processed global and uniform information from in-situ
characterization.
The rest of the paper is organized as follows. The

methodology of the proposed framework for nano-
fabrication process are described in Section “Methodol-
ogy”. Section “Results” discusses the experimental results
of automatic statistics, analysis, and optimization of pro-
cess conditions and parameters based on the framework,
followed by large-area nano-lithography results. Finally,
conclusions are presented in Section “Conclusion”.

Methodology
The methodology and framework presented in this

paper have a universal applicability for the optimization of
process parameters and the segmentation of features in
nano-fabrication. In addition, we introduce a nano-
manipulator-based SPL system that supports direct-
write nano-lithography and in-situ characterization at
the macroscale, which we use to demonstrate the meth-
odology and framework.

Compliant nano-manipulator-based SPL system
The scanning probe microscope (SPM) tip-based nano-

fabrication shows great advantages in efficiency, compact-
ness and cost. However, the motion range of the piezo-
electric tube scanner that drives the scanning probe or
sample stage is generally limited to less than
100 μm× 100 μm× 10 μm. One of the key challenges in the
development of the next-generation SPL is to enable
direct-write nano-lithography and in-situ characterization
at the macroscale40. To achieve larger area nano-litho-
graphy, a macro motion stage needs to be provided to
switch the fabrication area of the scanning system. In the
conventional “step and scan” processing method, the large-
area pattern is divided into multiple sub-patterns and
subsequently stitched together to form a large-area pattern.
Nevertheless, this approach is accompanied by unavoidable
stitching errors at the junctions of different sub-patterns.
In order to address the issues of stitching errors and low

fabrication efficiency resulting from the “step and scan”
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processing method described above, a compliant nano-
manipulator-based SPL system is proposed. The nano-
lithography system, depicted in Fig. 1a, comprises three
components, namely an SPM, a compliant nano-manip-
ulator, and a vision module. The SPM, as shown in
Fig. 1b, performs nano-lithography and in-situ char-
acterization within the range of tens of microns. The
compliant nano-manipulator, demonstrated in Fig. 1c,
provides continuous motion with nanometric precision
and millimeter-level stroke41, due to its friction-free,

hysteresis-free, and high linearity characteristics41,42 (see
Section S1–S4 of the Supplementary Information for the
details of the design and the prototype of the compliant
nano-manipulator). In the SPL system, the compliant
nano-manipulator propels samples to accomplish nano-
fabrication in a millimeter range without any stitching.
While vision module is employed to observe the scanning
probe and sample at the macroscale. During the nano-
fabrication process, the probe interacts with the polymeric
resist on the surface of the sample, as shown in Fig. 1d.

f
v

10�m
PMMA

Si AFM topography image

AFM probe

Compliant nano-manipulator

SPM

Vision
module

Sample
stage

Sample

AFM probe

a b

c

e

d

Fig. 1 Design and assembly of the proposed compliant nano-manipulator-based SPL system. a Design of the SPL system with an SPM, a
compliant nano-manipulator and a vision module. b SPM. c Compliant nano-manipulator. d A magnified schematic of the sample and the scanning
probe of SPM. e Nano-lithography and in-situ characterization process
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The combination of compliant nano-manipulator and
SPM enables a wide range of motion modes for nano-
lithography and inspection purposes. When operating
within the motion range of the SPM, only one motion
system is required for nano-lithography. However, in
instances where the motion range of the SPM is exceeded,
the compliant nano-manipulator comes into play by
driving the sample in continuous motion to achieve nano-
lithography.
Figure 1e illustrates the process of nano-lithography and

in-situ characterization. In order to achieve nano-litho-
graphy, it is required to prepare samples first. Prior to
nano-lithography, sample preparation is necessary, typi-
cally involving a substrate and a layer of polymeric resist
spin-coated onto the substrate surface. In this study,
polished silicon wafers serve as substrates, while poly(-
methyl methacrylate) (PMMA) is selected as the poly-
meric resist. The atomic force microscope (AFM) is a
common type of SPM utilized for nano-lithography and
in-situ characterization. During the nano-lithography

mode, the probe interacts with the sample to achieve
fabrication, followed by in-situ characterization of the
fabrication results in contact or semi-contact mode using
the same probe. And topography is a standard method
used for the characterization of nano-lithography. It is
worth noting that the determination and optimization of
process parameters are crucial for large-area and uniform
nano-fabrication. Thus, our study is focused on the
determination and optimization of process parameters.

Prototype system, experiments and data preprocessing
With the proposed compliant nano-manipulator-based

SPL system, we set up a prototype and conduct experi-
ments of nano-lithography and in-situ characterization, as
shown in Fig. 2. And the SPL prototype system and its
components are shown in Fig. 2a. The SPM used in the
system is the commercial AFM head SMENATM by NT-
MDT S.I. Co. (NT-MDT Spectrum Instruments, Moscow,
Russia), and the sample is placed on the motion stage of
the compliant nano-manipulator. The system is mounted
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Fig. 2 Prototype system and data preprocessing. a Prototype system of the compliant nano-manipulator-based SPL system. b AFM topography
image of the nano-structures. c Height distribution of different cross-sectional lines of the nano-structures. d Division of different nano-structures
regions. e 3D topography of individual nano-structures. f Analysis of the data in the middle row in the Y direction of the topography for each nano-
structure. g Grayscale image of AFM topography and automatically identified nano-structures regions (1000 nm × 1000 nm). h Failed cases of
automatically identified nano-structures regions (1000 nm × 1000 nm)
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on an optical table to ensure vibration isolation, and can
operate under ambient conditions without requiring a
vacuum environment.
The substrate used for sample preparation is a standard

silicon wafer with dimensions of 20 mm× 20 mm. The
substrate has a type N orientation of 111 and a thickness
of 625 ± 25 μm, with a resistivity of less than 0.02 Ω ⋅ cm.
A thin film of PMMA (molecular weight of 950 k, in
solvent chlorobenzene, 1 wt%, AR-P 671.01, Allresist
GmbH, Strausberg, Germany) is then spin-coated onto
the substrate at a speed of 1000 rpm for 10 s followed by
6,000 rpm for 50 s. The PMMA-coated substrate is then
baked on a hotplate at 125 ∘C for 30 min for solvent dry-
out. The resulting PMMA film thickness is approximately
20 nm.
Dynamic plowing lithography (DPL) is a m-SPL tech-

nique for achieving homogeneous nano-structures43,44. In
DPL, the probe oscillates freely at a high frequency (f),
while it moves at a constant speed (v). During the process,
a tapping mode AFM probe with an aluminum reflective
coating (Tap190Al-G, BudgetSensors®, Sofia, Bulgaria) is
used for nano-lithography. These probes have long can-
tilevers with conical tips that are 15 μm high at the apex,
and a typical curvature radius of approximately 10 nm
(see Section S12 of the Supplementary Information for the
details of the scanning probe in the SPL system). The
nominal spring constant k is 48 N/m, and the resonant
frequency is 190 kHz. The free amplitude of the probe
during the nano-lithography is around 73.4 nm, and the
setpoint is expressed as a percentage of the free vibration
amplitude, with the setpoint value under free vibration
being 10 nA. Different setpoint values are set during the
experiment to represent different amplitudes. The
experiments are performed in an ambient environment at
a room temperature of about 25 ∘C and relative humidity
of around 50%.
The identical AFM probe is utilized for in-situ char-

acterization of the nano-lithography results. The unin-
hibited amplitude of the probe throughout the scanning
progression is 12 nm. During the process of the sample
characterization, the scanning frequency is 1 Hz, whereby
256 lines comprising of 256 pixels each are scanned. The
data acquisition is executed employing NOVA_PX soft-
ware (NT-MDT Spectrum Instruments, Moscow, Russia),
and all the data are flattened to the second order. The AFM
topography images obtained by scanning in semi-contact
mode are analyzed utilizing Image Analysis P9 software
(NT-MDT Spectrum Instruments, Moscow, Russia).
Figure 2b shows the AFM topography image of the

nano-structures. The nano-structures, consisting of nine
nano-grooves with a pitch of 100 nm, are fabricated by
DPL. Typically, the data on a transverse line is insufficient
to reveal all the information. Therefore, we present the
height distribution of five other cross-sectional lines in

Fig. 2c that are evenly spaced in Fig. 2b. It is evident that
the width and depth of the same groove in nano-
lithography vary at different locations. To describe the
width of the nano-grooves, the parameter of full width at
half maximum (FWHM) is usually adopted. The con-
ventional approach is to select one or multiple cross-
sectional lines for manual measurement of the FWHM of
the nano-structures. However, it is very error-prone,
time-consuming and usually difficult to fully characterize
and manually measure the entire nano-structures. As a
result, it remains challenging to optimize the process of
nano-lithography without an accurate and reasonable
metric.
To overcome these challenges, a data preprocessing

approach has been proposed for nano-grooves that auto-
matically extracts information regarding their width, depth,
and location at each position. It is worth mentioning that
the positions of grooves may vary across the scanning area
due to different fabrication results. In order to accurately
divide the area of each groove, data from half of the posi-
tions in the length direction of the groove are chosen for
analysis, as shown by the red dash line in Fig. 2d. Using this
data, the positions of the vertical grooves are determined in
the horizontal direction, and the findpeaks function in the
MATLAB® software package is employed to process this
data. Since the findpeaks function is used to only detect the
peak of the data, the selected data is considered as the
opposite number, and the troughs of the grooves are
treated as peaks. Consequently, the different regions of the
nano-grooves are identified and delineated by the blue
boxes in Fig. 2d.
Employing the aforementioned method, we present

the 3D topographic representation of nine distinct
nano-structures individually in Fig. 2e. And Fig. 2f
illustrates the data corresponding to the selected row
along with the associated information of the nine
grooves. In addition, we obtain groove information,
comprising width, depth, and position details in 256 × 9
dimensions, for the entire AFM topography image.
Furthermore, we visualize the above information with
the AFM topography image. As shown in Fig. 2g, the
grayscale representation of AFM topography and the
automatically identified FWHM regions of the nano-
structures (in red pixels) enable comprehensive assess-
ment of the fabrication results. This data preprocessing
method provides a guideline for the nano-lithography
results. Nevertheless, in some cases, as depicted in
Fig. 2h, this method may not succeed. Furthermore, this
method is significantly affected by the noise encoun-
tered during the characterization process. The con-
tinuous nano-lithography results should be consecutive,
but the information obtained by this method may be
mutated. Consequently, we employ this method only as
a preprocessing result to support our subsequent study.
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There is thereby an urgent need but it is still a crucial
challenge to implement a framework for optimizing
process conditions and parameters with reliable global
information for statistical analysis in SPL.

Framework
It should be pointed out that a comprehensive and

uniform evaluation of nano-lithography results is a pre-
requisite for the optimization of process conditions and
parameters, while also expediting the process of para-
meter optimization and iteration. In this regard, we pro-
pose an ML-based full-flow framework for nano-
lithography, as shown in Fig. 3.

The proposed general framework encompasses four
parts, including sample preparation, direct-write nano-
lithography, in-situ characterization, and ML-based data
analysis and statistics, as illustrated in Fig. 3. Regarding
sample preparation, it is worth noting that the critical
dimension of features is closely related to the thickness of
the polymeric resist on the substrate, which is primarily
determined by the spin coating speed. Additionally, other
parameters, such as baking conditions, may also impact
the nano-lithography results. In terms of direct-write
nano-lithography, we provide examples of m-SPL, o-SPL,
and b-SPL in the above framework. Although their pro-
cessing principles differ considerably, parameters such as
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Fig. 3 A framework accelerating nano-fabrication process with in situ characterization via ML. The ML-based framework is divided into the
following main steps: sample preparation, direct-write nano-lithography, in situ characterization, ML-based data analysis and statistics
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scanning speed, drive amplitude, tip radius, bias voltage,
and current have a direct influence on the critical
dimension of the nano-lithography results. After sample
preparation and direct-write nano-lithography, the sam-
ples are characterized with the same probes. Unlike
conventional nano-fabrication that employs one or more
local regions to represent the conditions and parameters,
the proposed framework enables the acquisition of global
information through real-time ML-based data processing
and analysis. This feature allows the framework to effec-
tively guide the optimization of conditions and para-
meters throughout the nano-lithography process (see
Section S6 of the Supplementary Information for the
details of the comparison of traditional SPL process
parameter optimization method and the proposed one).
In the ML-based framework for nano-lithography, the

ML approach is a semantic segmentation network, as
shown in Fig. 4. This is a supervised, end-to-end and
pixel-by-pixel prediction method for AFM characteriza-
tion results. Based on the trained model of the network,
the nano-structures are rapidly segmented according to
the input in-situ characterization results of nano-litho-
graphy, and then the resulting statistics and analysis are
realized.
The aforementioned semantic segmentation network is

a pipeline consisting of encoding and decoding compo-
nents, encompassing input images, a backbone, decoding
heads, segmentation maps, and loss functions. In this case,
the input images are grayscale AFM topography images of

nano-structures, with a dimension of 256 × 256 pixels.
The backbone is an approach based on high-resolution
representation (HR)45. Previous semantic segmentation
methods have mostly obtained semantic information by
downsampling, then upsampling to restore high-
resolution position information. This, however, leads to
a significant loss of valid information during upsampling
and downsampling. To overcome this problem and
maintain high resolution, feature maps of different reso-
lutions are connected in parallel, and fusion between
them is added. In this approach, multi-level features are
extracted, and features at different levels are interacted,
which can effectively improve the ability of feature
extraction. The segmentation map is recovered from the
features extracted by the backbone with the aid of cascade
decode head based on convolution (C)46 and object-
contextual representation (OCR)47. Although the feature
maps can be recovered using only convolution, the OCR
decoding head effectively utilizes contextual information
to further enhance the accuracy and precision of seg-
mentation. The implementation of the OCR decoding
head mainly includes three stages: (1) estimating a rough
semantic segmentation result based on the feature
representation of the middle layer of the network, (2)
calculating the feature vector corresponding to the
semantic category based on the rough semantic segmen-
tation results and the deepest feature representation of
the network, and (3) computing the relationship matrix
between the pixel feature representation and the object

3× 3× 3× 3×

Stage 1 1× Stage 2 1× Stage 3 4× Stage 4 3×

ConvolutionObject-contextual representation

High-resolution representation

Fig. 4 HR-C-OCR semantic segmentation network for processing and analysis of nano-lithography results. The semantic segmentation
network is divided into the following main parts: high-resolution representation, convolution and object-contextual representation
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region representation to obtain the final object contextual
representation. Using the aforementioned method, the
semantic category of each pixel can be predicted based on
the augmented feature representation. This network uti-
lizes cross-entropy as the loss function, and the weights of
the C and OCR decoding heads are 0.4 and 1.0,
respectively.

Results
We conduct experiments utilizing the proposed

compliant nano-manipulator-based SPL system and
framework to optimize the process conditions and
parameters of nano-lithography. We hereby present
the results of the semantic segmentation network and
the optimization of processing conditions and
parameters.

Data preparation for ML
We utilize the m-SPL system in tapping mode as our

experimental example for analysis (the results of b-SPL
and o-SPL are also validated in Section S8 of the Sup-
plementary Information). The driving amplitude of the
probe and scanning speed are identified as critical factors
that affect the machining results while maintaining con-
stant values for other conditions. We select 11 values for
each of these two parameters to form 121 parameter pairs
for the experiment. Setpoint, which denotes the ampli-
tude, is chosen from 0.5 to 5.5 nA with an increment of
0.5 nA. Similarly, the scanning speed values are chosen as
0.5, 1, 5, 10, 50, 100, 300, 500, 1000, 2000, and 3560 μm/s,
respectively. To minimize error, nine lines are produced
under each parameter pair, and the processing range is
1 × 1 μm2 with a parallel line spacing of 100 nm. After
processing, we use the same probe to acquire the surface
topography, and the sample is scanned at a frequency of 1
Hz with an AFM image resolution of 256 × 256. To avoid
variations in the experimental results due to the tip size of
different probes, we conducted all experiments using the
same probe. Our results indicate that there is no sig-
nificant difference in image quality across all 121 sets of
experimental results, which suggests that the probe is
not worn.
For the purpose of training the network, the AFM

topography images and their corresponding masks are
required as inputs. In this task, we mainly split the litho-
graphy area from the background. To minimize labeling
errors, we utilize the data preprocessing method detailed in
Section “Prototype system, experiments and data pre-
processing” while manually preparing the labels. In the
masks, we assign the background area with black color and
the FWHM area of the nano-structures with red color, as
illustrated in Fig. 5a. And the dataset is then divided into
three subsets, namely the training set, validation set, and
test set, in a ratio of 80%, 10%, and 10%, respectively.

In order to effectively address the issue of overfitting in
this few-shot learning task, data augmentation is per-
formed on the training set. The process flow chart for this
augmentation method is illustrated in Fig. 5b. Initially, the
original dataset is rotated and flipped, and then one of ten
transformations is applied to the dataset, which is then
added to the augmented dataset. The probability (p) for
each data augmentation method is depicted in Fig. 5b.
Each data is randomly augmented five times. It should be
noted that the corresponding masks are also augmented
by using the same method. The part of resulting aug-
mented dataset for AFM topology images of nano-
structures is presented in Fig. 5c.

Training of the HR-C-OCR semantic segmentation network
All training and validation procedures are implemented

with the PyTorch package (GPU version 1.10.0). A total of
576 images are used for training, after data augmentation.
A pre-trained model is utilized to improve the con-
vergence speed of the algorithm. The model is trained for
a total of 40,000 iterations and the batch size is set to 32.
The stochastic gradient descent (SGD) optimizer is used
with a learning rate of 0.01, momentum of 0.9, and weight
decay of 0.0005. Training and deployment of HR-C-OCR
network are conducted on a 64-bit workstation equipped
with 32 GB RAM, an AMD RyzenTM 9 5900X CPU (12-
core, 3.70 GHz) and an NVIDIA® GeForce GTX 3080
GPU.

Performance of the HR-C-OCR semantic segmentation
network
Based on the results of the HR-C-OCR semantic seg-

mentation network and training process, we verified the
effectiveness of the method in the test set, and some
results are shown in Fig. 5. The original AFM topology
and its corresponding ground truth are shown in Fig. 5d
and Fig. 5e, respectively. In Fig. 5f, we present the seg-
mentation result achieved using the HR-C-OCR network,
with an enlarged view provided in Fig. 5g. Furthermore,
Fig. 5h shows segmentation results using the original
AFM topology images. It is noteworthy that the false
positives and false negatives are primarily observed at the
edges of the nano-structures. Some of these inaccuracies
may arise from manual labeling errors instead of seg-
mentation errors of the network.
To further assess the performance of the semantic seg-

mentation network, a total of eight test images are selected
for the purpose of quantifying the segmentation outcomes.
The pixel accuracy (PA), the mean intersection over union
(MIoU), as well as the frequency weighted intersection over
union (FWIoU) are crucial metrics that are utilized to
evaluate the results of the semantic segmentation of ima-
ges. The values of these metrics for the selected cases are
presented in Fig. 5i. The above analytical metrics
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in red, green, blue and black, respectively). g Magnified view of the segmentation result. h Segmentation results with original AFM topology images.
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demonstrate that the proposed approach can effectively
segment the nano-structures for subsequent analysis and
processing. Additional details and evaluation metrics con-
cerning the segmentation outcomes for nano-structures
can be found in the Supplementary Information (see Sec-
tion S5 of the Supplementary Information for the details of
the performance evaluation of the proposed semantic
segmentation network).

Statistical results of nano-structures
The proposed framework allows for the automatic

processing of AFM topological images using ML to
extract a multitude of information. Here we show a nano-
lithography result as an example to demonstrate the
credible and comprehensive statistical and analytical
results automatically obtained based on the framework, as
shown in Fig. 6.
Figure 6a, b show the AFM topology image of the nano-

structures and their segmentation results obtained
through the proposed framework, respectively. By utiliz-
ing the segmentation results, it is possible to obtain the
AFM topology image of the nano-structures located
beneath the FWHM section, as illustrated in Fig. 6c. Based
on the AFM topology image and segmentation results,
multiple statistical and analytical results can be easily
obtained for various parameters. Figure 6d portrays the
statistical histogram of the height of the nano-structures
in the AFM topology image. In the nano-structures fab-
ricated using the proposed compliant nano-manipulator-

based SPL system, critical dimension and position are
important parameters. To illustrate, we present the sta-
tistical results of the critical dimensions at different
positions of all nano-structures in Fig. 6e. Moreover,
Fig. 6f illustrates the density distribution relationship
between critical dimension and position. These statistics
can be used as standard evaluation indicators to adjust
and optimize the manufacturing process to achieve the
desired manufacturing quality under appropriate proces-
sing conditions and parameters.

Nano-lithography with optimization
Based on the proposed nano-lithography framework

illustrated in Fig. 3 and the ML-based statistical evalua-
tion result, we optimized the processing conditions and
parameters, as shown in Fig. 7. For nano-lithography with
multiple process parameters, it is necessary to conduct a
large number of experiments in the space formed by these
parameters to find the optimal process parameters.
However, this approach can be very time-consuming, and
it may not be possible to test all the parameters. To
overcome these challenges, we propose a coarse-to-fine
nano-lithography process method, as illustrated in Fig. 7a.
To introduce the method, we consider the two process
parameters of setpoint and speed in m-SPL as examples.
The proposed method is divided into two steps, namely
coarse step and fine step. In the coarse step, the value
range of the selected parameters, such as the scanning
speed and the setpoint, is roughly divided. After nano-
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lithography, the same probe is used for in-situ char-
acterization. With the help of the proposed ML-based
framework, a variety of statistical analysis data of the
preparation results can be obtained. The nano-
lithography results are then utilized to obtain the local
range of parameters corresponding to the desired manu-
facturing results. Next, the above local range of para-
meters is finely divided to find the optimal parameter. In
each group of experiments, multiple features are con-
sidered to represent the fabrication condition to minimize
the interference of random factors (see Section S7 of the
Supplementary Information for the details of the experi-
mental results of the coarse-to-fine nano-lithography
process method).
Using the aforementioned coarse-to-fine nano-

lithography process method, we optimized the process
parameters to achieve reduced critical dimensions. Note
that the previous nano-structures are all 100 nm pitches
with a critical dimension of about 45 nm, as shown in
Fig. 6e. The spacing between parallel lines is typically
greater than twice the critical dimension to ensure stable
and repeating nano-structures. By optimizing the process
parameters, we reduce the spacing between the parallel
lines from 100 nm to 40 nm, as depicted by the trajectory
of the AFM probe tip in Fig. 7b. The experimental results
demonstrate that we successfully fabricated nano-
structures with a pitch of 40 nm and a critical

dimension of approximately 17 nm, as illustrated in
Fig. 7c, d. A smaller critical dimension facilitates to realize
the fabrication of nano-structures with fine features. The
proposed framework and automatic evaluation of nano-
lithography results accelerate the optimization process of
process conditions and parameters.

Large-area nano-lithography
Further, we performed large-area nano-lithography

based on the process parameters determined by the pro-
posed optimization framework, as shown in Fig. 8. In this
experiment, the motion stage of the compliant nano-
manipulator drives the sample to perform a large-area
continuous planar motion, as shown in Fig. 8a. And the
motion trajectory is determined by the pattern to be
fabricated. The probe is in contact with the sample
surface and applies force to realize nano-lithography.
Figure 8b, c illustrate the schematic diagrams of the large-
area patterns consisting of the letters “THU” and a QR
code encoded the letters “TSINGHUA” by nano-litho-
graphy, respectively. The sample is a silicon wafer spin-
coated with PMMA. And the pattern is composed of a
large amount of nanolines. Figure 8d shows the scanning
electron microscope (SEM) image of a large-area sample
with letters “THU” created using nano-lithography. The
pattern consists of nanolines with a pitch of 1 μm, and its
overall size is 386 × 229 μm2. The speed of nano-
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lithography is 100 μm/s, and it takes a total of 26 minutes
and 26 seconds. Figure 8e–h show the partial enlarged
views of the pattern. Additionally, Fig. 8i demonstrates the
SEM image of the pattern of the QR code, with an overall
size of 420 × 420 μm2. The speed of the nano-lithography
process is 200 μm/s, and it takes a total of 76 minutes and
47 seconds (see Section S9 of the Supplementary Infor-
mation for the details of the large-area nano-lithography).
Furthermore, Fig. 8j–l show the SEM images of the line
array with an area of 1 × 1 mm2 and a pitch of 500 nm.
The critical dimension of the nano-structure is about
22.99 nm, as shown in Fig. 8l. The speed of nano-
lithography is 1 mm/s, and it takes a total of 86 minutes
and 43 seconds. Compared with the stitched method, the
stitchless nano-lithography result demonstrates an
absence of stitching error, and the throughput is increased

by 48% (see Section S10 of the Supplementary Informa-
tion for the details of the results with the stitched method
and the effect of long-time SPL on accuracy). We also
compare different nano-lithography methods (see Section
S13 of the Supplementary Information for the details of
the comparisons of different nano-lithography methods).
These nano-lithography results demonstrate that our
proposed system and ML-based framework enable large-
area, stitchless, and high-efficiency direct-write nano-
fabrication and information-encoded storage.

Conclusion
In this paper, we have proposed a smart SPL, namely a

framework accelerating nano-fabrication process with in-
situ characterization via ML. The HR-C-OCR network
has been employed in the proposed framework to
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Fig. 8 Experiment results of large-area m-SPL. a The scanning probe, sample and motion stage. b Schematic diagram of a sample lithographed
with large-area letters “THU''. c Schematic diagram of a sample lithographed with a large-area QR code. d SEM image of the large-area letters “THU”
(386 × 229 μm2). e Partial enlarged view of d. f Partial enlarged view of e. g Partial enlarged view of d. h Partial enlarged view of g. i SEM image of the
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segment the nano-structures, followed by an automated
statistical analysis of the nano-lithography results. Fur-
thermore, the critical dimension of the fabricated nano-
structures has been reduced by 62% using the optimized
process parameter based on the proposed framework and
the results of statistical analysis. Moreover, large-area
patterns with a size of hundreds of microns are directly-
written based on the proposed ML-based framework. The
experimental results confirm that the proposed frame-
work accelerates the optimization of process conditions
and parameters in the nano-fabrication process.

Acknowledgements
The authors would like to acknowledge the financial support from the National
Natural Science Foundation of China under Grant (52275564, 51875313).

Author details
1State Key Laboratory of Tribology in Advanced Equipment, Department of
Mechanical Engineering, Tsinghua University, Beijing 100084, China. 2Beijing
Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and
Control, Tsinghua University, Beijing 100084, China. 3Biomanufacturing Center,
Department of Mechanical Engineering, Tsinghua University, Beijing 100084,
China. 4Biomanufacturing and Rapid Forming Technology Key Laboratory of
Beijing, Beijing 100084, China. 5‘Biomanufacturing and Engineering Living
Systems’ Innovation International Talents Base (111 Base), Beijing 100084,
China. 6NT-MDT Spectrum Instruments China office, Beijing 100053, China

Author contributions
Y.L., Z.X., and Z.Z. developed the idea. Y.L., X.L. and Z.Z. conceived the
experimental project with further contributions from L.G. Y.L., X.L., and B.P.
performed the SPL experiments with technical support from L.G. Y.L. built the
ML-based framework and conducted experimental analysis and verification. All
authors wrote and approved the manuscript.

Conflict of interest
Y. L. and Z. Z. applied for two patents related to this work in China (nos.
202211125769.7 and 202310202321.9).

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s41378-023-00587-z.

Received: 13 April 2023 Revised: 9 July 2023 Accepted: 20 August 2023

References
1. Ryu Cho, Y. K. et al. Sub-10 nanometer feature size in silicon using thermal

scanning probe lithography. ACS Nano 11, 11890–11897 (2017).
2. Le-The, H. et al. Fabrication of freestanding Pt nanowires for use as thermal

anemometry probes in turbulence measurements. Microsyst. Nanoeng. 7, 28
(2021).

3. Reyntjens, S. & Puers, R. A review of focused ion beam applications in
microsystem technology. J. Micromech. Microeng. 11, 287 (2001).

4. Fan, P. et al. Scanning probe lithography: state-of-the-art and future per-
spectives. Micromachines 13, 228 (2022).

5. Saifullah, M. S. et al. Patterning at the resolution limit of commercial electron
beam lithography. Nano Lett. 22, 7432–7440 (2022).

6. Lewis, S. M. et al. Tuning the performance of negative tone electron beam
resists for the next generation lithography. Adv. Funct. Mater. 32, 2202710
(2022).

7. Salisbury, I., Timsit, R., Berger, S. & Humphreys, C. Nanometer scale electron
beam lithography in inorganic materials. Appl. Phys. Lett. 45, 1289–1291 (1984).

8. Clendenning, S. B. et al. Direct writing of patterned ceramics using
electron-beam lithography and metallopolymer resists. Adv. Mater.
16, 215–219 (2004).

9. McMullen, R., Mishra, A. & Slinker, J. D. Straightforward fabrication of sub-10
nm nanogap electrode pairs by electron beam lithography. Precis. Eng. 77,
275–280 (2022).

10. Shen, T.-C. et al. Atomic-scale desorption through electronic and vibrational
excitation mechanisms. Science 268, 1590–1592 (1995).

11. Quek, S. Y. et al. Mechanically controlled binary conductance switching of a
single-molecule junction. Nat. Nanotechnol. 4, 230–234 (2009).

12. Dagata, J. A. Device fabrication by scanned probe oxidation. Science 270,
1625–1625 (1995).

13. Cavallini, M. et al. Additive nanoscale embedding of functional nanoparticles
on silicon surface. Nanoscale 2, 2069–2072 (2010).

14. Howell, S. T., Grushina, A., Holzner, F. & Brugger, J. Thermal scanning probe
lithography-A review. Microsyst. Nanoeng. 6, 1–24 (2020).

15. Lee, W.-K. et al. Chemically isolated graphene nanoribbons reversibly formed
in fluorographene using polymer nanowire masks. Nano Lett. 11, 5461–5464
(2011).

16. Fenwick, O. et al. Thermochemical nanopatterning of organic semiconductors.
Nat. Nanotechnol. 4, 664–668 (2009).

17. Zhao, J. et al. Three-dimensional nanoprinting via scanning probe lithography-
delivered layer-by-layer deposition. ACS Nano 10, 5656–5662 (2016).

18. Lee, K.-B., Park, S.-J., Mirkin, C. A., Smith, J. C. & Mrksich, M. Protein nanoarrays
generated by dip-pen nanolithography. Science 295, 1702–1705 (2002).

19. Lyuksyutov, S. F. et al. Electrostatic nanolithography in polymers using atomic
force microscopy. Nat. Mater. 2, 468–472 (2003).

20. Schaeffer, E., Thurn-Albrecht, T., Russell, T. P. & Steiner, U. Electrically induced
structure formation and pattern transfer. Nature 403, 874–877 (2000).

21. Yan, Y. et al. Top-down nanomechanical machining of three-dimensional
nanostructures by atomic force microscopy. Small 6, 724–728 (2010).

22. He, Y., Yan, Y., Geng, Y. & Hu, Z. Fabrication of none-ridge nanogrooves with
large-radius probe on PMMA thin-film using AFM tip-based dynamic plowing
lithography approach. J. Manuf. Process 29, 204–210 (2017).

23. Farmakidis, N. et al. Exploiting rotational asymmetry for sub-50 nm mechanical
nanocalligraphy. Microsyst. Nanoeng. 7, 84 (2021).

24. He, X. et al. Nanopatterning on calixarene thin films via low-energy field-
emission scanning probe lithography. Nanotechnology 29, 325301 (2018).

25. Yu, J., Kim, S. H., Yu, B., Qian, L. & Zhou, Z. Role of tribochemistry in nanowear
of single-crystalline silicon. ACS Appl. Mater. Inter. 4, 1585–1593 (2012).

26. Wolf, H. et al. Sub-20 nm silicon patterning and metal lift-off using thermal
scanning probe lithography. J. Vac. Sci. Technol. B 33, 02B102 (2015).

27. Pelliccione, M. et al. Scanned probe imaging of nanoscale magnetism at
cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotechnol.
11, 700–705 (2016).

28. Du, Y., Mukherjee, T. & DebRoy, T. Physics-informed machine learning and
mechanistic modeling of additive manufacturing to reduce defects. Appl.
Mater. Today 24, 101123 (2021).

29. Zhang, H., Moon, S. K. & Ngo, T. H. Hybrid machine learning method to
determine the optimal operating process window in aerosol jet 3D printing.
ACS Appl. Mater. Inter. 11, 17994–18003 (2019).

30. Guo, R. et al. Deep learning for non-parameterized mems structural design.
Microsyst. Nanoeng. 8, 91 (2022).

31. Brion, D. A. & Pattinson, S. W. Quantitative and real-time control of 3D printing
material flow through deep learning. Adv. Intell. Syst. 4, 2200153 (2022).

32. Petsiuk, A. & Pearce, J. M. Towards smart monitored am: Open source in-situ
layer-wise 3D printing image anomaly detection using histograms of oriented
gradients and a physics-based rendering engine. Addit. Manuf. 52, 102690
(2022).

33. Li, X., Wang, H., Wang, B. & Guan, Y. Machine learning methods for prediction
analyses of 4H–SiC microfabrication via femtosecond laser processing. J. Mater.
Res. Technol. 18, 2152–2165 (2022).

34. Sajedian, I., Kim, J. & Rho, J. Finding the optical properties of plasmonic
structures by image processing using a combination of convolutional neural
networks and recurrent neural networks. Microsyst. Nanoeng. 5, 27 (2019).

35. Zhang, J. et al. High-speed identification of suspended carbon nanotubes
using raman spectroscopy and deep learning.Microsyst. Nanoeng. 8, 19 (2022).

36. Kim, Y.-J., Lim, J. & Kim, D.-N. Accelerating AFM characterization via deep-
learning-based image super-resolution. Small 18, 2103779 (2022).

37. Cheng, F. & Dong, J. Data-driven online detection of tip wear in tip-based
nanomachining using incremental adaptive support vector machine. J. Manuf.
Process 69, 412–421 (2021).

38. Borodinov, N. et al. Machine learning-based multidomain processing for texture-
based image segmentation and analysis. Appl. Phys. Lett. 116, 044103 (2020).

Liu et al. Microsystems & Nanoengineering           (2023) 9:128 Page 13 of 14

https://doi.org/10.1038/s41378-023-00587-z


39. Oinonen, N. et al. Electrostatic discovery atomic force microscopy. ACS Nano
16, 89–97 (2021).

40. Xing, X. et al. High-resolution combinatorial patterning of functional nano-
particles. Nat. Commun. 11, 1–8 (2020).

41. Liu, Y. & Zhang, Z. A large range compliant XY nano-manipulator with active
parasitic rotation rejection. Precis. Eng. 72, 640–652 (2021).

42. Liu, Y. & Zhang, Z. A large range compliant nano-manipulator supporting
electron beam lithography. J. Mech. Des. 144, 043303 (2022).

43. Heyde, M. et al. Dynamic plowing nanolithography on poly-
methylmethacrylate using an atomic force microscope. Rev. Sci. Instrum. 72,
136–141 (2001).

44. He, Y., Yan, Y., Geng, Y. & Brousseau, E. Fabrication of periodic nanostructures
using dynamic plowing lithography with the tip of an atomic force micro-
scope. Appl. Surf. Sci. 427, 1076–1083 (2018).

45. Wang, J. et al. Deep high-resolution representation learning for visual recog-
nition. IEEE T. Pattern Anal. 43, 3349–3364 (2020).

46. Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic
segmentation. Proceedings of the IEEE conference on computer vision and
pattern recognition 3431–3440 (2015).

47. Yuan, Y., Chen, X. & Wang, J. Object-contextual representations for semantic
segmentation. Proceedings of the European conference on computer vision
173–190 (2020).

Liu et al. Microsystems & Nanoengineering           (2023) 9:128 Page 14 of 14


	Towards smart scanning probe lithography: a framework accelerating nano-fabrication process with in-situ characterization via machine learning
	Introduction
	Methodology
	Compliant nano-manipulator-based SPL system
	Prototype system, experiments and data preprocessing
	Framework

	Results
	Data preparation for ML
	Training of the HR-C-OCR semantic segmentation network
	Performance of the HR-C-OCR semantic segmentation network
	Statistical results of nano-structures
	Nano-lithography with optimization
	Large-area nano-lithography

	Conclusion
	Acknowledgements




