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Enhanced YOLOv5 network-based object detection
(BALFilter Reader) promotes PERFECT filter-enabled
liquid biopsy of lung cancer from bronchoalveolar
lavage fluid (BALF)
Zheng Liu1, Jixin Zhang2, Ningyu Wang3, Yun’ai Feng4, Fei Tang5, Tingyu Li3, Liping Lv5, Haichao Li4✉,
Wei Wang 3,6,7✉ and Yaoping Liu 3,8✉

Abstract
Liquid biopsy of cancers, detecting tumor-related information from liquid samples, has attracted wide attentions as an
emerging technology. Our previously reported large-area PERFECT (Precise-Efficient-Robust-Flexible-Easy-Controllable-
Thin) filter has demonstrated competitive sensitivity in recovering rare tumor cells from clinical samples. However, it is
time-consuming and easily biased to manually inspect rare target cells among numerous background cells distributed in
a large area (Φ ≥ 13mm). This puts forward an urgent demand for rapid and bias-free inspection. Hereby, this paper
implemented deep learning-based object detection for the inspection of rare tumor cells from large-field images of
PERFECT filters with hematoxylin-eosin (HE)-stained cells recovered from bronchoalveolar lavage fluid (BALF). CenterNet,
EfficientDet, and YOLOv5 were trained and validated with 240 and 60 image blocks containing tumor and/or background
cells, respectively. YOLOv5 was selected as the basic network given the highest mAP@0.5 of 92.1%, compared to those of
CenterNet and EfficientDet at 85.2% and 91.6%, respectively. Then, tricks including CIoU loss, image flip, mosaic, HSV
augmentation and TTA were applied to enhance the performance of the YOLOv5 network, improving mAP@0.5 to 96.2%.
This enhanced YOLOv5 network-based object detection, named as BALFilter Reader, was tested and cross-validated on 24
clinical cases. The overall diagnosis performance (~2min) with sensitivity@66.7% ± 16.7%, specificity@100.0% ± 0.0% and
accuracy@75.0% ± 12.5% was superior to that from two experienced pathologists (10–30min) with sensitivity@61.1%,
specificity@16.7% and accuracy@50.0%, with the histopathological result as the gold standard. The AUC of the BALFilter
Reader is 0.84 ± 0.08. Moreover, a customized Web was developed for a user-friendly interface and the promotion of wide
applications. The current results revealed that the developed BALFilter Reader is a rapid, bias-free and easily accessible
AI-enabled tool to promote the transplantation of the BALFilter technique. This work can easily expand to other
cytopathological diagnoses and improve the application value of micro/nanotechnology-based liquid biopsy in the
era of intelligent pathology.

Introduction
Lung cancer is the most lethal cancer worldwide1. His-

topathology via biopsy is the current gold standard for the
clinical diagnosis of lung cancer but suffers from dis-
advantages, including invasiveness, high risk, and limited
accessibility. Recently, liquid biopsy (detection of tumor-
related information, including cells, macrovesicles, nucleic
acids and proteins from clinical liquids such as pleural
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effusion, blood, and bronchoalveolar lavage fluid (BALF))
has attracted wide attentions as an emerging technology.
Detection of exfoliated tumor cells (ETCs) from BALF has
been acknowledged as an effective approach to early
diagnosis of lung cancer, with a history tracing back to as
early as 1948 in the Journal of American Medical Asso-
ciation (JAMA)2. The traditional methods for recovering
ETCs in clinics include centrifugation- and sedimentation-
based methods, which suffer from low sensitivity3. During
the past decades, given the rapid developments of micro/
nanotechnology and interdisciplinary applications, the
detection sensitivity of rare targets has been improved
based on micro/nanotechnology and has shown good
performance in lab demonstrations3,4. However, there is a
gap from lab-ready techniques to hospital-applicable
tools5. This gap is a major challenge in processing raw
clinical samples, which are usually of a large volume and
rare targets drowned in huge complex backgrounds.
Therefore, high volume throughput capability is a key
index for micro/nanotechniques to be well applied in
clinics. Among them, the micropore-arrayed filtration has
been acknowledged as the most promising to realize a high
throughput in processing clinical samples3. Recently, a
PERFECT (Precise-Efficient-Robust-Flexible-Easy-Con-
trollable-Thin) filter technique was developed to sensi-
tively detect rare exfoliated tumor cells from large-volume
clinical BALF samples for lung cancer diagnosis, named as
BALFilter. The BALFilter demonstrated a good perfor-
mance in 33 clinical cases, with a much higher sensitivity
(80.0%) than the routine cytocentrifuge (45.0%), based on
the Hematoxylin-Eosin (HE) staining enabled morpholo-
gical identification, with the histopathological results as
the gold standard5. However, manually inspecting the rare
ETCs on the PERFECT filter distributed in a large area
(Φ ≥ 13mm) suffers from some well-known deficiencies.
First, the ratio of ETCs to background cells is quite low,
which makes it difficult and time-consuming to identify
rare tumor cells among numerous background cells. Sec-
ond, the accuracy of manual inspection is easily biased
resulting from uneven experience of pathologists. Artificial
intelligence (AI) has been acknowledged as a promising
tool to solve the abovementioned bottlenecks and has
become a hot topic in the lab-on-a-chip community dur-
ing the past decade6–11.
In recent years, deep learning technology has gradually

matured and can quickly and accurately identify specific
objects with the trained model from corresponding data-
sets12–23. Therefore, object detection based on deep learn-
ing has achieved wide applications in the field of tumor-
related information identification for cancer diagnosis.
Many researchers have used deep learning-based object
detection on CT24,25, X-ray16, or other related images to
realize the diagnosis of lung cancer6,7,13,24 or breast can-
cer9,17,23, with typical works summarized in Table 1.

Table 1 shows that CenterNet26, EfficientDet27 and
YOLOv528 are frequently used in cancer diagnosis and
achieve higher performance on MS COCO (a notable
benchmark dataset)29, which are higher than those of
early classic networks such as single-shot detector
(SSD)30, RetinaNet31, and YOLOv332. Besides, various
tricks have also been implemented to enhance the per-
formance of basic networks, as shown in Table
114,16,17,20,22,23. These tricks can be classified into two
main types. The first type is mainly for data augmentation
to improve the generalization of the basic network, which
includes image flip, mosaic, mixup, HSV augmentation,
rotation, random scaling, and crop. The other type is
mainly developed to enhance the inference ability of basic
networks with the frequently used tricks introduced as
bellows. The contrast limited adaptive histogram equal-
ization (CLAHE) is usually used in preprocessing to
improve the local contrast and enhance the definitions of
edges in each region of an image. K-means++ is mainly
implemented to generate better anchor boxes by
improving the performance in clustering. The intersection
over union (IoU) loss function, including Generalized
Intersection over Union (GIoU) Loss, Distance Intersec-
tion over Union (DIoU) loss, Complete Intersection over
Union (CIoU) loss, can realize better bounding box
regression (prediction). Focal loss is widely used to solve
the imbalance in class (positive and negative samples) and
classifications (easy and hard samples) via the dynamically
scaled cross-entropy function (weighted cross-entropy
loss) without modifying the dataset. Soft-non-maximum
suppression (NMS) and weighted-NMS are applied for
the deduplication of multiple bounding boxes generated
in multiple rounds of inference. Test-Time Augmentation
(TTA) can improve the accuracy by performing multiple
rounds of inference.
In this work, YOLOv5, CenterNet and EfficientDet were

first tested to select the optimal basic network. Subse-
quently, tricks including image flip, mosaic and HSV
augmentation for data augmentation and CIoU/DIoU/
GIoU loss, focal loss and TTA for inference enhancement
were tested for performance improvement on the optimal
basic network. Then, the optimal basic network and the
performance-plus tricks constructed the BALFilter
Reader, along with the customized Web (www.balfilter-
reader.com:5578) for user-friendly interfaces. Finally, the
established BALFilter Reader was tested on 24 clinical
cases to validate its performance in the inspection of rare
ETCs recovered on the PERFECT filters from BALF
samples for the diagnosis of lung cancer.

Experimental
Figure 1 schematically shows the overall workflow for

the AI-based detection of rare tumor cells recovered by
the PERFECT filter from BALF (BALFilter Reader) for
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the verification of lung nodule/diagnosis of lung cancer.
The main procedures included three parts: (1) collection
of the BALF samples (Fig. 1a), recovery of ETCs from
BALF samples (Fig. 1b) and HE staining of the recovered
ETCs in situ on the PERFECT filter (Fig. 1c); (2) detection

of tumor cells from PERFECT filters via the BALFilter
Reader based on the collected large-scale images with
double-blind and duplicated manual inspections from two
experienced pathologists as an in-parallel comparison, as
shown in Fig. 1d; and (3) performance evaluation with the
histopathological results as the gold standard (Fig. 1e),

Table 1 Recent typical works on deep learning-based object detection for cell recognition/cancer diagnosis

Ref.

No.

Year Network Performance of

network on MS

COCOa

Modification(s) of the

network

Trick(s) Performance

metric(s)

Source

image

Applications

12 2022 SSDb mAPc@0.5:0.95

(28.8%), mAP@0.5

(48.5%)

MobileNet used as the

backbone

N/A Accuracy (98%) MRI images Brain cancer

13 2020 RetinaNet mAP@0.5:0.95 (40.8%),

mAP@0.5 (61.1%)

N/A N/A AUC (0.87%) X-ray images Lung cancer

14 2022 YOLOv3 mAP@0.5:0.95(33.0%),

mAP@0.5 (57.9%)

Dense block and S3Pool

added in the backbone

Focal loss, K-

means++, Soft

NMS

mAP@0.5 (78.9%) Microscope

images

(bright field)

Cervical

cancer

15 2021 CenterNet mAP0.5:0.95 (45.1%) eSE module and bounding

box attention unit added in

backbone and head,

respectively

N/A mAP@0.5 (47.76%)

on dataset A,

mAP@0.5 (41.5%)

on dataset B

CT images Liver cancer

16 2021 EfficientDet-

D7

mAP@0.5:0.95 (55.1%),

mAP@0.5 (74.3%)

N/A SFGAIA, HBBT,

Rand Augment

Precision (42.5%) &

Recall (90.2%) & F1

score (57.8%)

X-ray images Gastric

cancer

17 2022 YOLOv5 mAP0.5:0.95 (50.7%),

mAP@0.5 (68.9%)

Parameters reduced in

backbone

CLAHE mAP@0.5 (96%) X-ray images Breast cancer

18 2021 N/A N/A mAP@0.5 (85.95%) MRI images Brain cancer

19 2021 SE block and concat block

added in backbone and

neck, respectively

N/A mAP@0.5 (90%) CT images Lung cancer

20 2021 N/A Mosaic, CIoU loss mAP@0.5 (69.71%) Microscope

images

(bright field)

Recognition

of bone

marrow cell

21 2021 N/A N/A mAP@0.5 (75%) CT images Lung cancer

22 2021 Assembling of YOLOv5-s

and YOLOv5-m

CLAHE, rotation,

random scaling,

crop, flip, TTA

mAP@0.5 (62.7%) Videolaryngo-

scope images

Laryngeal

cancer

23 2021 YOLOv4 mAP@0.5:0.95 (43.5%),

mAP@0.5 (65.7%)

N/A Mosaic, CIoU loss,

label smoothing,

DIoU loss

Sensitivity (88%) Ultrasound

images

Breast cancer

This

work

2022 YOLOv5 mAP0.5:0.95 (50.7%),

mAP@0.5 (68.9%)

N/A CioU loss, image

flip, mosaic, HSV

augmentation,

TTA

mAP@0.5 (96.2%) Microscope

images

(bright field)

Lung cancer

The bold part highlights this work from the previously related reports
aMS COCO: a notable benchmark dataset
bSSD: single-shot detector
cmAP: mean average precision

Liu et al. Microsystems & Nanoengineering           (2023) 9:121 Page 3 of 13



where 6 cases were negative and 18 cases were positive for
lung cancer.

Recovery of ETCs from clinical BALF samples and HE
staining via the BALFilter technique
Clinical BALF samples were collected from lung cancer-

suspected patients in Peking University First Hospital and
Anhui Chest Hospital from June 2018 to February 2021.
Patient recruitment was performed in compliance with
the relevant laws and institutional guidelines (Good
Clinical Practice (GCP) of China) under the IRB
(2021034), approved by committees and signed by the
chairman of the committee (Yanyan Yu) in Peking Uni-
versity First Hospital. The histopathological results were
also collected from the department of pathology and
taken as the gold standard for the diagnosis of lung cancer
to evaluate the diagnostic performance of the BALFilter
Reader and manual inspection. The processes for filtra-
tion of the BALF and Hematoxylin-Eosin (HE) staining of
recovered cells followed our previously reported BALFil-
ter technique5.

Collection of large-field images of PERFECT filters with HE-
stained cells recovered from clinical BALF samples
The large-field images (25,088*25,088 pixels) of PER-

FECT filters with HE-stained cells were collected under a

microscope (DM6BTM, Leica) with the multi-position
scanning function. Imaging was performed under a bright
field over the whole effective filtration area (φ13 mm). As
mentioned above, one large-field image of the BALFilter
from a positive lung cancer BALF was used to establish
the training and validation datasets for the BALFilter
Reader. Large-field images from the other 24 clinical cases
(6 negatives and 18 positives, with detailed information
listed in Table S1 in the supplementary materials) were
used to evaluate the performance of the developed
BALFilter Reader.

Development of the BALFilter Reader
The schematic illustration of the workflow for the

BALFilter Reader development is shown in Fig. 2. First, the
dataset was prepared with 300 image blocks from the seg-
mentation of a typical large-field image of the PERFECT
filter with HE-stained cells recovered from a positive clinical
BALF sample. Among these image blocks, 80% (240) and
20% (60) were used for training and validation, respectively.
In each image block, there were tumor cells and/or back-
ground cells annotated by two experienced pathologists.
Second, the CenterNet, EfficientDet, and YOLOv5 net-
works were tested for optimal basic network decision
according to the validation results. Subsequently, to further
improve the performance of the basic network, various

Lung nodule 
screened via
CT examination

Bronchoalveolar lavage fluid 
(BALF) collection:~20 min

a

e d

b

c HE staining for 
morphological examination:�30 min

Recovery of ETCs via the dual-layer “PERFECT” filter system:�3 min

Filtration by the upper-layer PERFECT filter

Filtration by the lower-layer PERFECT filter

Porosity:91.4%

 10 �m

 50 �m

Porosity:46.8%

Mucus & cell cluster

Tumor cell

Background 
cell

PERFECT 
filter

PERFECT 
filter

Hematoxylin Eosin Mounting

BALFilter
Reader
(�2 min)

Large-scale image collection
(~5 min)

Diagnosis 
conclusion

2nd pathologist 1st pathologist

Surgery resectionHistopathological
examination

Gold standard

66.7%�16.7% Sensitivity 61.1%

100.0%�0.0% Specificity 16.7%

75.0%�12.5% Accuracy 50.0%

8 cases

8 cases

8 cases 8 cases

8 cases

8 cases

8 cases

8 cases

8 cases

8 cases

ROC threshold Validation Manual 
identification
(10–30 min)

Inspection of tumor cells for nodule verification

Observation under microscope

Performance evaluation

Fig. 1 The overall workflow for the PERFECT filter-enabled liquid biopsy of lung cancer from BALF. a Collection of the BALF samples,
b, c recovery of rare ETCs from BALF via the BALFilter technique, d identification of the recovered rare tumor cells via the AI-based detection
(BALFilter Reader) and manual inspection as in-parallel comparisons, and e the evaluation of BALFilter Reader performance via cross-validation with
24 clinical cases
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tricks, including image flip, mosaic and HSV augmentation
for data augmentation and CIoU/DIoU/GIoU loss, focal
loss and TTA for inference enhancement, were tested step
by step, as listed in Table 2, with mAP@0.5 as the key
metric for the effectiveness evaluation. The optimal basic
network and performance-plus tricks constructed the
BALFilter Reader. Moreover, a customized Web (browser
App, www.balfilter-reader.com:5578) was developed as a
friendly interface for users to easily upload the target images
to the server where the BALFilter runs and view the
returned detection results.

Segmentation
Given the large number of pixels of the large-field image,

segmentation was necessarily performed to slice into
~10,000 image blocks (256*256 pixels for each) before
starting the AI-enabled processing. For dataset preparation,
300 image blocks were selected from one typical positive
clinical case. For the validation of the developed BALFilter
Reader on 24 clinical cases, the sliced image blocks with
obvious non-uniform staining, dye contamination, defocused
cells or only micropores (no cells) were first filtered, and
then the residual ones were used as the input for inference to
identify the ETCs for the diagnosis of lung cancer.

Annotation
The tumor cells and/or background cells in the 300

image blocks of the dataset were annotated by two
experienced pathologists independently. If the two
pathologists gave different conclusions on the same image
in the independent inspections, discussion to get a joint
conclusion was performed. Labellmg33 (version 1.8.1) and
VGG Image Annotators (VIA, version 2.0.8)34 were used

to generate annotations in the VOC format (labels are in
xml format). Then, the VOC formatted dataset was con-
verted into the YOLO, MS COCO, and TF Record for-
mats via customized Python scripts, which were
compatible with the mainstream networks for object
detection. The annotated 300 image blocks were ran-
domly divided into training (80%) and validation (20%)
sets. In the training set, 89 image blocks were positive,
containing tumor cells (and background cells), and 151
were negative, containing only background cells. In the
validation set, there were 23 positives and 37 negatives.

Enhancement of networks and tricks for BALFilter Reader
construction
As shown in Fig. 2, the construction of the BALFilter

Reader included the enhancement of the basic network
and the selection of performance-plus tricks. First, the
CenterNet, EfficientDet series, and YOLOv5 series net-
works28,32,35,36 with different model sizes37 were trained
with the prepared training set to select the optimal basic
network for the BALFilter Reader (detailed parameters are
listed in Table S2 in the supplementary materials). Then,
the trained networks were evaluated with the prepared
validation set, with the mAP@0.5 as a key metric. All
computing was conducted on a server with an AMD
EPYC 7773 × 64-Core CPU, NVIDIA RTX A6000 GPU,
and Torch version of 1.6.0+cu101. The selection of the
optimal basic network was determined considering both
the value of mAP@0.5 and the requirement for computing
resources (i.e., the computational complexity).
Then, as shown in Fig. 3, to further improve the per-

formance of the selected basic network, various tricks
(listed in Table 2), including image flip, mosaic and HSV

Segmentation

Large-field image Image blocks

Annotation

Result return
and display

Dataset preparation BALFilter Reader development Clinical validation

Validation (60 blocks)

Training (240 blocks)

001.jpg 003.jpg 008.jpg

Web
(www.balfilter-reader.com:5578)

Web
(www.balfilter-reader.com:5578)

BALFilter
Reader

Tumor cell

Image Flip

Diou Loss

Focal Loss

Ciou Loss

HSV augmentation

CenterNet

YOLOv5

EfficientDet

YOLOv5

Local image
upload to server

PERFECT filter

Sensitivity
Specificity
Accuracy

66.7% � 16.7%
100.0% � 0.0%
75.0% � 12.5%

61.1%
16.7%
50.0%

Performance evaluation:
(Gold standard: histopathology)

Large-field image
collection

PERFECT filter with
cells from clinical sample

Observation
under microscope

Manual inspection
(> 10 min)

BALFilter Reader
(�2 min)

Case ID 008

Diagnosis conclusion
Positive : ...

Sts = ...

Sts = ...

Results of
current image block

Location : ...

Giou Loss

Mosaic Mixup

NMS TTA

(1) (2) (3)
8 Cases

ROC threshold set Validation

8 Cases

8 Cases

8 Cases

8 Cases

8 Cases

8 Cases

8 Cases

8 Cases

...

Fig. 2 The schematic illustration of the workflow for the BALFilter Reader development. a Dataset preparation, b Annotation, c the
development of BALFilter Reader, and d Clinical validation
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augmentation for data augmentation and CIoU/DIoU/
GIoU loss, focal loss and TTA for inference enhancement,
were tested, with the mAP@0.5 as a key metric to evaluate
the effectiveness on the performance (increased or
decreased value). Detailed description and values of hyper
parameters for the tricks can be found in Table S3 of the
supplementary materials.
Finally, the optimal basic network and performance-plus

tricks constructed the BALFilter Reader. Moreover, a cus-
tomized Web was developed to provide user-friendly
interfaces. The operation of the BALFilter Reader via the
developed Web (www.balfilter-reader.com:5578) is shown
in video S1 of the Supplementary materials. All the source
codes, installation packages and detailed instructions have
been shared on GitHub (https://github.com/GROUPWW/
balfilter-reader).

Clinical validation
24 large-field images of PERFECT filters with HE-

stained cells recovered from clinical BALF samples were
input into the developed BALFilter Reader to perform
tumor cell recognition for the diagnosis of lung cancer.
Meanwhile, these PERFECT filters were also manually
and independently inspected by two experienced pathol-
ogists to diagnose lung cancer. If the two pathologists
gave different diagnosis conclusions for the same case in

the independent inspections, discussion to get a joint
conclusion was performed. The sensitivities, specificities
and accuracies from the BALFilter Reader and manual
inspection were calculated (Fig. 5a), taking the histo-
pathological results as the gold standard.
In the BALFilter Reader, the inference would generate

the score(s) of tumor suspiciousness (Sts) for the predicted
cells in each image block (displayed in the BALFilter
Reader Web) and the heatmap with different colored dots
reflecting the distribution of Sts over the whole large-field
image (Fig. S1 in the Supplementary materials). Then,
different indicators for concluding the diagnosis results of
the BALFilter Reader were investigated. First, the defini-
tion of tumor cells was tested with 3 different cutoff
values (0.3, 0.6, 0.9) of Sts, i.e., 3 classifications (Sts ≥ 0.3,
Sts ≥ 0.6 and Sts ≥ 0.9). The total number of cells (num; N),
the average value of Sts (ave; Sts) and sum (sum; S, i.e., Sts

*N) for each classification were extracted/calculated. The
nine combinations of indicators were named N0.3, N0.6,
N0.9, Sts0.3, Sts0.6, Sts0.9, S0.3, S0.6 and S0.9. Then, the 24
cases were divided into 3 groups (Groups A, B and C),
with 8 cases (containing both histopathological positives
and negatives) in each group, to cross-validate the per-
formance of the BALFilter Reader and then estimate the
errors of the sensitivities, specificities, and accuracies. 2
groups (16 cases) were used to produce the receiver

Table 2 Test of different tricks (combinations) for performance enhancement on the optimal basic network (YOLOv5-x)

Step Objectives Tricks (combinations) mAP@0.5 Inclusion in the

BALFilter Reader

1 Improving the intersection between the prediction

and annotation bounding boxes

GIoU loss 92.1% No

DIoU loss 91.3% No

CIoU loss 93.0% Yes

2 Data augmentation to improve the generalization

of the basic network

CIoU loss & image flip 93.7% No

CIoU loss & image flip & mosaic 95.0% No

CIoU loss & image flip & mixup 92.0% No

CIoU loss & image flip & mosaic & HSV

augmentation

95.7% Yes

3 Improved recognition of poorly distinguishable

objects

CIoU loss & image flip & mosaic & HSV

augmentation & focal loss

94.7% No

4 Deduplication of multiple bounding boxes CIoU loss & image flip & mosaic & HSV

augmentation & default-NMS

95.7% Yes

CIoU loss & image flip & mosaic & HSV

augmentation & soft-NMS

95.7% No

CIoU loss & image flip & mosaic & HSV

augmentation & weighted-NMS

95.7% No

5 Overall performance improvement via multiple

rounds of inference

CIoU loss & image flip & mosaic & HSV

augmentation & default-NMS & TTA (NMS)

96.2% Yes

The bold part is the combination of selected tricks for the best performance (highest mAP@0.5), which is also the focus of this work
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operating characteristic (ROC) curves, as shown in Fig. 4,
and define the thresholds (the colored circled points) for
drawing the diagnosis conclusions in the 3rd group (8
cases), which are listed in Fig. 4. All incorrectly diagnosed
cases are framed with colored rectangles. The sensitivity,
specificity, and accuracy were calculated with the histo-
pathological results as the gold standard of diagnosis.
There were three combinations (AB>C, AC>B and BC>A)
in the cross-validation, and all the calculated values were
used to obtain the average and standard deviation for each
indicator, as displayed in Fig. 5a, with those from the
manual inspection as an in-parallel comparison. More-
over, the AUC (Area Under Curve) values for the above
nine combinations were calculated from the ROC curves
and displayed in Fig. 5b.

Results and discussion
Development of the BALFilter Reader
The first step in the development of the BALFilter

Reader is the set of training/validation datasets. Each

dataset should contain both positives and negatives.
The ratios of positives vs. negatives in the training and
validation sets were finally set after two runs of data
collection. The first set had similar ratios of positives vs.
negatives, where 89 positives and 91 negatives formed
the training dataset, while 27 positives and 33 negatives
formed the validation dataset. The following evaluation
of the clinical samples showed poor performances on
the negative cases. Considering that the recognition
accuracy of negative cases is very important for cancer
diagnosis to avoid false positive results causing anxiety
to patients in clinical practices, another 60 negatives
were added into the training dataset to further improve
the performance of the BALFilter Reader on the nega-
tive cases. To further verify the performance and fulfill
real clinical applications, the expansion of the dataset is
a critical step. In dataset expansion, the balance
between the ratios in the training and validation sets for
positives vs. negatives and the percentage of negatives
will be carefully considered and designed to improve the
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generation ability of the BALFilter Reader in clinical
applications.
On the prepared training/validation dataset, the three

networks were tested with different parameters (Table
S2 in the supplementary materials). CenterNet
achieved a mAP@0.5 of 85.2%. EfficientDet was tested
with eight model sizes, and the achieved highest
mAP@0.5 was 91.6%. YOLOv5 was tested with four
different model sizes, and the achieved highest
mAP@0.5 was 92.1%. After comparing the values of
mAP@0.5 from the CenterNet, EfficientDet series and
YOLOv5 series with different model sizes and con-
sidering the requirement for computing resources,
YOLOv5-x was selected as the optimal basic network
given its highest mAP@0.5 (92.1%) at an economy-
friendly computing configuration.

As shown in Fig. 3, to further enhance the inference
ability and improve the performance of the YOLOv5-x
basic network, different tricks (combinations) were tes-
ted, with the values of mAP@0.5 collected on the vali-
dation set as the metric to decide inclusion or exclusion
in the construction of the BALFilter Reader, as shown in
Table 2. The selection of tricks was considered from the
following five aspects. First, three classical regression
functions, including GIoU, DIoU and CIoU (Fig. 3a–c),
were tested to improve the degree of intersection
between the prediction and annotation bounding boxes
(i.e., making the prediction bounding box match the
annotated tumor cells as well as possible). The CIoU loss
was selected given its highest mAP@0.5 (93.0%) com-
pared to those for GIoU loss and DIoU loss at 92.1% and
91.3%, respectively. Second, considering that the current
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dataset has a limited size, tricks including image flip (Fig.
3d), mixup (Fig. 3e), mosaic (Fig. 3f) and HSV augmen-
tation (Fig. 3g) were tested for data augmentation while
not affecting the pristine information in the image block
to improve generalization of the basic network, with
CIoU loss as the base. The combination of CIoU loss,
image flip, mosaic, and HSV augmentation indicated the
best performance with the most significantly increased
mAP@0.5 at 95.7%. These data augmentation tricks
contribute to improving the basic network’s ability to
detect targeted cells with various staining statuses and
morphological characteristics. Third, given the non-
uniformity in HE staining, varieties of clinical samples
and varied manual processes, there were some poorly-
distinguishable cells with hard-to-recognize/classify
characteristics in the large-field images of PERFECT fil-
ters. Therefore, the focal loss was expected to address the
classification imbalance (hard and easy samples) problem
by up-weighting the hard samples, i.e., focusing more on
training a subset of hard examples, i.e., the above-
mentioned poorly distinguishable cells. However, the
focal loss caused a decrement of mAP@0.5 (from 95.7%
to 94.7%) based on the current dataset and was thereby
excluded in the construction of the BALFilter Reader.
Fourth, to deduplicate the multiple bounding boxes from
different rounds of inference and finally generate/output
one bounding box for each prediction, tricks including
soft-NMS and weighted-NMS were tested to compare
with the default-NMS imbedded in the YOLOv5-x net-
work (Fig. 3i–k). The test results showed that Soft NMS
and weighted-NMS achieved comparable effectiveness
(same mAP@0.5 @95.7%) but did not result in the

expected increment compared to default-NMS
(mAP@0.5 @95.7%). Therefore, the BALFilter Reader
used the default-NMS from the YOLOv5-x network for
the deduplication of multiple bounding boxes. Finally,
TTA (with default-NMS) was introduced to improve the
overall inference ability via multiple rounds of inference
(Fig. 3h) and improved the mAP@0.5 to 96.2%.
Above all, the YOLOv5-x network, enhanced by

performance-plus tricks including CIoU loss, image flip,
mosaic, HSV augmentation, default-NMS, and TTA
(NMS), was set as the model of the deep learning-based
object detection for inspection of rare tumor cells on the
PERFECT filters recovered from BALF and stained by HE,
i.e., the construction of the BALFilter Reader. The
inspection time for a single image block is 20.5 ± 5.3 ms
(calculated from 1500 image blocks). The time of the
BALFilter Reader execution for one clinical case, includ-
ing slicing, filtering, and inference, was 111.3 ± 26.6 s
(calculated from 24 clinical cases). The fast running also
indicated the high performance of the established model
for the BALFilter Reader.

User-friendly interface of the BALFilter Reader
Moreover, the customized Web (www.balfilter-

reader.com:5578) was also developed to provide user-
friendly interfaces to guarantee an easy operation among
users, including AI professionals, BALFilter technique
developers and clinical doctors. The access to the BAL-
Filter Reader through the customized Web is demon-
strated in Video S1 in the supplementary materials. The
collected large-field images could be easily uploaded to
the server for BALFilter Reader analysis via the Web,
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followed by the initiation of detection (running the
BALFilter Reader). The results from the BALFilter Reader
interference are returned and can be easily viewed on the
Web. The detection results mainly include two parts. One
is the overall diagnosis conclusion of the case (positive or
negative), and the other is detailed information, including
the average value Sts (Sts), the total number (N) and the
sum (S, Sts*N)) of predicted cells for the three classifica-
tions. Besides, single image block can be easily addressed
and viewed on the Web, which provides an easy access for
pathologists to view the adjacent cells/microenvironments
around the predicted cells and thus better check the
correctness of inference of the BALFilter Reader. Then,
the double-checked objects (predicted tumor cells or
background cells by the BALFilter Reader) can be sub-
mitted/added into the original dataset via the link pro-
vided on the Web, which is a simple and efficient method
to further expand the dataset with more clinical samples
in future.

Clinical validation
The BALFilter Reader was tested on 24 clinical cases

(detailed information listed in Table S1 in the supple-
mentary materials) to verify its application performance in
the diagnosis of lung cancer based on our previously
reported BALFilter technique5. The input of the BALFil-
ter Reader is the large-filed image of the PERFECT filter
with HE-stained cells recovered from clinical BALF
samples, and the output includes 1) overall diagnosis
(positive or negative) for the case, 2) detailed information
about Sts for predicted cells, and 3) a heatmap displaying
the distribution of Sts over the whole large-field image.
Thereinto, the conclusion of the overall diagnosis for the
case based on the inferred Sts was carefully investigated, as
mentioned above. 9 combinations of indicators, including
N0.3, N0.6, N0.9, Sts0.3, Sts0.6, Sts0.9, S0.3, S0.6 and S0.9, were all
tested in the abovementioned cross-validation method to
select the optimal index and set the threshold to distin-
guish positive and negative cases for the conclusion of
diagnosis, as shown in Fig. 4a–i. The thresholds were
chosen based on the overall consideration of both sensi-
tivity and specificity. The calculated sensitivities, specifi-
cities, and accuracies for the above 9 combinations and
manual inspection, with the histopathological results as
the gold standard, are shown in Fig. 5a. Moreover, AUC
values calculated from the ROC curves for the above 9
combinations are shown in Fig. 5b.
From the diagnosis results from 24 clinical cases shown

in Fig. 4, the diagnosis performance varied among dif-
ferent indicators in different classifications. Combining
the average values and standard deviations obtained from
the cross-validation, the three indexes (sensitivity, speci-
ficity, accuracy) present no obvious trend for the indica-
tors of N and Sts but elevate for S, with the increment of

the Sts cutoff value among the three classifications. The
AUC value for each indicator elevates with the increment
of Sts cutoff value. The preliminary results in Fig. 5 show
that the combinative strategy with the sum from the
group of Sts ≥ 0.9, S0.9, is the optimal indicator to draw the
diagnosis conclusion for the BALFilter Reader, given its
best overall performance with sensitivity@66.7% ± 16.7%,
specificity@100.0% ± 0.0% and accuracy@75.0% ± 12.5%,
and highest AUC value (0.84 ± 0.08) obtained from ROC
curves in the cross-validation. Therefore, the diagnosis
conclusion based on the S0.9 was taken as the claimed
performance of the BALFilter Reader to compare with
that from the manual inspection in this paper, unless
specified. The combinative strategy takes both the level of
tumor suspiciousness of cells and the number of tumor/
tumor-suspected cells into consideration, which is the
actual process of inspection by a pathologist in clinical
practices. With S as the optimal indicator and a cutoff
value of 0.9, i.e., S0.9, to distinguish positive and negative
cases (Fig. 5a), the diagnostic performance of the BAL-
Filter Reader is superior to that of manual inspection
(sensitivity@61.1%, specificity@16.7% and accu-
racy@50.0%), which can be further verified by the fol-
lowing typical cases.
For the histopathology-positive Case 13 (with the

highest value of S0.9), both the BALFilter Reader and
manual inspection concluded the correct diagnosis (true-
positive), which reveals that the diagnosis is relatively easy
for the case with abundant ETCs in BALF (deep-red dots
of Sts ≥ 0.9 in the heatmap shown in Fig. 6a). Given the
intrinsic advantage of AI in multi-tasking in a short time
with reduced error, the development of AI-based techni-
ques should focus more on pursuing an accurate diag-
nosis for challenging cases where there are only a small
number and a low relative ratio (i.e., abundance) of ETCs
among a large number of background cells, thereby bias
easily appearing in the manual inspection, such as Cases 7
and 5 shown in Fig. 6b, e and c, respectively. For the
histopathology-positive Case 7 with the heatmap and
large-field image shown in Fig. 6b and e, respectively, the
manual inspection concluded a false-negative diagnosis.
Nevertheless, the BALFilter Reader reported a true-
positive conclusion, although with only 9 cells of Sts ≥
0.9 (marked with black arrows) predicted, which were
randomly scattered in 8 positions over the whole effective
filtration area (8 out of more than 1500 image blocks). It is
not hard to understand how difficult for pathologists to
identify a small number of tumor cells, even with exten-
sive observation under a microscope in a practically
acceptable time in clinics. However, for the
histopathology-positive Case 5, the cytopathology exam-
ination based on the BALFilter technique was concluded
as negative by both the BALFilter Reader and manual
inspection. From the heatmap shown in Fig. 6c, there

Liu et al. Microsystems & Nanoengineering           (2023) 9:121 Page 10 of 13



were only 2 cells of Sts ≥ 0.9 (marked with black arrows)
predicted by the current BALFilter Reader, generating a
false-negative conclusion based on the abovementioned
index. The heatmap of Case 5 is difficult to virtually dif-
ferentiate from that of histopathology-negative Case 4
(Fig. 6d). The obvious difference between Case 13 (his-
topathology positive) and Case 4 (histopathology nega-
tive), but the indistinguishable difference between Case 5
(histopathology positive) and Case 4, indicates that the
incorrectness of diagnosis (false negative) from both the
BALFilter Reader and manual inspection probably resul-
ted from the very small number and the very low relative
ratio of ETCs on the PERFECT filter. What is worth
mentioning is that it is still promising to achieve further
improvement in performance for the BALFilter Reader

(upgraded version) given the rapid development and
update in the field of AI, which is exactly the key point we
will put efforts into with expanded dataset and optimized
algorithms in the ongoing work. Moreover, another point
that cannot be neglected is that the optimization of the
key index and the setting of the threshold to better dis-
tinguish the positive and negative cases (i.e., draw more
accurate diagnosis conclusions for the BALFilter Reader)
in our future work needs careful investigations with more
clinical cases.
Last not the least, the diagnosis based on the developed

BALFilter Reader (~2min) is much more rapid than the
manual inspection from even an experienced pathologist
(usually 10–30 min, occasionally even longer than 30 min
for some poorly distinguishable cases). The short
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Fig. 6 The typical clinical cases to demonstrate the advantage of the BALFilter Reader compared to the manual inspection. a–d Heatmaps
of the typical cases (13, 7, 5, and 4, respectively) generated by the BALFilter Reader. The dot color deepens with the increment of Sts value. The black
arrows marked deep-red dots are those cells/positions with Sts ≥ 0.9 predicted by the BALFilter Reader. e The large-field image of the PERFECT filter
with HE-stained cells recovered from the BALF of histopathology-positive Case 7. The scale bar for the large-field image is 2 mm, and those for the
inset image blocks are 50 μm

Liu et al. Microsystems & Nanoengineering           (2023) 9:121 Page 11 of 13



progressing time, along with the ease of operation, will
promote the application expansion of the BALFilter
Reader from regular cytopathological inspection to rapid
intraoperative diagnosis and fulfillment of a high-
performance diagnosis in resource-limited remote areas
based on the efficient BALFilter technique.
Above all, the BALFilter Reader is believed to be of great

use to fulfill rapid and bias-free diagnosis after careful
training with the constantly optimizing model on the
ever-expanding and ever-updating dataset. The carefully
optimized and upgraded BALFilter Reader will promote
the transplantation of the BALFilter technique for wide
applications in clinical practices and thus improve the
application value of emerging micro/nanotechnology
based liquid biopsy.

Conclusions
This work developed an artificial intelligence (AI)-

assisted automatic, rapid, and bias-free recognition of rare
tumor cells from large-field images of cells on the PER-
FECT filter (BALFilter Reader) to promote the wide
application of the BALFilter-based liquid biopsy of lung
cancer. Various tricks, including image enhancement
methods such as image flip, mosaic, HSV augmentation
and mixup, were implemented to improve cell recognition
performance of the YOLOv5 network. Meanwhile, by
modifying the original code, the YOLOv5 performances
with different IoU methods, including DIoU/GioU/CioU,
were also tested. In addition, some tricks to further
improve the accuracy of cell recognition, including TTA
and various NMS methods (weighted NMS and soft
NMS), were investigated. By implementing the above
tricks and adjusting the related parameters in the
YOLOv5 network training process, as shown in Table 1,
mAP@0.5 up to 96.2% was successfully achieved in
recognition of rare tumor cells on the large-area PER-
FECT filter. The whole cell recognition process can be
finished within 2 min. In the cross-validation with 24
clinical cases, the overall diagnosis performance with
sensitivity@66.7% ± 16.7%, specificity@100.0% ± 0.0% and
accuracy@75.0% ± 12.5% achieved by the BALFilter
Reader is superior to that from the time-consuming
(10–30min) manual inspection with sensitivity@61.1%,
specificity@16.7% and accuracy@50.0%, with histopatho-
logical results as the gold standard. The AUC value of the
BALFilter Reader is 0.84 ± 0.08. Moreover, the customized
Web makes the BALFilter Reader user-friendly and will
promote wide usage. The Web interface can make the
user easily upload the source image to the server where
the BALFilter Reader runs and views the returned
detection result. The achieved results showed that the
developed BALFilter Reader, although just at the beta
version, is a rapid, bias-free and easily accessible AI-
enabled tool to promote the transplantation of the

BALFilter technique. This work can easily expand to other
cytopathological diagnoses and improve the application
value of micro/nanotechnology based liquid biopsy in the
era of intelligent pathology.
Expansion of the dataset is very important to further

improve the performance of the BALFilter Reader. The
customized Web will provide an easy way for pathologists
to identify tumor cells/background cells, annotate image
blocks and expand the dataset. The ratio of negatives vs.
positives in the dataset needs careful design and optimi-
zation to improve the generation ability of the model. The
optimization of key indicators and the setting of thresh-
olds to better distinguish positive and negative cases and
draw more accurate diagnostic conclusions also need
careful investigations with more clinical cases. Moreover,
the quality of the source image is also nonnegligible.
Therefore, standardized sample preparation of clinical
samples should be carefully designed to guarantee high-
quality large-field images, especially in multicenter stu-
dies, to verify the universal applicability of the BALFilter
technique in different levels of hospitals and clinical
laboratory centers.
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