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Abstract

Cellular deformability is a promising biomarker for evaluating the physiological state of cells in medical applications.
Microfluidics has emerged as a powerful technique for measuring cellular deformability. However, existing
microfluidic-based assays for measuring cellular deformability rely heavily on image analysis, which can limit their
scalability for high-throughput applications. Here, we develop a parallel constriction-based microfluidic flow cytometry
device and an integrated computational framework (ATMQcD). The ATMQcD framework includes automatic training
set generation, multiple object tracking, segmentation, and cellular deformability quantification. The system was
validated using cancer cell lines of varying metastatic potential, achieving a classification accuracy of 92.4% for
invasiveness assessment and stratifying cancer cells before and after hypoxia treatment. The ATMQcD system also
demonstrated excellent performance in distinguishing cancer cells from leukocytes (accuracy = 89.5%). We developed
a mechanical model based on power-law rheology to quantify stiffness, which was fitted with measured data directly.
The model evaluated metastatic potentials for multiple cancer types and mixed cell populations, even under real-
world clinical conditions. Our study presents a highly robust and transferable computational framework for multiobject
tracking and deformation measurement tasks in microfluidics. We believe that this platform has the potential to pave
the way for high-throughput analysis in clinical applications, providing a powerful tool for evaluating cellular
deformability and assessing the physiological state of cells.

Introduction

Precision medicine is highly sought after due to the
extreme heterogeneity of cancer tumors’. However, cur-
rent diagnostic methods predominantly rely on costly
label-based analysis techniques, necessitating complex
procedures®. Label-free techniques based on intrinsic
properties reflecting key cancer progression events such
as metastasis are a promising alternative to marker-based
assays in developing countries.
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Structural features, such as cytoskeletal composition,
nuclear density, and chromatin texture, can directly
reflect the physiological state of cells. Cellular deform-
ability has been linked to several medical conditions,
including malaria®, sepsis4, bacterial infection®, and car-
diomyocyte pathology®. Additionally, the ability of cancer
cells to metastasize has been linked to their deform-
ability”®, and a correlation between cellular deformability
and extravasation through the vessel wall has been
reported’. Therefore, cellular deformability is a promising
label-free biomarker for assessing cancer cell metastatic
potential and enabling simple, low-cost diagnostic assays
for precision medicine.

The correlation between cellular deformability and
disease progression has led to the development of several
high-throughput deformability-based cytometry systems
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using microfluidics'®. Some models use electrical-based
detection to quantify deformability''. Such technologies
have achieved high processing throughput'?, presenting
great potential in label-free biosensing due to their cap-
ability to acquire multiple biophysical signals'®. Despite
these advantages, image-based detection methods remain
prevalent due to their ease of fabrication and main-
tenance. However, balancing device cost, throughput, and
pathological relevance is challenging in image-based
microfluidics.

Shear flow deformability cytometry (sDC) and exten-
sional flow deformability cytometry (xDC) have very high
throughput'*'>, However, these technologies require
high-speed cameras capable of operating at excessively
high frame rates, often exceeding 10,000 frames per sec-
ond, resulting in prohibitively high costs, particularly in
developing countries. sDC and xDC are also insensitive to
cellular friction and retention changes, which are crucial
for determining cancer cell metastatic potential'’. On the
other hand, constriction-based deformability cytometry
(cDC) requires much lower imaging frame rates'® and
remains sensitive to changes in metastatic potential.
Nonetheless, most existing cDC systems have low
throughput.

Here, we present the development of a constriction-
based deformability cytometry (cDC) platform to evaluate
the metastatic potential of cancer cells. The ¢cDC platform
is a sensitive, high-throughput, low-cost method that can
provide quantitative readouts of cell friction and retention
at approximately 25,000 cells per minute. To enable high-
throughput analysis while remaining cost-effective, we
developed a deep learning-based computational frame-
work called ATMQcD, which includes modules for
automatic training set generation, multiobject tracking,
segmentation, and quantification of cellular deformability.
Our ¢DC device and ATMQcD computational framework
outperformed previous technologies in terms of analytical
throughput while being more sensitive and cost-effective
(Supplementary Table 1).

Our study represents the first to combine high-
throughput ¢DC microfluidic chips with advanced deep-
learning algorithms to assess cancer metastasis potential.
The ¢cDC+ ATMQcD system, which utilizes our cell
stiffness index (c1 index), can evaluate the invasiveness of
clinically relevant heterogeneous cancer cell populations
and cancer cells from multiple cancer types, including
breast cancer, lung cancer, and urinary bladder cancer, at
the single-cell level. We found that the cDC + ATMQcD
system outperformed conventional methods for metastatic
evaluation in terms of efficiency, sensitivity, and cost-
effectiveness (Supplementary Table 2). We envision that
the ¢cDC+ ATMQcD system has the potential to be a
complementary and promising tool for rapid screening and
precision clinical diagnosis in global health care settings.
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Result

Development of a constriction-based deformability
cytometer (cDC) with high sensitivity for assessing cancer
cell metastasis

In pursuit of an efficient and cost-effective means of
measuring cell mechanical properties with high sensitivity
and throughput, we developed a parallelized ¢cDC (con-
striction-deformability cytometry) device that features
four groups of microconstrictions, each containing nine
individual microconstrictions (Fig. 1a). The design of our
microfluidic device allowed us to process samples with
high throughput and a wide frame of view, enabling us to
achieve a notable improvement in efficiency.

Before entering the microconstrictions, individual cells
were separated using narrow channels with 25 pm widths
(Fig. la) to prevent interference between them. The
cancer cell size is heterogeneous, ranging from 13 to
25um'’. Here, each microconstriction measured
10 x 30 x 60 pm (width x height x length), with a width at
least 2 um narrower than most cancer cells. As a result,
cells were forced to deform when passing through these
microconstrictions. Bypass valves maintained constant
pressure drops between the inlet and outlet. Our device
was fabricated using photolithography and soft litho-
graphy techniques following established protocols'®*’,

To showcase the versatility of our ¢DC device in
simultaneously measuring fluidic-dependent parameters,
such as motility parameters, in multiple microconstric-
tions, we conducted a velocity simulation in COMSOL. In
our study, we employed an inlet velocity of 0.08998 m/s,
which was derived from experimental findings indicating
an optimal flow rate of 50 uL/min (see "Optimization of
the cDC platform for single-cell analysis" for details) (Fig.
1b). Our results indicated that the velocity remained
nearly constant across all 36 microconstrictions, sug-
gesting the absence of any systematic differences in fluidic
properties (Fig. 1c).

To determine the maximum throughput of the ¢DC
device, we conducted an experiment in which we intro-
duced a very high concentration of cells (2 million cells
per mL) into the device at a flow rate of 50 uL/min. We
captured multiple videos over several minutes until severe
microconstriction-related device fouling occurred and
analyzed the average number of cells detected per second
using the ATMQcD framework for each video. Our
results revealed that the cDC+ATMQcD system suc-
cessfully detected over 700 cells per second at its peak,
with an average detection efficiency of approximately 385
cells per second (Supplementary Fig. 1). This implies that
the ¢DC device could process approximately 20,000 to
25,000 cells per minute.

However, it is important to note that achieving such a
high throughput is challenging due to the need for high
cell concentrations, which increases the risk of
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Fig. 1 Design of the constriction-based deformability cytometry (cDC) platform. a Schematic diagram of the microfluidic device. The device
had one inlet, one outlet, and four groups of microconstrictions. Samples were introduced through the device inlet and deformed in the narrow
microconstrictions. b Top view of laminar flow velocity simulation of the microfluidic chip under a 50 uL/min flow rate. ¢ The fluid flow velocity

across the 36 microconstrictions under a 50 puL/min flow rate. The blue lines in the left subplot demonstrate the measuring lines in the COMSOL
simulation. A scaled subplot showing a measuring line crossing a microconstriction (upper right). A line plot (bottom-right) displays velocity across
the 36 microconstrictions denoted in the left subplot. d Schematic view of the cDC platform’s experimental setup and the computational framework
for automatic training set generation, multiple object tracking, segmentation, and cellular deformability quantification (ATMQcD). e Time-lapse

imaging demonstrated the cell deformation and movement process while passing through a microconstriction

microconstriction-related device fouling. In practice, we
typically employ lower cell concentrations and high-
magnification microscopic imaging, focusing on a single
group of microconstrictions, to enhance detection sensi-
tivity (section “Optimization of the c¢DC platform for
single-cell analysis”).

Optimization of the cDC platform for single-cell analysis

We optimized several sample-related settings on the
¢DC platform, including the infusion flow rate and cell
concentration, to optimize the robust platform with
clinically relevant readouts.

Cells were infused into the microfluidic chip using a
syringe pump during sample processing. A high-speed
camera attached to a microscope captured videos of the
samples, which were then saved on a laptop for further
analysis (Fig. 1d). We evaluated the infusion of cell sam-
ples into the ¢DC device at three different flow rates:
30 pL/min, 50 pL/min, and 70 pL/min. At a flow rate of
30 uL/min, we observed biofouling, likely due to insuffi-
cient fluidic pressure (Supplementary Fig. 2a). Conversely,
at a flow rate of 70 pL/min, the high pressure caused cells
to move too quickly, resulting in reduced imaging

resolution and readout accuracy (Supplementary Fig. 2a).
Consequently, we fixed the flow rate at 50 uL/min for
samples with a typical cell size range (12-16 um) for
subsequent analysis (Fig. le).

Furthermore, we evaluated the optimal concentration for
the platform. Our results indicated that low cell con-
centrations (e.g, <25x10° cells/mL) led to reduced
throughput (Supplementary Fig. 2b), while higher con-
centrations (>1 x 10° cells/mL) had the potential to cause
cell aggregation and biofouling after the system had been
running for over 5min (Supplementary Fig. 2b). Conse-
quently, we fixed the cell concentration at 5 x 10° cells/mL
for subsequent analysis (a representative timelapse showing
the optimal flow conditions in the cDC device is shown in
Supplementary Video 1).

In addition to flow rates and cell concentrations, ima-
ging settings play a crucial role in the performance of our
system. Our device has been specifically designed to be
compatible with microscopes equipped with two different
magnifications of objective lenses. The first is a 10x
objective lens that provides high-resolution images of a
single group of microconstrictions, which consists of 9
microconstrictions (Supplementary Fig. 3a). The second is
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Fig. 2 Quantification of cellular deformability and the framework of the ATMQcD platform. a Demonstration of passage time for a single cell.
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a 4x objective lens that allows for the capture of all 36
microconstriction channels within the same field of view
(Supplementary Fig. 3b).

To determine which magnification performs better in
deformability measurements, we tested two breast cancer
cell lines, MCF7 and MDA-MB-231, using 4x and 10x
objective lenses for imaging. The captured images were
subsequently analyzed using the ATMQcD system.

Previous studies have shown that MDA-MB-231 cells
are more invasive and deformable than MCF7 cells’.
Therefore, we expected MDA-MB-231 cells to pass
through the microconstrictions in a shorter time com-
pared to MCF7 cells. However, due to the limitations of
the 4x objective lens, the cell boundaries were not in
sharp focus, posing challenges for cell segmentation and
resulting in lower statistical significance in the unpaired
t-test compared to the results obtained with the 10x
objective lens (Supplementary Fig. 3c). This indicated
reduced sensitivity in cell classification. As a result, for
most of our experiments, we utilized the 10x objective
lens for a device with 36 microconstrictions. This allowed
us to capture nine microconstriction channels within a
single field of view.

It is important to note that the maximum throughput of
the cDC+ATMQcD system can be achieved with the
appropriate setup using a combination of a 4x objective

lens with high-resolution imaging equipment. Moreover,
increasing the number of microconstriction areas can
enhance the system’s tolerance to fouling by providing
sufficient alternative microconstrictions and reducing the
effects of pressure fluctuations.

ATMQcD framework for rapid multivariate analysis

To enable clinical applications, high-throughput prob-
ing of cells using realistic samples from liquid biopsies is
pivotal, which requires faster cell movement and greater
detection efficiency. Therefore, developing an image
analysis system capable of tracking multiple fast-moving
objects simultaneously is critical.

Here, we utilized the passage time, area-in-constriction,
and deformation index as key measurements for our
deformability-based platform. Passage time refers to the
time it takes for a cell to pass through a microconstriction
(Fig. 2a).

As shown in Supplementary Fig. 4a, after entering a
microconstriction, a cell is squeezed and deformed by the
wall. The pressure of the wall is Fy,;, and when the cell
enters, the friction of the wall is friction = p - Fy, where
p is the friction coefficient of the microconstriction. In
this study, we considered the cell to be incompressible
during the relatively short entry time and applied the
parameter & to quantify the maximum deformation rate
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of cells following the formula proposed in'®:

_R-R,

. 1)

Ee
where R is the radius of the cell and R, is half the width of
the microconstriction.

Once the cells enter the microconstriction, as depicted
in Supplementary Fig. 4b, a noticeable pressure difference
arises, with more significant pressure on the left than on
the right. This pressure difference, denoted AP, results in
a horizontal force exerted from left to right. Previous
studies have highlighted that cell passage through
microconstriction can be divided into two distinct stages:
creep and transit stages®”*'. In line with these findings, we
have also employed this approach to analyze the cell
passage process, distinguishing between the creep and
transit stages. Specifically, the creep stage is defined as the
period from the moment the cell is detected at the
entrance of the microconstriction until it is entirely inside
the microconstriction.

In our analysis, we consider the cell to be a viscoelastic
homogeneous entity. As a result, we employ power-law
rheology to describe the variations in cell strain (¢) during
the creeping stage (tcreep). The relationship between € and
tereep- is described by Eq. (2)'%2223 which is as follows:

,_ AP <amw>ﬁ 2)

E cell to

where AP = 1/tceep [ Ap(t)dt represents the mean pres-
sure difference in the microconstriction; Ey is the
Young’s Modulus of cells;  is the power-law exponent,
and the value is 0.1 ~ 0.5 of cell?2. Since t is the timescale,
which can be arbitrarily set to 1s, Eq. (2) can be
transformed into Eq. (3):

1

E B
tcreep = (83 Cell) (3)

AP

The cell area can be calculated as Ay = - R%. The
deformation rate of cells can be rewritten as:

Se:R_Rezl—&:l—Re.ﬁ (4')
R R \/Acell

In constriction-based deformability cytometry, as shown
in Eqgs. (1)—(4), passage time is positively correlated with
friction and negatively correlated with pressure and cel-
lular deformability. Additionally, cell area has a positive
relationship with cell passage time. The deformation
index, which is defined as the degree of cell deformation
within the microconstrictions and previously described in
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4 s .
Eq. (5)** was also utilized in our measurements:

Deformation_index = (H—W)/(H+ W) (5)

where H and W represent the length and width of a cell
as it passes through a narrow microconstriction (Fig.
2b). The area of the cell body that is captured by a high-
speed camera while the cell is within the microcon-
striction is referred to as the "area-in-constriction"
(Fig. 2b).

To automate training set generation, multiobject
tracking, segmentation, quantification of required para-
meters, and classification of cells with different metastatic
potentials, we developed the ATMQcD computational
framework (Fig. 2c). The ease of system operations
enabled us to collect multivariate data on a single-cell
resolution, such as passage time, cell size (area), area-in-
constriction, and deformation index, using image
processing.

Generating training datasets and cell detection

Generating training datasets and manually labeling
them is typically a time-consuming process. Here, we
developed an automated training set generation compo-
nent for the ATMQcD computational framework to
expedite the analytical process and enhance the trans-
ferability of the computational framework, which can
reduce labeling time by up to 90%. As illustrated in Fig.
3a, background subtraction and thresholding can produce
a clear foreground mask of cells, while dilation improves
the quality of the cell boundary. To improve the model’s
robustness, we applied Yolov5’s mosaic augmentation and
other augmentations to the training set (Fig. 3b). The
Yolov5-based model’s training loss, precision, recall, and
mean average precision (mAP) are shown in Fig. 3c.

The Yolov5-based model demonstrated excellent per-
formance in cell detection (Fig. 3d). Because high-speed
cameras generate long time-lapsed videos with high frame
rates, fast deep learning models are necessary, which the
Yolov5-based model can effectively adapt to, significantly
reducing detection time. The training parameters for
Yolov5 were Ir (learning rate) =0.01; optimizer: SGD
(stochastic gradient descent), momentum = 0.937; the
training dataset comprised 160 images, and the validation
dataset comprised 40 images. Yolov5 completed training
for 314 epochs in 1.015 h.

During the practical operation of our system, we mea-
sured an average processing speed of 0.0113 s per frame,
which is 1771.6% faster than the previously reported rate
of another high-throughput algorithm for object detection
called Faster R-CNN (0.2s per frame)*. This result
highlights the significant advantage of Yolov5 in cell
detection.
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Cell tracking for quantification of deformability

To establish a quantitative parameter for measuring cell
stiffness, multiple parameters related to cell morphology
and motility during deformation should be obtained and
applied to fit the mechanical model based on power-law
rheologyls’”. Here, individual cells were identified and
tracked using Yolov5-based object detection in combination
with cell tracking. The Deep SORT algorithm was used for
cell tracking based on the Yolov5 output (Fig, 4a)*

To determine the passage time, focal regions were estab-
lished in the entrance (blue region) and exit (green region)
images (Fig. 4b, c). When a cell was detected in the blue
region, the program recorded the cell’s identifier (ID) and
entry time (Fig. 4b). The cell's ID and the timestamp of
detecting the cell in the green region were recorded as the
time of exit (Fig. 4b, ). Each timestamp corresponds to a
single video frame. Passage time was calculated by sub-
tracting the first time the cell was recorded in the blue
region from the last time it was recorded in the green region.

Cell segmentation for morphological data
To quantify the deformation index, cell size, and area-
in-constriction, we employed a deep learning model based

on UNet to segment cells identified by YOLOv5. The
program saved and processed images only when a cell was
detected in the blue or green focus point to reduce pro-
cessing time. After detecting a cell, the program obtained
the cell’s minimal enclosing rectangles and the cell’s area
(Acenr) before entering the microconstrictions and the cell
area inside the microconstrictions. The block unit in
UNet is illustrated in Supplementary Fig. 5a.

We utilized the ResUNet++ segmentation model with a
residual unit for identity mapping (Supplementary Fig. 5b)
to achieve good segmentation results (Fig. 4d). The gen-
eral architecture of our model is depicted in Supple-
mentary Fig. 5c.

Sensitive assessment of the metastatic potential of cancer
cells using motility and morphometric measurements
We evaluated the microfluidic system’s ability to distin-
guish cells with different deformability by using two breast
cancer cell lines, MCF7 and MDA-MB-231, with varying
metastatic potential. Previous studies have shown that MDA-
MB-231 cells are more invasive and deformable than MCF7
cells’”. To compare the two cell lines, we determined the
passage time, deformation index, and area in constriction.
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Our results demonstrate that MDA-MB-231 cells have a
significantly shorter passage time than MCF7 cells, indi-
cating that MDA-MB-231 cells have a higher metastatic
potential and are better able to deform and pass through
narrow spaces (Fig. 5a). The area under the receiver
operating characteristic curve (AUC) for passage time was
0.937, indicating that it was an effective parameter for
distinguishing between the two cell lines based on their
deformability. In contrast, the deformation index and
area-in-constriction were significantly higher in MCF7

(Fig. 5b, c). These parameters do not have strong pre-
dictive capabilities on their own, as evidenced by their
lower AUC values (0.65 and 0.62, respectively) compared
to passage time (Supplementary Fig. 6).

However, the overall prediction capabilities are expected
to be robust when used as part of a multi-index classifica-
tion approach in conjunction with other indices. To
demonstrate this, we evaluated the accuracy of support
vector machine (SVM) classification models based on var-
ious combinations of cellular deformability measurements.
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Fig. 5 Sensitive assessment of the metastatic potential of cancer cells in heterogeneous blood samples using motility and morphometric
measurements. a Box plot reflecting the difference in passage time for MCF7 and MDA-MB-231 cells. b Box plot reflecting the difference in the
deformation index for MCF7 and MDA-MB-231 cells. ¢ Box plot reflecting the difference in the area-in-constriction for MCF7 and MDA-MB-231 cells.
d Three-dimensional plot showing the classifying efficiency of support vector machine (SVM) in classifying MCF7 and MDA-MB-231 using three-

dimensional data (passage time, area-in-constriction, and original cell size) as input. The hyperplane dividing the two types of cells determined by
SVM is displayed in three-dimensional space. Sample size in (a—d): n(MCF7) = 263; n(MDA-MB-231) = 281. e Box plot reflecting the difference in

cancer cell diameter and white blood cells (WBCs). f The receiver operator characteristic (ROC) curve demonstrates the performance of classifying
cancer and WBCs based on cell diameter. g Box plot reflecting the difference in cell diameter between MCF7 and MDA-MB-231 cells. h ROC curve
demonstrating the performance of classifying MCF7 and MDA-MB-231 cells based on cell diameter. Statistical significance was calculated by unpaired
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When considering both passage time and cell size, the SVM
model achieved an accuracy of 0.89260 (Supplementary
Table 3, Supplementary Fig. 7). However, incorporating
additional parameters such as cell size and area-in-
constriction into the model input improved the accuracy
to 0.92394 (Supplementary Table 3, Fig. 5d). These findings
demonstrate that high-dimensional data from motility and
morphological measurements can enhance the classification
of cells with varying metastatic potentials.

We further evaluated the potential of cell diameter
gating to distinguish cancer cells from white blood cells in
liquid blood biopsy samples. MCF7 and MDA-MB-231
cells were used to represent cancer cells, while white
blood cells were separated from whole human blood by
red blood cell lysis following procedures stated in pre-
vious literature'®. We used the ATMQcD framework to
determine an appropriate threshold for cell diameter. Our
results demonstrated that our system achieved an accu-
racy of 89.5% in classifying cancer cells from white blood
cells (Fig. 5e, f). Our findings suggest that cell diameter is

an efficient parameter for accurately classifying cancer
cells from white blood cells based on our deep learning
algorithms. Further validation using tumor-derived cells
or circulating tumor cells separated from patient blood is
warranted to further confirm the efficiency of this dia-
meter gating method in actual liquid biopsy samples.

We also tested the cell diameter between various
metastatic subtypes (Fig. 5g, h) and demonstrated that
MCEF7 and MDA-MB-231 cells involved in this study had
similar size distributions.

Improving stratification of the cancer cell metastatic
potential based on cell trajectories and multidimensional
data

Previous studies utilizing cDC-based systems have
mainly relied on passage time as the primary measure of
deformability'®*’. However, direct readouts such as pas-
sage time, deformation index, and area-in-constriction are
affected by cell sizes, which limits their sensitivity in
quantifying  stiffness, especially in cells with
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heterogeneous sizes. Although some cDC-based systems
have measured multiple parameters to improve sensitiv-
ity*®, the multiparameter approach is more suited for cell-
type classification rather than precise quantification of cell
stiffness in clinical sample processing. Therefore, obtain-
ing a deformability quantification independent of cell size
is critical for the sensitive and effective evaluation of
cancer cell invasiveness.

Prior studies have reported group-based quantification
of cell stiffness'®. Here, we aimed to optimize the current
quantification methods by implementing trajectory ana-
lysis and deep learning to measure the stiffness of single
cells with greater sensitivity. We aimed to improve the
sensitivity of evaluating cancer cell metastatic potential.
To accomplish this, we recorded the detailed deformation
process of each cell to obtain a more straightforward
quantification of cellular deformability (Fig. 6a). We
analyzed the cells’ trajectories in terms of their distance
from the start of the creep phase region, and the time it
took the cells to pass through this region, with the time-
position curves of cells shown in Fig. 6b, c.

Using trajectory analysis, we determined the time
required for cells to travel through the creep stage
(tcreep). We applied the mechanical model of cells based
on power-law rheology to calculate parameters directly
proportional to the elastic modulus'®??, obtaining Z.,ee.
The specific value of the ¢, constant for our ¢cDC device
can be obtained as stated in
¢ =R, - /T =10um - \/rr = 17.7245 um (where 10 pm
is the width of microconstriction). Based on 2, we quickly
determined c¢I for the two cell types, which directly
quantifies the stiffness of a group of cells, using Eq. (6)
according to the collected data of £ .

The power-law exponent [ for cells typically falls
between 0.1 and 0.5'°. Here, we evaluated f ranging from
0.1 to 0.5 and applied Eq. (6) to assess their performance
in actual fitting data of £, (Fig. 6d). We found that
B = 0.5 resulted in the highest fitting performance in both
cell types (Supplementary Fig. 8), with R-squared values
equal to 0.9919 and 0.8194 for the actual fitting data of
MDA-MB-231 and MCF7, respectively.

We calculated the theoretical cI indices for MCF7 and
MDA-MB-231 cells using Eq. (6), with B equal to 0.5 and
¢2 equal to 17.7245. Our results showed that the cI value
for MCF?7 cells was higher than that for MDA-MB-231
cells (Supplementary Table 4), indicating that MCF?7 cells
were stiffer than MDA-MB-231 cells and suggesting that
MDA-MB-231 cells had a higher metastatic potential.
These findings were consistent with these two cell types’
mechanical and physiological properties’.

We performed estimations of the elastic modulus for
MCEF?7 and MDA-MB-231 cells to validate our system’s
capabilities further. Through fluidic simulation on the
¢DC device, we determined that the average pressure drop
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(AP) across the microconstrictions was 162.82 Pa (Sup-
plementary Fig. 9a). Utilizing this AP value and the cl
indices of the two cell types (Supplementary Table 4), we
calculated the elastic modulus of MCF7 and MDA-MB-
231 cells to be 2.881kPa and 1.342kPa, respectively
(Supplementary Fig. 9b).

These values align closely with those reported in pre-
vious studies that employed single-beam acoustic twee-
zers (MCF7: 2.650 kPa; MDA-MB-231: 1.527 kPa) and
atomic force microscopy (MCF7: 2.44 kPa; MDA-MB-
231: 1.32 kPa)*>*°, Furthermore, another study utilizing
microfluidics with microconstrictions also obtained
similar elastic modulus values for these two cell types
(MCF7: approximately 2kPa; MDA-MB-231: approxi-
mately 1.5 kPa) when using an inlet pressure of 100 Pa®.
These consistent findings with the literature further vali-
date the applicability and reliability of our system.

The performance of ¢cDC technologies in assessing cell
stiffness is influenced by the geometric dimensions of
microconstrictions, making them more effective within
specific size ranges. To determine the optimal size range
for our system, we conducted linear regression analyses to
examine the relationships between cell sizes and the
elastic modulus of MCF7 and MDA-MB-231 cells (Sup-
plementary Fig. 9¢, d). We hypothesized that the depen-
dent variable of the linear regression model (elastic
modulus) for each cell type would fall within the mean
elastic modulus * the standard deviation (SD) when the
independent variable (cell size) was within the optimal
range.

Using this criterion, we determined the suitable size
ranges for MCF7 and MDA-MB-231 cells (Supplementary
Fig. 9¢, d). We identified their overlap as the optimal size
range for our system, which ranged from 547.1357 to
1034.096 um?. Correlation analysis demonstrated no sig-
nificant correlation between the elastic modulus and cell
sizes of MCF7 and MDA-MB-231 cells within this opti-
mal size range (Supplementary Fig. 9e, f). The results
indicated that applying the optimal size range for filtering
cell data effectively eliminated the influence of cell sizes
on the quantification of stiffness.

For clinical or industrial applications, the stiffness value
derived from £, can directly assess the metastatic
potential of each cell, and accompanying machine learn-
ing models built on high-dimensional profiling data of cell
populations could provide a practical approach for patient
stratification or staging.

Maintaining robust evaluations in the presence of
heterogeneous mixed samples

In clinical settings, tumors are typically heterogeneous
tissues, meaning that cancer cells within the same tumor
may exhibit different phenotypes, including varied meta-
static potentials®'. According to transcriptomic analysis,
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the proportion of invasive TNBC cells in highly metastatic
triple-negative breast cancer (TNBC) tumors is usually
greater than 20%, with some cancer cell populations
reaching up to 80%>.

To showcase the capacity of our system to detect phe-
notypic heterogeneity among cancer cells in real clinical
samples, we simulated the compositions of invasive cancer
cells in triple-negative breast cancer (TNBC) by creating
four groups of mixed samples. These groups, labeled A, B,
C, and D, represent different MCF7:MDA-MB-231 con-
centration ratios of 1:4, 4:1, 1:9, and 9:1, respectively. Cells
were found to exhibit a similar size distribution, within the
optimal range of 547.1357-1034.096 um?® (Supplementary
Fig. 10a). It is important to note that the size of cells does
not correlate with the c1 index (Supplementary Table 5).

The results presented in Fig. 7a indicate that as the
proportion of metastatic cancer cells increased, the cl
index of the cell population decreased. The average cl
index values were as follows: 390.5 for MCF7 only, 377.4
for Group D, 369.7 for Group B, 257.7 for Group A, 216.3
for Group C, and 99.0 for MDA-MB-231 only. This

demonstrates that the cl index effectively reflects the
proportion of highly metastatic cancer cells (MDA-MB-
231) in cellular samples.

To assess the significant differences in the cl index
among the six groups of samples, we conducted both
Student’s t-test and Mann-Whitney U test in a groupwise
manner. Figure 7b illustrates the results of these tests.
According to the Mann-Whitney U test, when the pro-
portion of highly metastatic MDA-MB-231 cells ranged
from 10% (Group D) to 20% (Group B) of the cell
population, the c1 index was significantly lower than that
of pure MCF7 cells. When the proportion of metastatic
MDA-MB-231 cells increased to 80% (Group A) and 90%
(Group C), the Mann-Whitney U test and Student’s ¢ test
identified significant differences.

These findings serve as clear evidence of the potential of
our system in identifying phenotypic heterogeneity and in
practical application533, such as patient stratification or
staging based on metastatic potential.

It is important to highlight that MCF-7 and MDA-MB-
231 cell lines are commonly used as standard models due
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to their well-established differences in metastatic poten-
tial. To evaluate the utility of our systems in clinical
applications, we anticipate further validation involving
patient-derived cancer cells.

Broad applicability of the integrated system demonstrated
with lung and bladder cancer cell samples

Having confirmed the high efficiency of our ¢DC +
ATMQcD system in breast cancer, we extended our

evaluation to other cancer types, namely, lung (A549) and
bladder (T24) cancer, to assess the system’s broad
applicability. We enhanced the metastatic potential of
each cell line by maintaining them under hypoxic condi-
tions, which has been shown to induce epithelial-
mesenchymal transition (EMT) and cancer cell
invasiveness®**°,

We employed real-time quantitative reverse transcrip-
tion polymerase chain reaction (QRT-PCR) to assess the
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expression levels of three biomarkers, vimentin, KRT1I6,
and KRT18, associated with metastasis and EMT in can-
cer cells following a 48-h hypoxia treatment. Previous
studies have identified vimentin and KRT16 as significant
factors associated with metastasis and EMT>"3°, whereas
KRT18 has been shown to correlate negatively with
EMT**2, Our results confirmed that hypoxia treatment
upregulated the expression of vimentin and KRT16 while
downregulating the expression of KRT18 in both cancer
cell types (Fig. 7c), indicating the upregulation of EMT
and metastasis.

After confirming the upregulation of biomarkers
reflecting EMT and metastasis following hypoxia treat-
ment, we assessed both hypoxia-treated and normoxia-
treated cancer cells within a similar size range using our
c¢DC + ATMQcD system (Supplementary Fig. 10b, c). We
evaluated the suitability of the power-law exponent
B =10.05 for A549 and T24 cells by varying p from 0.1 to
0.5. Using Eq. (6), we assessed the performance of different
B values in fitting the t..eep, data. Supplementary Fig. 11
demonstrates that when f = 0.5, the R-squared values for
fitting the A549 and T24 data were 0.9423 and 0.9923,
respectively. This indicates that a value of B=0.5 is
appropriate for accurately quantifying the stiffness of both
A549 and T24 cells. According to Fig. 7d, e, hypoxia
treatment significantly decreased the c1 index of lung and
bladder cancer cells, indicating decreased cellular stiffness.
Correlation analysis revealed no significant correlation
between the sizes of these cells and their corresponding c1
index values (Supplementary Table 5). The observed
decrease in the cI index provides robust evidence to
confirm the ability of our ¢DC+ ATMQcD system to
evaluate the metastatic potential of multiple cancer types.

Overall, our ¢cDC + ATMQcD system provides a robust
quantification of cellular stiffness using the c¢I index,
which is sensitive enough to detect changes in cell inva-
siveness caused by phenotypic differences or micro-
environmental changes across multiple cancers.

Discussion

Cell deformability is a key feature associated with many
diseases, including cancer, cardiovascular disease, and
malaria® ®*, Numerous techniques have been developed
to measure cellular deformability, including atomic force
microscopy, microaspiration, optical stretching, and
parallel-plate rheology (Supplementary Table 1). How-
ever, these approaches have limited throughput, typically
measuring only 10 cells per minute, and require expen-
sive, complex, and bulky equipment™. Therefore, the
challenges in accurately measuring cellular deformability
continue to hinder their translation for clinical and
industrial applications.

In recent years, microfluidic deformability cytometry
has emerged as the most promising approach to
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measuring cellular deformability due to the introduction
of microfluidic technologies (Supplementary Table 1) that
allow for extremely high throughput. However, the future
of microfluidics-based deformability cytometry lies in
developing sensitive, low-cost, high-throughput, user-
friendly, and mass-producible systems for applications
outside of research laboratories. Achieving a balance
across these criteria can be challenging since they are
often mutually exclusive. The xDC and sDC systems are
the most high-throughput models for measuring cellular
deformability; however, they rely on fluid flow forces to
induce cell deformation. These techniques require strong
fluidic forces to deform the cells effectively.

Consequently, in the xDC and sDC methods, the cells
experience rapid movement across the microchannels,
resulting in higher velocities. This necessitates using high-
frame-rate cameras to capture rapid cell motion passage
accurately. In contrast, the ¢DC approach involves a
slower movement speed of objects due to its reliance on
direct contact between cells and the channel walls.

The design of ¢cDC devices intentionally incorporates
narrow channels that exert pressure on cells, causing
them to deform and pass through the channels gradually.
This fundamental distinction in operating principles is
also evident in previous studies. For example, investiga-
tions involving sDC and xDC typically employ high-speed
cameras capable of operating at frame rates as high as
10,000 frames per second'®'®, which can result in
increased costs, especially in resource-limited settings or
developing countries. On the other hand, ¢cDC can be
adequately captured using cameras with lower frame rates
of fewer than 1000 frames per second!®*. However, it is
important to note that the throughput of ¢DC is com-
paratively lower than that of xDC and sDC methods'®.

To overcome these challenges, we developed a cellular
deformability measuring system that balances these cri-
tical criteria for field applications. Our ATMQcD com-
putational framework allows for high-throughput and
automatic sample processing and data analysis while
remaining low-cost and straightforward to fabricate. By
combining cutting-edge technologies for object detection
(Yolovs), tracking (Deep SORT), and segmentation
(ResUNet++), the ATMQcD computational framework
can capture multiple fast-moving objects in one field of
view and enable high-throughput cell measurement.
ResUNet++ can be replaced with other segmentation
deep learning models in future applications if updated
versions are developed. With the help of ATMOcD, we
obtained multiple parameters related to cell morphology
and motility, including passage time, cell size, and area-in-
constriction. We developed a simple SVM classifier based
on these parameters, which achieved a high accuracy of
0.934 in breast cancer cells with different metastatic
potentials. Further studies can incorporate more
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parameters with SVM for analysis. Furthermore, the
ATMQcD framework can be combined with biomecha-
nical analysis based on cell trajectories to quantify cell
stiffness (cI index) proportional to the cell elastic
modulus.

The ¢cDC+ ATMQcD system is a groundbreaking
platform that integrates a deep-learning computational
framework in quantifying single-cell deformability. By
combining microfluidics and deep learning, the system
achieved a high throughput of approximately 25,000 cells
per minute, allowing for high sensitivity, low cost, and
ease of operation. In the future, the ¢cDC+ ATMQcD
system is expected to find wide applications, including
liquid biopsy, drug testing, and investigation of disease
mechanisms, by integrating with microfluidics for bio-
marker enrichment*>*” and in-vitro disease models***°.

The system was validated across various cancer types,
such as breast, lung, and bladder cancers, demonstrating
its potential in evaluating cancer cells’ metastatic potential
based on stiffness after treatment. This broad applicability
highlights the clinical relevance of the cDC + ATMQcD
system. Furthermore, the system addresses previous
deformability cytometric system limitations in processing
throughput and cost without compromising sensitivity.
Clinical trials are in progress to validate the c¢DC +
ATMQcD system’s potential as a promising tool for
routine clinical and research applications.

Materials and methods
Design and fabrication of cellular deformability probing
chip

The pattern of microchannels was drawn by AutoCAD.
Fluid flow was simulated by COMSOL Multiphysics 5.5
using the laminar flow module. An extremely fine mesh
was built for the simulation to obtain precise results.
During the simulation, polydimethylsiloxane (PDMS) was
applied as the material for the channel walls. The
microchannel layer was developed using standard pho-
tolithography and soft lithography with a negative pho-
toresist (Cat#SU-8 2025, MicroChem, United States) and
PDMS (Cat#01673921, Dow, United States), following the
instructions as indicated and as previously reported'®*°.
When fabricating the master mold, the photoresist was
spin-coated on a silicon wafer with a spinner (Cat# KW-
4A, SETCAS Electronics, China) by ramping to 500 rpm
for 5-10's with a 100 rpm/s acceleration and then ramp-
ing to 2500 rpm with a 300 rpm/s acceleration for 30s,
resulting in a 30 um-thick photoresist layer.

The master mold was surface-modified by silanization
using trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane
(Cat#448931-10G, Sigma-Aldrich, Germany) before soft
lithography”’. During soft lithography, PDMS was poured
onto the silanized silicon wafer, followed by stringent
degassing using a vacuum pump (Cat#167300-22, Rocker,
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China). The inlet and outlet of the microfluidics were
punched on the PDMS microchannel layer before bond-
ing to a glass cover slide.

Cell culture and on-chip processing

The lung cancer cell line A549, bladder cancer cell line
T24, and two breast cancer cell lines, MCF-7 and MDA-
MB-231 (ATCC, United States) were used in this study.
MCE-7 originated from estrogen and progesterone receptor-
positive breast cancer subtypes, while MDA-MB-231 origi-
nated from a more aggressive triple-negative subtype®'. All
the cell lines were adherent cells cultured in high-glucose
Dulbecco’s Modified Eagle Medium (DMEM) (Cat#10566-
016, Thermo Fisher, United States) with 10% fetal bovine
serum (FBS) (Cat#10270106, Thermo Fisher, United States)
in a 37°C incubator (5% CO2). Hypoxia treatment of lung
and bladder cancer cell lines was performed by incubating
the cells in a hypoxia incubator (Cat#381, Thermo Fisher,
United States) under 2% O2 at 37 °C.

Before processing with microfluidic chips, cells were
detached by trypsin (Cat#R001100, Thermo Fisher, United
States) and diluted to approximately 5x 10° cells/mL in
DMEM culture media with 2.5% (v/v) bovine serum albu-
min (Cat#B14, Thermo Fisher, United State). Before each
run, the microfluidic chip was washed with 2.5% bovine
serum albumin under a flow rate of 20 uL/min for 10 min,
followed by washing with phosphate-buffered saline at
50 uL/min for 2min. Air bubbles were removed from
microchannels before priming cells into the chip. After
washing, the cells were primed into the microfluidics at a
50 uL/min flow rate. A representative timelapse showing the
optimal flow conditions in the ¢DC device is shown in
Supplementary Video 1. A portable and low-cost high-speed
camera (MV-A5031MUS815, Dahua Technology, China)
operated at 988 frame-per-second (fps) was mounted to the
microscope to record images for analysis.

The fluidic simulations revealed that one-third of the
microconstriction-related device fouling in a single ¢cDC
device increased the flow velocity by approximately 4 um/s
and the fluidic pressure at microconstrictions by 20Pa
(Supplementary Fig. 12a). To investigate the impact of
microconstriction-related device fouling on cell measure-
ments, we compared the cl indices of cells from the same
batch using the same cDC device under different fouling
statuses. Specifically, we recorded images with 1, 2, 3, or 4
fouling within the same group of microconstrictions and
found no significant difference in the measurements (Sup-
plementary Fig. 12b). To ensure sensitivity, if over 3 micro-
constrictions in one group had microconstriction-related
device fouling, then the recorded images were discarded.

Design of the ATMQcD platform
The major measurements for evaluating cellular
deformability include passage time and deformation
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index. The definition of these two measurements is shown
in Fig. 2a, b. To achieve automated detection and quan-
tification of these measurements, we developed a com-
putational framework based on deep learning called
ATMQcD (Fig. 2c¢).

The major elements in this framework include (i) the
background subtraction method to obtain each cell’s
position; (i) training of Yolov5®® using images and
annotation from the background subtraction method; (iii)
object tracking based on conjugating Yolov5 and deep
SORT?’; (iv) calculation of the passage time using Yolov5
and deep SORT; (v) manual setting of the focus point; (vi)
cutting cell images (size of pixel: 200x 200 or 50x 50)
when the cells were crossing the focus points; (vii)
training of ResUnet++ using images obtained in step (vi);
(vii) calculating deformation index and size of the cell by
ResUnet++"7; and (viii) connecting the passage time and
the area size of each cell.

In this framework, Yolov5 was used to detect the cell
and track the trajectory of the cell by Deep SORT. After
recording each cell’s position and trajectory, ResUNet-+-+
was applied to calculate each cell’s area. The background
subtraction process was implemented by the OpenCV
module of Python 3.8. Yolov5 was implemented by
PyTorch. ResUNet++ was implemented by PyTorch.
Deep SORT was implemented by PyTorch.

Generating training datasets and cell detection

Establishing a deep-learning-driven automated system
requires a large amount of input as the training set.
However, manual annotation of cells is labor-intensive
and does not fit the frequently changed imaging settings
in different field applications. In light of this problem, our
ATMQcD platform applied background subtraction,
which could detect moving objects from the difference
between the current frame and reference frame®®, to
efficiently generate a large amount of training data.
Background-subtracted images were transformed into
binary images by thresholding, followed by dilation to
increase the boundary of the regions of foreground pixels
and reduce noise.

Classifier based on SVM

A support vector machine (SVM) is a supervised
machine learning model that uses classification algo-
rithms for two-group classification problems. After giving
SVM model sets of labeled training data for each para-
meter, the algorithm can categorize different cell types. In
this article, the kernel function uses ‘poly’, degree =3,
coef0 =1, and C=5.

Trajectory and deformation analysis of cells
We used the ATMQcD computational framework to
perform trajectory and deformation analysis on the cells
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to assess their stiffness accurately. In this study, by col-
lecting data from 526 MCEF7 cells and 562 MDA-MB-231
cells, we found that the average diameters of MCF7 and
MDA-MB-231 were 12.75 and 13.15um, respectively.
Therefore, we defined the region of the creep stage as
12.95 um before and after the entrance of a micro-
constriction. In this way, we can quantify the ¢, for
each cell involved.

As stated, we have obtained the relationship between £,
Young’s Modulus (E.), and the parameter. g, in Eq. (3):

1
E B
tcreep == (811%6[1) (3)

The parameter ¢, was defined by Eq. (4) as follows:

R—R, R, R, -
€ = g Ry Ry (4)
R R \/Acell

where constant ¢; = Eceyé /AI—)%, and ¢; = R, - /7. AP. The
mean pressure drop across the microconstriction is assumed
to be a constant in each experimental run under the same
infusion flow rate. Therefore, ¢cI can be seen as a
measurement proportional to the cell elasticity, while c2 is
a constant proportional to the width of the microconstric-
tion. The power-law exponent 8 equals 0 when the material
is purely elastic and equals 1 when the material is a purely
viscous fluid. In cells, 8 usually falls into 0.1-0.5"°.

Set Y= fereeps the equation for cell area and creeping
time can be written as:

2 ) (6)

y :f(Acell) = tcreep =1 (1 - 1
Iélcell2

f(Acn) means that the independent variable of the

function is Aey.

gRT-PCR for biomarkers of EMT and metastasis

RNA extraction, reverse transcription, and qPCR were
conducted based on the RNA extraction kit (Cat# R401-
01), HiScript IIT All-in-on RT SuperMix (Cat# R333-01),
and ChamQ Universal SYBR qPCR kit (Cat# Q711-02)
from Vazyme, China, respectively. One microgram of
RNA was used for each reverse transcription reaction.
The qPCR reactions were conducted by a BIO-RAD CFX
Real-Time PCR machine. The baseline threshold, auto-
matically calculated by Bio-Rad CFX Manager (Version
3.1), was adopted to retrieve the quantification cycle (Cq)
values. GAPDH was used as the reference gene for nor-
malization. Primers for GAPDH, vimentin, KRT16, and
KRT18 are shown in Supplementary Table 5.
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