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Abstract
Nanoscale cantilevers (nanocantilevers) made from carbon nanotubes (CNTs) provide tremendous benefits in sensing
and electromagnetic applications. This nanoscale structure is generally fabricated using chemical vapor deposition
and/or dielectrophoresis, which contain manual, time-consuming processes such as the placing of additional
electrodes and careful observation of single-grown CNTs. Here, we demonstrate a simple and Artificial Intelligence (AI)-
assisted method for the efficient fabrication of a massive CNT-based nanocantilever. We used randomly positioned
single CNTs on the substrate. The trained deep neural network recognizes the CNTs, measures their positions, and
determines the edge of the CNT on which an electrode should be clamped to form a nanocantilever. Our experiments
demonstrate that the recognition and measurement processes are automatically completed in 2 s, whereas
comparable manual processing requires 12 h. Notwithstanding the small measurement error by the trained network
(within 200 nm for 90% of the recognized CNTs), more than 34 nanocantilevers were successfully fabricated in one
process. Such high accuracy contributes to the development of a massive field emitter using the CNT-based
nanocantilever, in which the output current is obtained with a low applied voltage. We further showed the benefit of
fabricating massive CNT-nanocantilever-based field emitters for neuromorphic computing. The activation function,
which is a key function in a neural network, was physically realized using an individual CNT-based field emitter. The
introduced neural network with the CNT-based field emitters recognized handwritten images successfully. We believe
that our method can accelerate the research and development of CNT-based nanocantilevers for realizing promising
future applications.

Introduction
Nanoscale cantilevers (nanocantilevers) have been

widely studied in recent decades. Their mechanical
behavior provides enormous benefits in scientific and
practical scenarios; e.g., tracing a shape/surface with a
nanocantilever allows us to measure the structure of
materials at the nanoscale, or even smaller scales1–4. A

resonantly driven nanomechanical vibration5–8 can per-
form ultra-sensitive detection of various physical quan-
tities (for example, force9,10, mass11,12, and electric/
magnetic spin13), which has led to the development of a
wide range of applications, including chemical/biological/
inertial sensors14–17, nanomechanical computing18–21 and
quantum information science22–24. The electric property
of the nanocantilever has enabled the development of a
nanoscale field emitter25–30, which is often employed as
an electron source31 for flexible displays, X-ray computed
tomography, and optical applications32–34. Particularly,
when the nanocantilever (and nanobeam) is fabricated
using a single carbon nanotube (CNT), its remarkable
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mechanical property enhances the sensitivity to a very
high level35–37. Outstanding electrical and thermal con-
ductivities also contribute to the development of excellent
nanoscale emitters38,39, which can be combined with
nanomechanical systems to create novel information
systems such as nanoscale communication devices40–43.
Toward the development of field-emission devices

incorporating CNT-based nanocantilevers, the efficient
fabrication of this nanostructure should be prioritized.
Several methods have been explored for this fabrica-
tion39,44,45. One major method is based on chemical vapor
deposition (CVD)33,39,46, wherein straight single CNTs are
grown at certain positions47–49. This type of CNT can be
used as a nanocantilever (or nanobeam), which has been
favorably utilized in several pioneering studies (for exam-
ple, refs. 11,35–37,50). However, it generally shows low pro-
duction efficiency, which is acceptable only in scientific
and/or early-stage prototyping efforts that do not require
more than several samples. Hence, other approaches have
been explored to efficiently develop a massive nanocanti-
lever44,45. An array of single CNTs was successfully fabri-
cated using the dielectrophoresis method51,52. This
emerging approach requires additional electrodes to place
single CNTs at the desired positions, which requires further
investigation. Although CVD-based methods can fabricate
arrayed CNTs, this type of structure is unsuitable for
developing a massive field emitter31,53,54. Such CNTs are
typically bundled55–57 and slightly bent, conditions that are
incompatible with use as nanocantilevers. A silicon-based
massive nanocantilever58 and field emitter59,60 have been
fabricated using a semiconductor process.
Here, to efficiently fabricate massive field emitters with

CNT-based nanocantilevers, we report a semiconductor-
process-based method that utilizes artificial intelligence
(AI). We used straight single CNTs, which fit the shape of
the nanocantilevers. The CNTs were fabricated using the
arc discharge method and dispersed in isopropyl alcohol
(IPA); by dropping them onto a silicon substrate, we
obtained many randomly positioned single CNTs. How-
ever, the problem with this approach is that the locations
of the single CNTs on the substrate are unknown. To
efficiently and accurately find and measure these posi-
tions, we developed an AI-assisted method; SEM images,
which show the surface of the substrate, were input to a
state-of-the-art deep neural network, Faster R-CNN61.
The network trained on the original dataset automatically
recognizes the CNTs, measures their position, and
determines the edge of the CNT to be clamped with an
electrode (see Fig. 1a). This information is used in the
fabrication process employing an electron beam (EB)
lithography to form the two electrodes (anode/cathode).
Our proposed AI-assisted method significantly shortens
the time required to find the CNTs and design the elec-
trodes on them. Our experimental results showed that we

successfully fabricated at least 34 nanocantilever-based
field emitters in one fabrication process. These emitters
contain a nanoscale gap between the emitter (the tip of
the single CNT) and counter electrode, as designed. The
length distribution of the nanocantilevers was within the
expected range.
We also showed a beneficial application of our massive

CNT-nanocantilever-based field emitters by applying
them to neuromorphic computing. Recently, this type of
computing framework (with neural networks) has
attracted much attention due to its outstanding char-
acteristics of high computational speed and low power
consumption when compared with the traditional von
Neumann architecture62–71. Prior work has shown that
bulk CNTs with functional chemical molecules contribute
to the realization of this novel computation framework72.
We found that an individual CNT-based field emitter
physically realized one of the key functions of the neural
network, namely, the activation function73. The output
current from the emitter exponentially responds to the
applied voltage29,39,42,60,74–76. This typical nonlinear
response realizes the activation function used in this
study. Our proposed AI-assisted method enables us to
investigate this computing application because it allows
for the fabrication of more than several hundred emitters,
as are required in the network. We emulate that our
neural network with the CNT-nanocantilever-based
emitters can recognize handwritten images successfully.

Results and discussion
AI-assisted fabrication of massive nanocantilevers
Our proposed AI-assisted fabrication process is pre-

sented in Fig. 1a. We attempted to fabricate massive
nanocantilevers from randomly positioned CNTs in a
limited area. The nanocantilever comprised a single CNT
clamped by a cathode, with the counter-electrode of the
anode receiving the electrons emitted from the tip of the
CNT (the structure is depicted in Fig. S2b in the Sup-
porting information). Tangled CNTs are first dispersed on
the substrate (see the section “Materials and methods”).
We then obtain SEM images that show each part of the
resulting substrate. However, it is unknown which image
contains the single CNTs and the specific locations of the
CNTs. To automatically find and measure their positions,
these images are input to the state-of-the-art neural net-
work of “Faster R-CNN61.” The recognized CNT (and the
marker) is surrounded by a bounding box, and the trained
network outputs the positions of the top-left and bottom-
right corners of the box, (x⌜, y⌜) and (x⌟, y⌟), respectively
(see Fig. 1b). The network also determines which edge of
the recognized CNT is suitable for the anode side. This
information is found in the output label, obtained by
training the network with our original dataset. These
outputs are then used to automatically create CAD design
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files to fabricate the trapezoidal electrode pattern. Finally,
a fabrication process (such as EB lithography) is used to
form the two electrodes (anode/cathode) according to the
information in this file. Note that the details of the fab-
rication process are provided in the “Materials and
methods” section. This AI-assisted method significantly
shortens the time required to find the CNTs and fabricate
the electrodes over them.
Employing the two-stage object recognition method of

Faster R-CNN provides outstanding capability in terms of
recognition, position measurement, and labeling of the
SEM images. The network consists of a convolutional
network (CNN), region proposal network (RPN), and
classifier, as shown in Fig. 1a. The CNN extracts the
feature contained in the input image and outputs it to
both the RPN and classifier. The RPN indicates the region
in the picture where the target object of the CNT may be
contained. This advantageous characteristic enhances the
recognition ability of the classifier; two kinds of infor-
mation are output by the network-the recognized position

(within a bounding box) and the label. A neural network
with these outputs is thus suitable for our goal. The
recommended edge for fabricating the anode is obtained
as the label, in addition to the position of the recognized
CNT within the bounding box whose top-left and
bottom-right corners are located at (x⌜, y⌜) and (x⌟, y⌟),
respectively. The label ∈{“⌜”, “⌝”, “⌞”, “⌟”, “M”} contains
two types of information—the recommended edge for the
anode (“⌜”, “⌝”, “⌞”, “⌟”) and the marker (“M”); see the
example shown in Fig. S1 in the Supporting information.
For example, in Fig. 1b, the two edges of the recognized
CNT, which is enclosed by the green box, are located at
(x⌜, y⌟) and (x⌟, y⌜), and the label= “⌞” indicates that the
anode should be fabricated around the edge (x⌜, y⌟). These
positions are represented in pixels according to a coor-
dinate system, with the origin o located at the top-left
corner. The neural network structure is the same as
described in the original study61, and the “Materials and
Methods” section provides the details of the dataset used
here and the training process of the network.

Take SEM images
showing markers and

randomly-positioned CNTs
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Fig. 1 AI-assisted fabrication of nanocantilever and recognition/fabrication example. a Framework of the AI-assisted fabrication. The SEM
image showing randomly positioned CNTs is input to the “Faster R-CNN61” neural network such that it can automatically recognize the CNTs. The
recognized CNT is surrounded by a bounding box, after which the trained network outputs the positions of the top-left and bottom-right corners of
the box, (x⌜, y⌜) and (x⌟, y⌟), respectively. In addition, this network decides which corner is preferable for positioning the anode, and the decision is
applied to the label (see b). With this information, our Python code automatically generates an electrode pattern and creates a CAD file that is used in
the nanoscale fabrication process. Finally, the massive nanocantilevers are simultaneously created, as shown in (c). b Example of the recognition
result of randomly positioned CNTs. The trained network successfully recognizes both the CNT and the marker with the bounding box. The label “⌜”
indicates that the top-left corner of the bounding box, which is one edge of the recognized CNT, is suitable for fabricating the anode. c Result of
fabrication with the proposed AI-assisted method. Our method enables the creation of dense nanocantilevers in a limited space on a single substrate
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After successfully recognizing the single CNTs and
obtaining the information shown in Fig. 1b, our Python
code, which is based on the library gdsCAD77, auto-
matically generates the pattern of the trapezoidal elec-
trodes in a CAD file. According to the pre-designed
shapes of the two electrodes, as shown in Fig. S2b in the
Supporting information, a pattern is automatically
designed with the central position (1), (2), and rotation
angle θ of the electrodes (see “Materials and methods”).
With these CAD files, the 110-nm-thick Au/Ti electrodes
were fabricated through EB lithography and deposition.
To form a hole around the nanocantilever, we also
patterned the rectangular etching area centered at (XHole,
YHole) using EB lithography. This central position was
calculated using (3) based on the information obtained
with Faster R-CNN. The silicon dioxide under the single
CNTs was then etched with buffered hydrofluoric acid.
We finally developed the nanocantilever by supercritical
drying of the substrate.
The result of the fabrication with the proposed AI-

assisted method is shown in Fig. 1c. Our method enables
the efficient fabrication of dense nanocantilevers from
randomly positioned CNTs in a limited space on a single
substrate. It is observed from Fig. 1c that the length and
size of the gap differ among the fabricated nanocanti-
levers. Such structural variances strongly affect the per-
formance of field emissions. In the next section, we
present the fabrication performance, particularly the

statistical performance in relation to CNT length and the
gap between the CNT tip and its supporting structure.
Note that in this figure, additional electrodes are con-
nected to the nanocantilevers. These electrodes were used
to measure the field-emission performances.

AI-assisted fabrication performance
Recognition and structural performance
We evaluated the recognition performance of the ran-

domly positioned CNTs based on recognition error ε (in
nm). This error describes the difference between the
original and recognized edge position of a single CNT (see
Fig. 2a). We manually inspected 96 recognized CNTs
using SEM to measure the error in pixels, and the
resulting histogram is depicted in Fig. 2a. To obtain this
data, the error in nm was calculated by rescaling the
measured error at 7.143 nm per pixel. We found that we
successfully measured the position of approximately 60%
of the recognized CNTs within the error of ε ≤ 150 nm.
We designed the cathode with the upper base
WU= 300 nm (see Fig. S2b). This part holds the CNT to
form the nanocantilever.
Even with the state-of-the-art AI-based recognition

method of the Faster R-CNN, a large recognition error is
observed in Fig. 2a. Indeed, although the median of ε is
125.5 nm, the average and standard variance of the
recognition error were calculated as 567.4 and 1161.8 nm,
respectively. These large values occur because the
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Fig. 2 Recognition and fabrication performances of the CNT nanocantilevers. a Recognition performance of the randomly positioned CNTs. We
manually inspected 96 fabricated samples using SEM to evaluate the recognition error ε (in nm), which represents the difference between the
original and recognized edge positions of the CNT. We successfully measured the positions of ~60% of the recognized CNTs within the error
ε ≤ 150 nm. b Measured gap and length, and corresponding histogram of the fabricated 101 samples. The designed values were g= 80 nm and
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recognized position of the randomly positioned CNTs is
far from the original position, which is caused by the
deformation of the CNT and/or particles attached to the
CNTs. These undesired structures may be eliminated by
using CNTs with a clean surface and high crystallinity.
Using a dataset containing a large deviation in the training
process would make the resulting model more robust.
By using the AI-assisted fabrication method shown in

Fig. 1a, we fabricated more than 8000 samples of nano-
cantilevers from the randomly positioned CNTs on a 1.0
mm square substrate. The designed structure is shown in
Fig. S2 of the Supporting information; the designed values
of the gap, length, upper base, and height of the electrode
were g= 80 nm, L= 1.0 μm, WU= 300 nm, and
H= 1.0 μm, respectively. The proposed fabrication
method drastically reduces the processing time necessary
to recognize the randomly positioned single CNTs and
design the electrodes using CAD. Indeed, the entire pro-
cess required only 2 s, whereas manual recognition and
designing required ~12 h.
After the fabrication, we manually inspected the 101

fabricated nanocantilevers using SEM to evaluate the
resulting structural properties and the length and gap of
the nanocantilevers. Figure 2b shows the scatter plots and
histograms of these key properties (the curves over the
histograms were drawn using kernel density estimation).
We found that the histograms of the gap and length
peaked at the designed values. This performance
demonstrates that we successfully fabricated many
nanocantilever-based nanoscale emitters. However, due to
recognition error, there was a discrepancy between the

designed and observed structures. A notable observation
was that the erroneous points were bounded within the
line, g+ L= 1080 nm; in the automatic design on the
CAD, the distance between the anode and cathode (g+ L)
was fixed to 1080 nm. Even with this recognition error,
the points are not plotted in the left-side region of the
line. Note that in Fig. 2b, the points are slightly shifted
beyond this line because of the measurement error in the
manual observation from the SEM images and because of
deviations when preparing the electrodes with EB litho-
graphy. The large discrepancy from the designed value,
particularly in the case of the large length L≳ 1.1 μm,
occurred when the leg part of the trapezoidal electrode
held the CNT.

Field emission performance of the fabricated device
We evaluated the fabricated CNT-nanocantilever-based

emitters in terms of field-emission performance. Due to
the ultra-small gap (~80 nm) between the tip of the ran-
domly positioned CNT and the anode, we observed a
quantum phenomenon of field emission: a current was
excited by applying a voltage between the anode and
cathode. We successfully measured this current on 34
fabricated emitters by adopting the setup described in the
“Materials and methods” section (a SEM image and the
measured structural size of the fabricated emitters are
provided in Table S1 of the Supporting information). This
indicates that our proposed AI-assisted method effectively
fabricated the emitters. Figure 3a shows the measured I–V
characteristic for nine typical emitters. We found devia-
tions in the performance across various devices. This
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red in (a). This theoretical curve adequately captures the trend of the measured currents, showing that the measured currents were excited by the
field emission
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behavior was caused by structural variations such as the
gap shown in Fig. 2b. Indeed, The Fowler–Nordheim law
shows that the resulting current was determined by the
gap length74. Table S1 shows the variation of the diameter
for the fabricated CNT-nanocantilever-based emitters. It
has been reported that the I–V characteristic also depends
on the diameter, which is often discussed in the context of
the field enhancement factor78,79.
To evaluate the statistical behavior of the field emission

on the fabricated emitters, we introduce a performance
measure for the threshold voltage Vth

80 at which a suffi-
cient amount of the induced field-emission current Ith is
observed. In this study, we focus on the case Ith= 0.10 nA.
The histogram of Vth is presented in Fig. 3b. We observe a
peak around Vth= 26.20, which corresponds to the
median of the measured Vth. As shown in Fig. 2b, the
number of fabricated emitters was maximized around the
designed value. The peak in Fig. 3b appears at such gap g
and length L. However, several emitters were fabricated
with a larger gap/length, as shown in Fig. 2a. These
abnormal samples showed significantly higher threshold
voltages, resulting in a histogram shift. Indeed, the aver-
age value of Vth, 32.43 V, was larger than the median.
Based on this observation, we also calculated the theore-
tical performance of the field-emission current using the
Fowler–Nordheim law42,76; the parameters were
g= 80 nm, L= 1.0 μm, and the enhancement factor was
set to 1.75 to fit the peak of the histogram corresponding
to Vth= 26.20 and Ith= 0.10 nA. The resulting curve is
plotted in red in Fig. 3a. This theoretical curve accurately
captures the trend of the measured currents of the fab-
ricated emitters, showing that the measured currents were
excited by the field emission.

Neuromorphic computing with mass-fabricated CNT-
nanocantilever-based emitters
We investigated the possibility of exploiting the mass-

fabricated CNT-nanocantilever-based emitters for neu-
romorphic computing, e.g. a future-promising AI-based
computing platform comprising a neural network. Acti-
vation functions with nonlinear behavior were imple-
mented in this network. A unique nonlinear response of
the nanoscale emitter shown in Fig. 3 motivated us to
investigate the realization of this computing element
using our emitters. A neural network often requires
numerous functional nodes; our AI-assisted fabrication
method enabled the application of the emitter directly
within the neural network.
The neural network employed in this study contained a

three-layered structure, as shown in Fig. 4a. An image
recognition problem was considered; in a typical recog-
nition problem involving handwritten characters such as
those in MNIST81, the network guesses the character that
has been provided as an input. The notable point is that

we built nodes containing an activation function in the
hidden layer by using the mass-fabricated emitters (Fig.
4b). We thus evaluated the effectiveness of this neural
network in recognizing the handwritten characters81. For
this evaluation, we emulated the neural network by using
the experimental data on a computer; we evaluated the
recognition performance and compared it with that
obtained by the neural network using the traditional
rectified linear function73. The details of this emulation
are provided in the “Materials and methods” section. The
number of nodes in the input layer was the same as the
size of the handwritten input image, that is, 784 (=28 × 28
pixels). The hidden layer contained 300 nodes, and we
obtained the score for every ten digits (0 to 9) from the
output layer with ten nodes. The digit with the highest
score was determined to be the input character.
The obtained prediction accuracy is shown in Fig. 4c.

The rectified linear activation function achieved a pre-
diction accuracy of 97.18%. For this reference perfor-
mance, the proposed function with the emitter achieved a
prediction accuracy of 90.47%. Thus, the prediction
accuracy of our method was comparable to the result of
the popular rectified linear activation function. This
establishes the utility of our emitter as a device for rea-
lizing an activation function.

Conclusion
We reported an AI-assisted fabrication method for the

development of devices with a CNT-based nanocantilever.
To achieve efficient fabrication, we utilized randomly
positioned single CNTs on the substrate and trained a
deep neural network to recognize the single CNTs and
measure their positions accurately without manual
operation. Based on the original dataset, the trained
neural network also provided information on the edge on
which the CNT should be clamped to form its nano-
cantilever. We successfully fabricated more than 34 CNT-
nanocantilever-based field emitters in one fabrication
process. This platform achieved a small recognition and
measurement error: the trained network detected the
correct position for 90% of the recognized CNTs within
an error of 200 nm. With the proposed framework, the
recognition and measurement processes were auto-
matically completed in 2 s, compared to a manual process
that required 12 h. Thus, our AI-assisted method sig-
nificantly reduces costly manual procedures, establishes
accurate fabrication of CNT-based nanocantilevers, and
shortens the time required to locate the CNTs and design
the electrodes over them. Indeed, we demonstrated that
the average length and gap of the fabricated nanocanti-
levers agreed well with the designed value, such that a
field-emission current was obtained with a low applied
voltage. Further improvements on the field-emission
current might be achieved by using single CNTs with a
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prespecified diameter value. To further control the dia-
meter of the cantilever tip, we will consider incorporating
a method in the preparation step before AI-assisted fab-
rication. Using randomly-positioned CNTs with a specific
diameter size, the AI-assisted fabrication realizes the
CNT-nanocantilever-based field emitters with the
designed cantilever diameter. If a high-definition image is
available to see the size of the diameter, the developed AI
might also pick up only the CNTs with a designed
diameter.
We also showed the capability of neuromorphic com-

puting using mass-fabricated CNT-nanocantilever-based
field emitters. The physical realization of the activation
function, which is one of the key functions in neural
networks, was emulated using the individual CNT-based
field emitter. The neural network with the CNT-
nanocantilever-based emitters successfully recognized

handwritten images. Such nonlinear characteristics found
in the CNT-nanocantilever-based emitters are observed in
many devices, for example, semiconductor-based devices
such as diodes and transistors. Using the CNT-
nanocantilever-based field emitter offers additional merit
in terms of sensing; a resonantly driven nanomechanical
vibration of the CNT tip can perform ultra-sensitive
detection of various physical quantities (for example,
force, mass, and electric/magnetic spin). Such platforms
have led to the development of a wide range of applica-
tions, including chemical/biological/inertial sensors,
nanomechanical computing, and quantum information
science. Our proposed method can also be used to fab-
ricate massive double-clamped systems, including nano-
beams. We, therefore, suggest that our method can
accelerate research and development on CNT-based field
emitters and nanomechanical systems.
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Materials and methods
Fabrication of CNT-based nanocantilever
We prepared a silicon substrate of size 400mm2

(20 mm× 20mm). This substrate was coated by a 3 μm-
thick silicon dioxide layer, which was fabricated using
plasma-enhanced chemical vapor deposition. With this
substrate, we first created the Ti/Au markers using EB
lithography and deposition.
We used straight CNTs produced by the arc discharge

method. These CNTs were dispersed in IPA and tangled.
For preparing the randomly positioned CNTs on the
substrate with the markers, these CNTs were first dis-
persed through ultrasonic dispersion. The IPA with the
CNTs was then dropped on the substrate and quickly
evaporated on a heating plate. As a result, single CNTs
were randomly positioned on the substrate, as shown in
Fig. 1a. With the proposed AI-assisted method, we auto-
matically obtained the pattern of the electrodes in a CAD
file. The 110-nm-thick Ti/Au electrodes were fabricated
using the CAD file through EB lithography and deposi-
tion. To form a hole around the nanocantilever, we pat-
terned a rectangular etching area centered at (XHole, YHole)
using EB lithography. The details of the shape and size are
shown in Fig. S2b in the Supporting information. This
central position was calculated using (3) based on the
information obtained from Faster R-CNN. The silicon
dioxide under the CNT was then etched with buffered
hydrofluoric acid. We finally prepared the nanocantilever
by drying the substrate with a supercritical dryer.

Dataset and training of Faster R-CNN
The CNN contained in the Faster R-CNN model was

previously learned by VGG1682,83. For tuning the CNT
recognition capability, we trained the entire network with
the originally created dataset, which contains the coor-
dinates of the two corners (top-left and bottom-right),
(x⌜, y⌜) and (x⌟, y⌟), of the bounding box surrounding the
CNT or marker found in each SEM image. The details are
shown in Fig. S1 in the Supporting information. As
described in Fig. 1(b), the unit of the coordinates is a pixel,
and the origin is located at the top-left center of each SEM
image. The entry with the label “M” provides the position
of the marker. In the other cases, the label ∈{"⌜”, “⌝”, “⌞”,
“⌟”} shows the preferred direction for the anode in the
fabrication of the electrodes. Here, “⌜” is top-left, “⌝” is
top-right, “⌞” is bottom-left, and “⌟” is bottom-right of the
bounding box; for example, the label “⌜” indicates that the
fabrication around the top-left point is preferable. We
manually inspected 1404 SEM images, found 2080 CNTs
in the images, and then obtained information (coordinates
and labels) to create the dataset. Again, this type of dataset
enabled the automatic selection of the preferred edge for
placing the cathode and anode.

During training, each SEM image in the dataset was
input to the CNN. Simultaneously, the rest of the data in
the entry, (x⌜, y⌜), (x⌟, y⌟), and the label, were also input
onto the output side of the network. With these data, the
Faster R-CNN model studied 500 epochs with the opti-
mizer of momentum SGD84. The learning rate was
changed from 0.001 to 0.0001 after 375 epochs for effi-
cient learning. We used 1311 SEM images for the learn-
ing, and the remaining 93 SEM images were used for
testing. A weight decay of 0.0005 was applied to regularize
the model. To run the Faster R-CNN for learning/testing,
we used the free source code provided in ref. 85. The
training process was executed on a GPU (NVIDIA
Tesla K80).

Determination of positions of nanocantilever and hole
To determine the positions of the nanocantilever and

hole, we first calculated the relative distances in meters
between the two edges of the recognized CNT and the
marker in each SEM image. These distances, xa, ya, xc, and
yc which are shown in Fig. S2a in the Supporting infor-
mation, were calculated using the network output (x⌜, y⌜)
and (x⌟, y⌟) and the corresponding labels. In this calcu-
lation, we considered a fixed scale to convert the pixels to
meters (7.143 nm per pixel in this study).
The fabrication process was conducted according to a

common coordinate on the substrate, whose origin was
positioned at the lower-left corner. We first converted the
measured position into those in terms of the common
coordinate. We know that the position of the closest
marker in the common coordinate is (XM, YM); hence, the
two measured positions were converted into (Xa, Ya)=
(XM+ xa, YM+ ya) and (Xc, Yc)= (XM+ xc, YM+ yc), as
shown in Fig. S2 in the Supporting information. These
positions were then used to design the two electrodes
(anode and cathode). By using the preset parameters,
namely, the gap g between the tip of the CNT and anode
surface, length of the emitter L, and distance from the
edge to the center of electrode lelectr, the central positions
of the two electrodes are calculated as

ðXAnode;YAnodeÞ ¼ Xa þ ðg þ lelectrÞ cos θ;Y a þ ðg þ lelectrÞ sin θð Þ;
ð1Þ

ðXCathode;YCathodeÞ ¼ Xa � ðLþ lelectrÞ cos θ;Y a � ðLþ lelectrÞ sin θð Þ;
ð2Þ

where sin θ ¼ ðXa � XcÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXa � XcÞ2 þ ðY a � Y cÞ2

q
and

cos θ ¼ ðY a � Y cÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXa � XcÞ2 þ ðY a � Y cÞ2

q
. The

shape of the electrode can be obtained for a given angle
θ and center position, which can then be drawn in the
CAD file.

Tadokoro et al. Microsystems & Nanoengineering            (2023) 9:32 Page 8 of 11



To create a hole around the nanocantilever, we pat-
terned the rectangular etching area centered at (XHole,
YHole) using EB lithography. This etching point was
located at the middle point between the centers of the two
electrodes.

ðXHole;YHoleÞ ¼ XAnode þ XCathode

2
;
YAnode þ YCathode

2

� �

ð3Þ

Setup for measurement of I–V characteristics of CNT-
nanocantilever-based emitter
The I–V characteristics of the CNT-nanocantilever-based

field emitters was measured in a high-vacuum chamber
with a vacuum pressure of 1.0 × 10−5 Pa. The cathode
and anode of the emitter were electrically contacted with
metal probes. We adjusted the position of the tip of the
probes by using a four-axis stage controller (Sigmakoki,
VSGSP60(XY), VSGSP60(Z), and SHOT-304GS) to secure
the contact. Those probes were connected to an electro-
meter (Keithley, model 6430) to apply the bias voltage and
measure the resulting field-emission current.

Emulation and training of neural network with physical
activation function
We emulated the neural network using the activation

function of the emitter based on the experimental data.
We built the neural network model on a GPU with
PyTorch86. The activation function used here was ori-
ginally defined according to the I–V data measured on the
fabricated nanoscale emitters. Some examples of the
function are shown in Fig. 4b; to derive them, we first
applied a logarithm for linear interpolation and expo-
nentiated the current on the measured data. We then
shifted the obtained I–V data such that the voltage of 0 V
corresponded to the point where the current began
increasing exponentially. To fit the range of the current
and voltage with the input/output of the upper/lower
layers, we normalized the range of the input current (x)
and output voltage (y). In this manner, we prepared 35
functions from the set of measured data. These functions
were randomly selected and assigned to each node in the
hidden layer to evaluate the prediction accuracy in the
image recognition problem. Note that we can perform
operations such as shifting and scaling with practical
devices; for example, scaling can be executed with an
attenuator and/or amplifier.
We used the MNIST dataset in the training process;

with these data, the neural network model studied 500
epochs with the stochastic optimizer Adam86. We chan-
ged the learning rate from 0.001 to 0.0001 after 450
epochs for efficient learning. We used 60,000 images for
the learning and 10,000 images for the testing.
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