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Abstract
This study presents a new technology that can detect and discriminate individual chemical vapors to determine the
chemical vapor composition of mixed chemical composition in situ based on a multiplexed DNA-functionalized
graphene (MDFG) nanoelectrode without the need to condense the original vapor or target dilution. To the best of
our knowledge, our artificial intelligence (AI)-operated arrayed electrodes were capable of identifying the
compositions of mixed chemical gases with a mixed ratio in the early stage. This innovative technology comprised an
optimized combination of nanodeposited arrayed electrodes and artificial intelligence techniques with advanced
sensing capabilities that could operate within biological limits, resulting in the verification of mixed vapor chemical
components. Highly selective sensors that are tolerant to high humidity levels provide a target for “breath
chemovapor fingerprinting” for the early diagnosis of diseases. The feature selection analysis achieved recognition
rates of 99% and above under low-humidity conditions and 98% and above under humid conditions for mixed
chemical compositions. The 1D convolutional neural network analysis performed better, discriminating the
compositional state of chemical vapor under low- and high-humidity conditions almost perfectly. This study provides
a basis for the use of a multiplexed DNA-functionalized graphene gas sensor array and artificial intelligence-based
discrimination of chemical vapor compositions in breath analysis applications.

Introduction
Chemical vapor sensors play a vital role in various

applications, such as in medical diagnosis, aerospace,
military, environmental monitoring, and industrial pro-
duction and safety1. Various gases are released in sig-
nificant volumes by industries as well as by the human
body. Even small amounts of such gases can negatively
affect the human body, organisms, and environment2–4.
Recently, interest in breath analysis technology has greatly

increased, particularly in the field of disease diagnosis, and
several studies have been conducted on the detection of
complex biomarker gases related to physical conditions
and diseases; typical biomarkers include ammonia (NH3),
hydrogen sulfide (H2S), and nitric oxide (NO)5,6. NH3 is
present in the exhaled breath of patients with diseases
such as asthma, liver disease, kidney disease, stomach
ulcers, and duodenal ulcers. H2S is present in the exhaled
breath of patients with malodor, lung cancer, pancreatitis,
and asthma. NO is present in the exhaled breath of
patients with lung cancer and asthma7–12. Furthermore,
related biomarker detection techniques enable the early
detection of diseases and are noninvasive and painless. To
enhance their development and determine the target gas
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content in a mixed gas state, gas species should be char-
acterized in a humid environment (~80% humidity) to
simulate the properties of exhaled human breath13.
Recently, wearable and stretchable gas sensors have
received tremendous attention. Lei Zhang et al. reported a
highly sensitive wireless gas sensor14. In addition, Li Yang
et al. reported a novel gas-sensing platform based on
stretchable laser-induced graphene, and Yi Ning et al.
reported stretchable gas sensors for detecting biomarkers
from humans and in exposed environments15,16. In addi-
tion, research on flexible gas sensors continues today17,18.
Currently, several gas sensors are available; among

them, solid-state gas sensors offer considerable benefits
owing to their low cost, low energy demand, small form
factor, and high sensitivity. However, these sensors have
certain disadvantages—they may not perform consistently
over extended periods of use, and their measurement
precision may be restricted19. Generally, to determine the
sensing performance of a gas sensor, four important
parameters are considered: the working temperature,
sensitivity, selectivity, and response/recovery time. Thus,
researchers have focused on the development of various
techniques to enhance or increase the selectivity, reduce
the response/recovery time, and decrease the working
temperature. Over the past few years, gas sensors based
on metal oxides such as ZnO, TiO2, and SnO2 have been
widely used owing to their speed and high sensitivity in
gas detection20. However, the majority of general gas-
sensor metal oxides require high temperatures for their
operation, which limits their application in various fields.
Consequently, the development of high-efficiency gas
sensors remains a challenging task. In addition, such
sensors are often disadvantageous because they may not
yield uniform measurements, particularly under high-
humidity conditions. To overcome this, research is being
conducted to minimize the effect of humidity by utilizing
a membrane-type structure21. Recently, graphene-based
sensors have attracted significant attention22–25. Such
sensors can be operated at room temperature owing to
their unique structures and remarkable chemical, elec-
tronic, mechanical, optical, and thermal properties26.
Graphene-based materials can be used to measure sensing
characteristics owing to their large specific surface area
and desirable electrical characteristics, such as low elec-
trical noise, high electron mobility, and high conductivity
under atmospheric conditions. In this study, by utilizing
multiplexed DNA-functionalized graphene (MDFG), a
large range of biomolecules, chemicals, gases, and vapors
were successfully detected27–33.
To enhance the gas-sensing performance of graphene-

based gas sensors, different techniques, such as oxidiza-
tion, doping, and decoration of graphene using nano-
particles, have been employed, and the compositions of
other materials have been investigated. All these methods

were used to enhance the gas-sensing properties of gra-
phene34–37. The detection of mixtures of different gases is
a prerequisite for the practical applications of gas sensors.
Nevertheless, the in situ detection of gas mixtures under
high-humidity conditions via a single sensor is a complex
task because of the deterioration of the sensor signals38,39.
This challenge can be overcome by employing a set of
corresponding sensors for the simultaneous examination
of numerous sensor signals through a normalized model
to appropriately detect the constituent gases through the
application of a single-stranded DNA-functionalized
graphene (ssDNA-FG) gas sensor. An ssDNA-FG gas
sensor has an additional ion conduction channel com-
posed of H3O+ in the presence of water molecules, which
improves the performance of the sensor in high-humidity
environments40. Therefore, a high-performance gas-sen-
sor array should be configured to resolve these problems.
In this study, we constructed a sensor array using gra-
phene, which was functionalized using single-stranded
DNA (ssDNA), to change the surface properties of a
sensor device. The ssDNA-FG gas sensor can improve the
sensor performance, such as the reactivity of the sensor
under high-humidity conditions, and can be implemented
in breath analyzers40. Seven arrays of graphene-based
ssDNA gas sensors were constructed on a single chip to
detect NO2, NO, NH3, and H2S in an individual gas and a
combination of gas mixtures, and our sensor array
exhibited a high sensitivity.
A limited number of studies have been conducted on

the discriminative analysis of gas species in gas mixtures
of exhaled breath in situ. Furthermore, sufficient infor-
mation regarding the detection of mixed gases has not
been established, and the recognition rate for mixed gases
under high-humidity conditions is considerably low. In
this study, an artificial intelligence algorithm was
employed for the discrimination of gas mixtures. This
approach was applied for the discrimination of gas species
via the Boruta algorithm, which is a feature selection
machine learning algorithm. For the performance analysis
of feature selection, we also conducted gas species dis-
crimination using a support vector machine (SVM) clas-
sification algorithm. According to the obtained results,
the algorithm performed satisfactorily under dry condi-
tions, and the gas mixture was effectively classified under
high-humidity conditions, thereby verifying the applic-
ability of the MDFG for breath analysis. Through these
analyses, we successfully enhanced the classification
accuracy; an analysis accuracy of up to 98% was achieved.
In addition, in this study, the discrimination of gas species
in mixed gases was performed with a deep learning model
designed based on a 1D convolutional neural network
(CNN), which is widely used for processing time series
data41. By achieving faultless discrimination of the mixed
gas composition at random under low- and high-humidity
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conditions, we demonstrated that the algorithm devel-
oped in this study efficiently classified the species within a
gas mixture and confirmed that it outperformed machine
learning. We expect that the evolution of highly sensitive
sensor arrays and strategies involving the utilization of
artificial intelligence will contribute to the discrimination
of gas species in chemical vapor compositions that are
uncommon in the real world.

Results
The process of diagnosing lung and liver diseases using

exhaled breath is illustrated in Fig. 142,43. The chemical
vapor mixture under humid conditions is released from
the exhaled breath of humans. We injected NH3, NO,
NO2, and H2S under low- and high-humidity conditions.
These chemical mixtures were verified by our graphene-
based ssDNA sensor array and output as an electrical
signal, which was used to identify the mixed state of the
chemical vapor composition through artificial intelligence
via feature selection, SVM, and 1D CNN. Based on these
results, diseases such as asthma, liver diseases, kidney
diseases, stomach ulcers, and duodenal ulcers can be
diagnosed7–12.

Design and fabrication of a gas sensor array
The sensor array was fabricated using monolayer gra-

phene. Prior to fabrication, graphene should be

functionalized by employing one of the following char-
acteristics: nanoparticles, DNA, and organic materi-
als34,36. First, we functionalized graphene using ssDNA
and subsequently fabricated a sensor array, which exhib-
ited increased reactivity to the gas through the imple-
mentation of DNA. In addition, this method of
preparation offers certain advantages, such as simple
synthesis and sensor array production based on the DNA
sequence. Six graphene-DNA sensors and one pristine
graphene sensor were fabricated; the DNA sequences
AAA-AAA (A6), TTT-TTT (T6), and GGG-GGG (G6)
were utilized for this purpose. Three sensors were used
for the A6, T6, and G6 sequences, and three sensors were
thereafter constructed by utilizing the A6T6, A6G6, and
T6G6 sequences. The sensor fabrication process is illu-
strated in Fig. 2a.
Graphene-ssDNA-based gas sensor arrays were fabri-

cated through the following three steps: (i) electrode
deposition, (ii) graphene deposition and patterning, and
(iii) ssDNA functionalization. The sensor array was fab-
ricated using SiO2 (1 μm)/Si (500 μm) wafers through a
mass production process. A 100-nm-thick electrode was
molded via photolithography and Au sputter deposition,
as depicted in Fig. 2a. The graphene deposited through
chemical vapor deposition was patterned between the Au
electrodes via photolithography and an O2 plasma pro-
cess. After annealing, the ssDNA was functionalized using
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Fig. 1 Schematic diagram of the human exhaled gas diagnostic process. Schematic diagram of the process of diagnosing diseases by sensing
constituent chemical vapors of exhaled breath through a multiplexed DNA-functionalized graphene sensor and identifying gases through artificial
intelligence. NH3, NO, NO2, and H2S molecules that exist individually or in mixed states in exhaled human breath (under conditions of considerable
humidity) are detected by the gas sensor array to which the DNA sequence is applied; the presence of these molecules is conveyed through an
electrical signal. Their identification is achieved through artificial intelligence via feature selection, support vector machine (SVM), and 1D CNN for the
diagnosis of lung and liver diseases. Adapted with permission42,43
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droplets under 100% relative humidity for 3 h. The fab-
ricated sensor arrays were 15mm× 15mm in size. The
formation of monolayer graphene was confirmed through
Raman analysis before and after annealing, and the peak
intensity ratio of 2D to G was 1.73 (I2D/IG) (refer to
Figure S1). In addition, optical and atomic force micro-
scopy (AFM) images are presented in Fig. 2b. Graphene
binds to s-DNA through π–π stacking, and after ssDNA
binding, the adsorption of ssDNA onto graphene based on
the differences in height was confirmed through AFM
measurements (refer to Fig. 2c)44,45. The current–voltage
(I–V) characteristics of the changed sensor array, which
confirmed the functionality of the ssDNA in the graphene,
are plotted in Fig. 2d40,46. The binding of ssDNA is evi-
dent in the top and cross-sectional views of the SEM
images (refer to Fig. 2e, f). In addition, a time-of-flight
secondary ion mass spectrometry (TOF-SIMS) analysis
was conducted to confirm the sequencing of the sensor
array (refer to Fig. 2g). Thus, the DNA sequences of
thymine, adenine, and guanine exhibited nucleic acid
peaks of 125 (C5H5N2O2−), 134 (C5H4N5−), and 150
(C5H4N5O−), respectively47. Furthermore, the proper
implementation of the sensor array was confirmed
through the results of a mass peak analysis according to
the ssDNA mixture of the formed sensor array (Figs.
S2–S7). The sequence configuration of the graphene
ssDNA sensor array for sensing gases under low- and
high-humidity conditions is presented in Fig. 3a; the

results demonstrated that the ssDNA chemically doped
the graphene through a change in the G peak of the
Raman spectra of graphene after ssDNA binding; thus, the
sensor array was properly implemented (refer to Fig.
3b–f).

Sensing characteristics
The measurement conditions for the target gas under

dry conditions are listed in Table S1. For all three types of
individual gases, the three mixed gases were measured for
three distinct concentrations: the NO2, NO, and NH3

gases were measured at 2, 5, and 10 ppm, respectively, and
the mixed gas was measured by varying the mixture ratio.
The 1:1 mixing ratio was measured at 2, 5, and 10 ppm

and was optimized at 10 ppm. Consequently, a con-
centration of 10 ppm was kept constant for mixing ratios
of 2:1, 1:2, 3:1, and 1:3. The individual gases were mea-
sured three times for each concentration, and the mixed
gas was measured nine times per mixing ratio. The gas
measurement was performed for 368 s and had a recovery
time of 114 s. Our sensors detected small concentrations
of gas with a fast response and recovery time (refer to
Table S2)15,48–81. The reactivity of the graphene-ssDNA
gas sensor array for NH3 and NO2 is presented in Fig.
3g–j.
The seven-sensor array exhibited a reactivity of

approximately 5–7.8% for NH3 gas; notably, the reaction
rate increased with an increase in concentration (refer to
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Fig. 3g). A sensor consisting of a combination of ssDNA
T6 and G6 with an NH3 concentration of 10 ppm exhib-
ited a reactivity of approximately 15%. In contrast, the
response of the sensor array with NO2 (refer to Fig. 3h)
exhibited a slightly lowered response of 5–12%, whereas
the array comprising the DNA sequence demonstrated the
highest reactivity with a response of approximately 12%
with a graphene-A6 sequence. According to the difference
in reactivities, data from a pristine graphene sensor sug-
gested a diminished performance under an in situ change
in concentration and selectivity compared to that of a
DNA-functionalized sensor, at approximately 10% for
NH3 and NO2. Generally, the sensor array can contribute
to the improvement in selectivity by varying its reactivity
for each gas82,83. The ssDNA-functionalized sensor had an
improved selectivity for these two gases via graphene
functionalization. In addition to the responsiveness of the
sensor array, different features of the sensor array can be
applied for gas discrimination (refer to Fig. 3i, j). The time
constant is a feature related to the reaction diagram, and
the area is a feature related to the reaction rate and

reactivity. Evidently, the extracted features from the sensor
data exhibit selectivity depending on the type of gas, which
improves the classification rate for the determination of a
specific gas type. Thereafter, to determine the mixed gas
composition, the gas mixture ratios were measured. For a
mixing ratio of 1:1, the sum of the two gas concentrations
was measured at 2, 5, and 10 ppm, and the reactivity
gradually improved as the concentration increased.
According to the data, the reactivity changed slightly
according to the mixing ratio; this trend is identical to that
observed for the PCA plot. However, no obvious difference
in reactivity was observed. We chose to use artificial
intelligence for analysis to address this issue.
The measurements of NH3 and H2S were conducted

under humid conditions to determine the applicability of
the sensor in breath analyzers. In an environment similar
to that of exhaled breath (80% humidity), individual gas
measurements at concentrations of 2, 5, and 10 ppm were
repeated three times for 368 s with an air recovery time of
114 s. Mixing ratios of 1:1, 1:3, and 3:1 were measured
nine times at a concentration of 10 ppm to discriminate
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between the gas species under humid and dry conditions.
Consequently, compared to those under dry conditions,
we obtained an improved reactivity for NH3 (20–32%) and
H2S (20–40%) under humid conditions. As with the data
under dry conditions, these data were also analyzed using
artificial intelligence.

Chemical vapor discrimination with feature selection
The incorporation of appropriate features significantly

positively impacts the performance of a machine learning
model84,85. A machine learning model possesses fewer
hyperparameters than a deep learning model. Therefore,
to fine-tune this hyperparameter and obtain the best
performance, features with minimum dimensions should
be extracted while maintaining as much of the data as
possible. The features extracted from the response data of
the gas sensor array should be representative, exhibit
appropriate physical and chemical significance, and be
able to account for the correlation between data points. In
this study, we used the Boruta algorithm for feature
selection (refer to Figure S15); the dimensions of the
extracted features were reduced by using this technique,
and it was subsequently applied for classification. The
process of sensing the mixed gas and discriminating the
gases with feature selection is illustrated in Fig. 4a. To
analyze the effect of the feature selection technique,
support vector machine (SVM) analysis was conducted by
implementing the extracted features without feature
selection; the results of feature selection were generally
higher than those without such an application.

Some errors in the form of noise may occur during gas
measurements for several reasons, and we applied the
filter for correction. First, ambient white noise may be
introduced into the measurements. Second, noise occurs
owing to the processes pertaining to the gases in the
chamber, such as desorption during the adsorption pro-
cess or adsorption during the desorption process between
gas measurements. Third, noise occurs owing to the time
difference of the input voltage in the multichannel
switching device during sensor array measurement.
Fourth, thermal noise is generated by the heaters used in
the metal oxide gas sensor, which is introduced into the
measurements. Finally, discrete reactions occur for cer-
tain gases in certain types of sensors. Therefore, we
employed the filtfilt function in the Python 3.7 package
SciPy 1.4.1, which is a forward-backward filter for cor-
recting such noise. This linear filter achieves zero-phase
filtering by applying an infinite impulse response filter
twice—once forward and once backward. All the hyper-
parameters in the filtfilt function were optimized. The
results of the filter were as follows: We extracted a total of
840 features to increase the recognition rate for gas spe-
cies, with 120 features for each of the seven sensors. The
feature sets included the magnitude, derivative, difference,
time constant, and area under the graph; these feature sets
are listed in detail in Table S3. The magnitude included
the maximum absolute value, which can be the maximum
or minimum magnitude depending on the selectivity
performance of the sensor, downsampled values of the
magnitude, and downsampled values of the normalized
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magnitude. The derivative included the maximum and
minimum derivatives of the graph, downsampled values of
the derivative, and maximum and minimum second
derivatives during both the injection and purging stages.
The differences were calculated on the basis of five
intervals (two in the reaction stage and three in the pur-
ging stage). The time constant and area were calculated
for eight intervals (four in the reaction stage and four in
the purging stage), and the time constant was calculated
based on the start and end points of each reaction.
However, in the MDFG data, certain features exhibited
minimal selectivity for certain gases, and certain data were
more noise-like than those of the reactions. These char-
acteristics prevented our feature extraction algorithms
from performing effectively. Therefore, we set the feature
value of the low-quality data to zero; this irrelevant fea-
ture was removed during the feature-selection stage.
Feature selection is an essential technique for machine

learning. By eliminating highly correlated, irrelevant, and
noisy features, the occurrence of overfitting is reduced,
and the performance of the model is improved by mini-
mizing the variance and maximizing the generalizability of
the model. The efficiency of this algorithm can be further
improved by reducing the operation time and computa-
tional load during feature selection. We considered three
types of mixed gases with various mixing ratios, namely,
NO2–NH3, NO–NH3, and NO–NO2, with mixing ratios
of 1:1, 1:3, and 3:1 under low-humidity conditions. The
gas response data from the sensor array, which are
depicted in Fig. 4b and c, were input to the model, and the

model output the mixture ratio. The principal component
analysis (PCA) results for NO2–NH3 mixed gas are illu-
strated in Fig. 4d. The results were obtained after opti-
mization of the hyperparameters, such as the percentile
using the Boruta algorithm and soft margin parameter
using an SVM. According to the Boruta algorithm with
feature selection, for the NO2–NH3 mixture, the average
optimal number of selected features was 102.73. In
addition, the compression ratio was 7.01. The classifica-
tion accuracy from the Monte Carlo cross-validation
(MCCV) was 98.67%. For the NO–NH3 mixture, the
average optimal number of selected features was 155.79.
Moreover, the compression ratio was 4.62, and the clas-
sification accuracy of the MCCV was 100%. Finally, for the
NO–NO2 mixture, the average optimal number of selec-
ted features was 119.6, the compression ratio was 6.02,
and the classification accuracy of the MCCV was 99.33%.
Confusion matrices of the classification accuracy for each
gas mixture are illustrated in Fig. 4e–g and provided in
Table S4. The results of SVM analysis using the extracted
features without feature selection, such as the precision,
recall, and f1 score, are provided in Table S5 with the
results of classification with feature selection. The classi-
fication rate increased after feature selection, and a con-
siderably high recognition rate was obtained, as depicted
in Fig. 4h.
We considered five types of mixed gas, NH3–NO,

NH3–H2S, and H2S–NO, with three mixed gases with
mixing ratios of 1:1, 1:3, and 3:1, and two individual
gases under high-humidity conditions, as depicted in
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Fig. 5a. The PCA and SVM analysis results for the NH3

and H2S mixed gas are illustrated in Fig. 5b and c. A
comparison of the classification accuracy of the two
algorithms is provided in Table S6 and Fig. 5g, and the
results of feature selection under high-humidity condi-
tions indicated higher accuracy than SVM analysis with
low-humidity conditions. Therefore, we confirmed that
our Boruta algorithm using feature selection for gas

mixture discrimination performed better than the SVM
analysis using only extracted features. According to
these results, our machine learning-based feature
selection algorithm can discriminate gas mixtures with
high accuracy and offers high performance in high-
humidity conditions, which suggests that it can be
effectively applied in exhaled breath analyzers for the
diagnosis of diseases.
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Chemical vapor discrimination with 1D CNN
The gas classification results of the machine learning

algorithm through feature extraction and the SVM
method were almost perfect; nevertheless, in this study,
we designed a deep learning algorithm by employing a 1D
convolutional neural network (CNN) for completely
automated and rigorous mixed gas classification86. For the
electrical signals of the experimental gas sensor array, 1D
CNN models were designed for conditions of high and
low humidity; these models were trained and tested for
each mixed gas because the number of classes for classi-
fying each humidity condition was different. For the low-
humidity condition model, three classes of classification
were performed with mixing ratios of 1:1, 1:3, and 3:1 for
each mixed gas combination of NH3–NO, NH3–NO2, and
NO2–NO. For the model under high-humidity conditions,
five classes of classification were performed with two
individual gases, and the mixing ratios for each mixed gas
combination of NH3–NO, NH3–H2S, and H2S–NO were
1:1, 1:3, and 3:1.
Because the height of the data was not considered for the

classification of the types and proportions of the mixed gas,
the height of the data was unified to 1 through normalization,
and the data were augmented with noise because the volume
of experimental data for training was considerably small. The
data were randomly split into a training set and test set at a
ratio of 2:1 for all experimental conditions.
A schematic of the common structure of the models for

low- and high-humidity conditions is presented in Fig. 6a.
In the high- and low-humidity models, the processed data
were input into a 1D convolution layer with a sensor array
as the channels, and after three sets of convolution, acti-
vation, and dropout, the data were normalized. Then, the
normalized data were input into a linear layer sequence,
with three sets of linear, activation, and dropout41,86,87.
The designed 1D CNN model was trained by repeating 20
epochs by inputting the training set, and the model was
optimized through logit and loss functions. As the train-
ing loss converged to 0 for a learning rate of 0.001, the
results confirmed that our model was trained well with
the experimental data. We checked our model perfor-
mance by inputting the test set into the trained model,
and the test loss converged to 0, which was similar to that
observed for the training loss.
The evaluation results of our 1D CNN model on the test

set are presented as confusion matrices and illustrated in
Fig. 6b–d under low-humidity conditions and in Fig. 6e–g
under high-humidity conditions. Although the training
and test sets were randomly divided such that they did not
overlap during dataset classification, a loss of 0% and a
classification accuracy of 100% were achieved. This result
was observed because the data possessed different char-
acteristics depending on the chemical vapor type and
mixing ratio of the chemical vapor composition.

The classification accuracy results for all humidity
conditions and mixed gases using the 1D CNN method
were 100%, and these classification accuracy results are
provided in Tables S4 and S6 for comparison with the
machine learning-based feature selection analysis results.
Therefore, we confirmed that the 1D CNN algorithm
performed much better, with more stable and perfect
classification accuracy. According to the results of this
evaluation, mixed gas can be classified perfectly without
arbitrary feature selection by using the 1D CNN model
developed in this study. Therefore, we achieved the
development of a deep learning algorithm for mixed gas
classification that is more automated and offers greater
accuracy compared to machine learning. This algorithm is
expected to be the basis for the development of an
automatic disease diagnosis system using human exhaled
breath in the future.
Furthermore, we additionally verified the discriminative

performance of our 1D CNN deep learning on mixed gas-
sensing data randomly mixed for low- and high-humidity
conditions. Data sensed by our MDFG sensor were used
under low and high-humidity conditions for NH3–NO gas
mixed at 1:1, 1:3, and 3:1 for deep learning performance
verification. Data were randomly shuffled, and the combi-
nation of NH3–NO mixed gas was discriminated. As a
result, our deep learning achieved 100% test results from
the model. We set most conditions of the model to be the
same as those of our previous model to target the perfor-
mance verification of our deep learning model, and the deep
learning analysis process and classification results are
shown in Fig. 6h. Thus, our 1D CNN model has been
shown to be able to classify a combination of mixed gases
even under random humidity conditions. As the humidity
contained in human exhaled breath and natural surround-
ings is not constant, this result is very important. Since the
aim of this study is to introduce a new device and approach
for future investigation and commercial purposes, this
result may suggest that this study is one step closer to
achieving that objective.

Discussion
We initially present the results of mixtures of gas dis-

tinguished with an early ratio under the real conditions of
human exhaled breath with AI integrated with an
arrayed-sensor platform. The characterization and ana-
lyses of gas mixtures under humid conditions are critical
to the application of sensors in the diagnosis of diseases
through the analysis of exhaled breath. Although typical
sensors may not be capable of detecting chemical vapor
composition under humid conditions, our graphene-
based DNA-functionalized gas sensors exhibited high
reactivity even in humid environments. We achieved a
reactivity of up to 20% under humid conditions through
the application of a gas sensor array via the ssDNA-
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functionalization of graphene. For the accurate dis-
crimination of chemical vapor composition, we proposed
two powerful artificial intelligence techniques. Feature
selection analysis achieved more than 98% classification
accuracy under humid conditions, but the 1D CNN
model showed perfect classification results. Therefore, we
found that our 1D CNN model was capable of perfect
mixed gas classification without arbitrary feature selec-
tion. The results obtained in this study demonstrated that
a sensor array and artificial intelligence-aided dis-
crimination techniques can be applied synergistically in a
real-time gas discrimination system and for the early
diagnosis of diseases through exhaled breath. Further-
more, this study provides a new approach for the detec-
tion or verification of gas molecule species in other
applications.

Materials and methods
Sample preparation and characterization
A negative photoresist (AZ-5214™) was patterned

using photolithography to manufacture the electrode
contact. Metal sputter deposition (Cr: 10 nm; Au:
50 nm) was performed, and a lift-off process was utilized
to deposit the contact metal. The sensing component
was fabricated via graphene transfer. Graphene was
grown at 1000 °C under methane and hydrogen gas
pressures of 285 and 40 mTorr, respectively, for 10 min.
After growth, the graphene was left undisturbed to cool
to room temperature. After coating poly(methyl
methacrylate) (PMMA) through a spin-coating method,
monolayer graphene was grown on Cu foil at 4200 rpm
and baked at 180 °C for 2 min. The copper was subse-
quently removed using a Cu etchant (ammonium per-
sulfate, Sigma-Aldrich, A3678) and transferred to a Si
wafer in deionized water; the PMMA was thereafter
removed using acetone. Single-stranded DNA (Xeno-
tech Co.) was used to functionalize the graphene by
utilizing a droplet under conditions of 100% relative
humidity for 3 h. The thickness of the device was
determined via AFM (Atomic Force Microscope, Park
Systems, NX-10), and TOF-SIMS (Secondary Ion Mass
Spectrometry) was implemented to characterize the
ssDNA (TOF SIMS 5; IONTOF).

Sensor array measurements
The gas measurements were conducted in a chamber

with electrode tips. A constant voltage (0.1 V) was applied
to the electrode tips, and the change in conductance was
monitored by using a source measurement unit (Keithley
2602). For the measurements, the gas flow was maintained
at 1000 sccm, and the gases were controlled through
mass-flow controllers. The baseline gas was N2 (99.9%),
which was employed as the baseline gas, and 50 ppm N2

was utilized as the target gas.

Boruta algorithm
To classify the gas types with feature selection, we used

the Boruta algorithm. Boruta is a wrapper algorithm that
is used in random forests. This algorithm is implemented
via the following procedures: copies of all features are
added to the dataset (which are called shadow features),
they are shuffled, the random forest classifier is trained for
an extended dataset, and the feature importance scores
are finally gathered, which represent the Z scores. The
importance of the real features is verified by comparing
the Z scores of the real features against the maximum Z
score of the shadow feature and removing those real
features with Z scores lower than their shadow features.
This process is repeated until importance is assigned to all
features or until the algorithm reaches a specific set limit
for the random forest runs. Based on the Boruta algo-
rithm, the features were divided into confirmed and
rejected features.

Support vector machine analysis
To classify the gas types without feature selection, we

implemented an SVM. The working principle of an SVM
is to find a hyperplane that separates the features to the
maximum extent using nonlinear mapping. Accordingly,
the SVM considers features from different classes as
points in the high-dimensional feature space. Although
SVMs were originally designed for binary classification,
they can be extended to multiclass classification by
combining multiple binary SVMs. In particular, SVM
guarantees the global optimality of the trained model,
which is a major advantage. To assess the generality of the
trained model, we used a cross-validation technique.
Owing to the small size of the dataset, the Monte Carlo
cross-validation (MCCV) technique was more feasible
than the k-fold cross-validation technique. MCCV is a
validation technique wherein random subsampling vali-
dation is iterated. In the MCCV technique, the gas dataset
was split into training and test sets, the model was fitted
to the training data and evaluated through the test data,
and the average accuracy was obtained by repeating the
procedure for a sufficient number of iterations.
Thus, the data were used efficiently, and the models

were evaluated for approximately all possible use cases.
The greater the number of iterations applied, the greater
the number of cases that can be considered. In addition,
we compared the accuracies of the two types of models
for gas species analysis—an SVM model using feature
selection techniques and another with raw data features.

1D convolutional neural network analysis
In this study, we used a 1D CNN, which is a deep

learning technique used to extract features through con-
volution during the data scanning process for one-
dimensional vector-type data to classify the gas species
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in a mixture of chemical vapors. This technique offers
high efficiencies because it reduces the scan range to data
approximate to the feature through iterative convolution
in the presence of a repeating feature that is similar to that
of the experimental data41. We utilized the Python 3.7 and
PyTorch 1.10.0 framework to create a 1D CNN
architecture.
For the experimental data, true classes were generated

using a one-hot encoding method for mixed-gas classifi-
cation. We set a kernel size of 7, stride size of 1, training
batch size of 64, test batch size of 16, learning rate of
0.0004, dropout of 0.09, and first input channels of the 1D
convolution layer of our sensor array for the low- and
high-humidity condition models. We employed the rec-
tified linear unit function as the activation function, the
binary cross-entropy function as the loss function, and the
Adam optimizer as the optimizer for the PyTorch
framework.
Because the model was applied as a test set, the weight

model featuring the minimum loss was applied in the
PyTorch 1.10.0 framework for model evaluation. The loss
was converted to the probability for one-hot encoding
classes by using the sigmoid function, and the class cor-
responding to the position with a probability of 0.5 or
more was used as the prediction class.

Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Nano·Material Technology Development Program (NRF
2017M3A7B4041987), the Korea government (MIST) (NRF-2019R1A2C2090443),
the Technology Innovation Program (‘20013621’, Center for Super Critical
Material Industrial Technology) funded by the Ministry of Trade, Industry &
Energy (MOTIE, Korea) and the Korea Environment Industry & Technology
Institute (KEITI) through the Technology Development Project for Biological
Hazards Management in Indoor Air Program (or Project), funded by the Korea
Ministry of Environment (MOE) (ARQ202101038001).

Author contributions
Y.J.H., H.Y., and G.L. contributed equally to this study. All authors commented
on the manuscript. S.C.J. and J.C. designed this research.

Conflict of interest
The authors declare no competing interests.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s41378-023-00499-y.

Received: 27 May 2022 Revised: 14 December 2022 Accepted: 3 January
2023

References
1. Liu, X. et al. A survey on gas sensing technology. Sensors 12, 9635–9665 (2012).
2. Bhushan, B. Springer Handbook of Nanotechnology (Springer, 2017).
3. Huang, C., Notten, A. & Rasters, N. Nanoscience and technology publications

and patents: a review of social science studies and search strategies. J. Technol.
Transf. 36, 145–172 (2011).

4. Sattler, K. D. Handbook of Nanophysics: Principles and Methods (CRC Press,
2010).

5. Lourenço, C. & Turner, C. Breath analysis in disease diagnosis: methodological
considerations and applications. Metabolites 4, 465–498 (2014).

6. Morisco, F. et al. Rapid “breath-print” of liver cirrhosis by proton transfer
reaction time-of-flight mass spectrometry. A pilot study. PLoS ONE 8, e59658
(2013).

7. Choi, J., Hoffman, L. A., Rodway, G. W. & Sethi, J. M. Markers of lung disease in
exhaled breath: nitric oxide. Biol. Res. Nurs. 7, 241–255 (2006).

8. Li, L. & Moore, P. Putative biological roles of hydrogen sulfide in health and
disease: a breath of not so fresh air? Trends Pharmacol. Sci. 29, 84–90 (2008).

9. Morselli-Labate, A. M., Fantini, L. & Pezzilli, R. Hydrogen sulfide, nitric oxide and
a molecular mass 66 u substance in the exhaled breath of chronic pancreatitis
patients. Pancreatology 7, 497–504 (2007).

10. Van den Velde, S., Nevens, F., van Steenberghe, D. & Quirynen, M. GC–MS
analysis of breath odor compounds in liver patients. J. Chromatogr. B 875,
344–348 (2008).

11. Wang, P., Zhang, G., Wondimu, T., Ross, B. & Wang, R. Hydrogen sulfide and
asthma. Exp. Physiol. 96, 847–852 (2011).

12. Güntner, A. T., Righettoni, M. & Pratsinis, S. E. Selective sensing of NH3 by Si-
doped α-MoO3 for breath analysis. Sens. Actuators B: Chem. 223, 266–273
(2016).

13. Lone, M. Y. et al. Fabrication of sensitive SWCNT sensor for trace level
detection of reducing and oxidizing gases (NH3 and NO2) at room tem-
perature. Phys. E: Low. Dimens. Syst. Nanostruct. 108, 206–214 (2019).

14. Zhang, L. et al. Highly sensitive NH3 wireless sensor based on Ag-RGO
composite operated at room-temperature. Sci. Rep. 9, 1–10 (2019).

15. Yang, L. et al. Novel gas sensing platform based on a stretchable laser-induced
graphene pattern with self-heating capabilities. J. Mater. Chem. A 8, 6487–6500
(2020).

16. Yi, N., Shen, M., Erdely, D. & Cheng, H. Stretchable gas sensors for detecting
biomarkers from humans and exposed environments. TrAC Trends Anal. Chem.
133, 116085 (2020).

17. Ko, G.-J. et al. Biodegradable, flexible silicon nanomembrane-based NOx gas
sensor system with record-high performance for transient environmental
monitors and medical implants. NPG Asia Mater. 12, 1–9 (2020).

18. Molina, A. et al. Efficient NO2 detection and the sensing mechanism of
stretchable/biodegradable MWCNT based sensors decorated with CeO2

nanoparticles. Synth. Met. 287, 117091 (2022).
19. Capone, S. et al. Solid state gas sensors: state of the art and future activities. J.

Optoelectron. Adv. Mater. 5, 1335–1348 (2003).
20. Sung, S.-H. & Jun, S. C. Electronic Nose System Technology for Gas Molecule

Identification and Analysis by Time Series Eigengraph Analysis Based on Artificial
intelligence. Master thesis, Yonsei University (2021).

21. Yang, L. et al. Moisture-resistant, stretchable NOx gas sensors based on laser-
induced graphene for environmental monitoring and breath analysis. Micro-
syst. Nanoeng. 8, 1–12 (2022).

22. Gupta Chatterjee, S., Chatterjee, S., Ray, A. K. & Chakraborty, A. K.
Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens.
Actuators B: Chem. 221, 1170–1181 (2015).

23. Meng, F.-L., Guo, Z. & Huang, X.-J. Graphene-based hybrids for chemiresistive
gas sensors. TrAC Trends Anal. Chem. 68, 37–47 (2015).

24. Toda, K., Furue, R. & Hayami, S. Recent progress in applications of graphene
oxide for gas sensing: a review. Anal. Chim. Acta 878, 43–53 (2015).

25. Varghese, S. S., Lonkar, S., Singh, K. K., Swaminathan, S. & Abdala, A. Recent
advances in graphene based gas sensors. Sens. Actuators B: Chem. 218,
160–183 (2015).

26. Geim, A. K. & Novoselov, K. S. in Nanoscience and Technology: A Collection of
Reviews from Nature Journals 11–19 (World Scientific, 2010).

27. Basu, S. & Bhattacharyya, P. Recent developments on graphene and graphene
oxide based solid state gas sensors. Sens. Actuators B: Chem. 173, 1–21 (2012).

28. He, Q., Wu, S., Yin, Z. & Zhang, H. Graphene-based electronic sensors. Chem. Sci.
3, 1764–1772 (2012).

29. Liu, Y., Dong, X. & Chen, P. Biological and chemical sensors based on graphene
materials. Chem. Soc. Rev. 41, 2283–2307 (2012).

30. Yavari, F. & Koratkar, N. Graphene-based chemical sensors. J. Phys. Chem. Lett. 3,
1746–1753 (2012).

31. Yuan, W. & Shi, G. Graphene-based gas sensors. J. Mater. Chem. A 1,
10078–10091 (2013).

32. Choi, Y. R. et al. Role of oxygen functional groups in graphene oxide for
reversible room-temperature NO2 sensing. Carbon 91, 178–187 (2015).

33. Mattson, E. et al. Investigation of NO2 adsorption on reduced graphene oxide.
Chem. Phys. Lett. 622, 86–91 (2015).

Hwang et al. Microsystems & Nanoengineering            (2023) 9:28 Page 11 of 13

https://doi.org/10.1038/s41378-023-00499-y


34. Chung, M. G. et al. Highly sensitive NO2 gas sensor based on ozone treated
graphene. Sens. Actuators B: Chem. 166, 172–176 (2012).

35. Hong, J. et al. A highly sensitive hydrogen sensor with gas selectivity using a
PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid. ACS
Appl. Mater. Interfaces 7, 3554–3561 (2015).

36. Niu, F., Tao, L.-M., Deng, Y.-C., Wang, Q.-H. & Song, W.-G. Phosphorus doped
graphene nanosheets for room temperature NH3 sensing. N. J. Chem. 38,
2269–2272 (2014).

37. Pak, Y. et al. Palladium-decorated hydrogen-gas sensors using periodically
aligned graphene nanoribbons. ACS Appl. Mater. Interfaces 6, 13293–13298
(2014).

38. Koziej, D. et al. Water–oxygen interplay on tin dioxide surface: implication on
gas sensing. Chem. Phys. Lett. 410, 321–323 (2005).

39. Vlachos, D., Skafidas, P. & Avaritsiotis, J. The effect of humidity on tin-oxide
thick-film gas sensors in the presence of reducing and combustible gases.
Sens. Actuators B: Chem. 25, 491–494 (1995).

40. Jung, Y. et al. Humidity‐tolerant single‐stranded DNA‐functionalized graphene
probe for medical applications of exhaled breath analysis. Adv. Funct. Mater.
27, 1700068 (2017).

41. Kiranyaz, S. et al. 1D convolutional neural networks and applications: a survey.
Mech. Syst. signal Process. 151, 107398 (2021).

42. cadnav. Female Head Base Mesh 3D Model. http://www.cadnav.com (2012).
43. cadnav. Location of the Human Cerebrum 3D Model. http://www.cadnav.com

(2014).
44. Umadevi, D., Panigrahi, S. & Sastry, G. N. Noncovalent interaction of carbon

nanostructures. Acc. Chem. Res. 47, 2574–2581 (2014).
45. Georgakilas, V. et al. Functionalization of graphene: covalent and non-covalent

approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012).
46. Wang, Q. H. et al. Understanding and controlling the substrate effect on

graphene electron-transfer chemistry via reactivity imprint lithography. Nat.
Chem. 4, 724 (2012).

47. Lee, C.-Y., Harbers, G. M., Grainger, D. W., Gamble, L. J. & Castner, D. G.
Fluorescence, XPS, and TOF-SIMS surface chemical state image analysis of
DNA microarrays. J. Am. Chem. Soc. 129, 9429–9438 (2007).

48. Javadian-Saraf, A., Hosseini, E., Wiltshire, B. D., Zarifi, M. H. & Arjmand, M.
Graphene oxide/polyaniline-based microwave split-ring resonator: a versatile
platform towards ammonia sensing. J. Hazard. Mater. 418, 126283 (2021).

49. Liu, A. et al. The gas sensor utilizing polyaniline/MoS2 nanosheets/SnO2

nanotubes for the room temperature detection of ammonia. Sens. Actuators B:
Chem. 332, 129444 (2021).

50. Wu, Q. et al. An enhanced flexible room temperature ammonia gas sensor
based on GP-PANI/PVDF multi-hierarchical nanocomposite film. Sens. Actua-
tors B: Chem. 334, 129630 (2021).

51. Ma, J. et al. Multi-walled carbon nanotubes/polyaniline on the ethylenedia-
mine modified polyethylene terephthalate fibers for a flexible room tem-
perature ammonia gas sensor with high responses. Sens. Actuators B: Chem.
334, 129677 (2021).

52. Hien, H. T. et al. High NH3 sensing performance of NiO/PPy hybrid nanos-
tructures. Sens. Actuators B: Chem. 340, 129986 (2021).

53. Wang, S. et al. Ultrathin Nb2CTx nanosheets-supported polyaniline nano-
composite: enabling ultrasensitive NH3 detection. Sens. Actuators B: Chem.
343, 130069 (2021).

54. Hu, Q. et al. Design and preparation of hollow NiO sphere-polyaniline com-
posite for NH3 gas sensing at room temperature. Sens. Actuators B: Chem. 344,
130179 (2021).

55. Shoeb, M., Mobin, M., Ahmad, S. & Naqvi, A. H. Facile synthesis of polypyrrole
coated graphene Gr/Ag–Ag2O/PPy nanocomposites for a rapid and selective
response towards ammonia sensing at room temperature. J. Sci.: Adv. Mater.
Devices 6, 223–233 (2021).

56. Shahmoradi, A., Hosseini, A., Akbarinejad, A. & Alizadeh, N. Noninvasive
detection of ammonia in the breath of hemodialysis patients using a highly
sensitive ammonia sensor based on a polypyrrole/sulfonated graphene
nanocomposite. Anal. Chem. 93, 6706–6714 (2021).

57. Luo, G., Xie, L., He, M., Jaisutti, R. & Zhu, Z. Flexible fabric gas sensors based on
reduced graphene-polyaniline nanocomposite for highly sensitive NH3

detection at room temperature. Nanotechnology 32, 305501 (2021).
58. Oh, W.-C. et al. Chemo-electrical gas sensors based on LaNiMoSe2 in graphene

and conducting polymer PANI composite semiconductor nanocomposite. J.
Electron. Mater. 50, 5754–5764 (2021).

59. Feng, Q., Zhang, H., Shi, Y., Yu, X. & Lan, G. Preparation and gas sensing
properties of PANI/SnO2 hybrid material. Polymers 13, 1360 (2021).

60. Albaris, H. & Karuppasamy, G. Investigation of NH3 gas sensing behavior of
intercalated PPy–GO–WO3 hybrid nanocomposite at room temperature.
Mater. Sci. Eng.: B 257, 114558 (2020).

61. Amarnath, M., Heiner, A. & Gurunathan, K. Size controlled V2O5-WO3

nano-islands coated polypyrrole matrix: a unique nanocomposite for
effective room temperature ammonia detection. Sens. Actuators A: Phys.
313, 112211 (2020).

62. Wu, T., Lv, D., Shen, W., Song, W. & Tan, R. Trace-level ammonia detection at
room temperature based on porous flexible polyaniline/polyvinylidene
fluoride sensing film with carbon nanotube additives. Sens. Actuators B: Chem.
316, 128198 (2020).

63. Zhang, J., Wu, C., Li, T., Xie, C. & Zeng, D. Highly sensitive and ultralow
detection limit of room-temperature NO2 sensors using in-situ growth of PPy
on mesoporous NiO nanosheets. Org. Electron. 77, 105504 (2020).

64. Abun, A., Huang, B.-R., Saravanan, A., Kathiravan, D. & Hong, P.-D. Effect of
PMMA on the surface of exfoliated MoS2 nanosheets and their highly
enhanced ammonia gas sensing properties at room temperature. J. Alloy.
Compd. 832, 155005 (2020).

65. Husain, A., Ahmad, S. & Mohammad, F. Electrical conductivity and ammonia
sensing studies on polythiophene/MWCNTs nanocomposites. Materialia 14,
100868 (2020).

66. Tanguy, N. R., Wiltshire, B., Arjmand, M., Zarifi, M. H. & Yan, N. Highly sensitive
and contactless ammonia detection based on nanocomposites of phosphate-
functionalized reduced graphene oxide/polyaniline immobilized on microstrip
resonators. ACS Appl. Mater. Interfaces 12, 9746–9754 (2020).

67. Deshmukh, K. & Pasha, S. K. Room temperature ammonia sensing based on
graphene oxide integrated flexible polyvinylidenefluoride/cerium oxide
nanocomposite films. Polym.-Plast. Technol. Mater. 59, 1429–1446 (2020).

68. Singh, P., Kushwaha, C. S., Singh, V. K., Dubey, G. & Shukla, S. K. Chemiresistive
sensing of volatile ammonia over zinc oxide encapsulated polypyrrole based
nanocomposite. Sens. Actuators B: Chem. 342, 130042 (2021).

69. Fan, G. et al. Enhanced room-temperature ammonia-sensing properties of
polyaniline-modified WO3 nanoplates derived via ultrasonic spray process.
Sens. Actuators B: Chem. 312, 127892 (2020).

70. Gaikwad, G., Patil, P., Patil, D. & Naik, J. Synthesis and evaluation of gas sensing
properties of PANI based graphene oxide nanocomposites. Mater. Sci. Eng.: B
218, 14–22 (2017).

71. Belkhamssa, N., Ksibi, M., Shih, A. & Izquierdo, R. Fabrication of fast responsive
and insensitive-humidity sensor based on polyaniline-WO3-CuCl2 for hydro-
gen sulfide detection. IEEE Sens. J. 21, 9716–9722 (2020).

72. Sahu, P. K., Pandey, R. K., Dwivedi, R., Mishra, V. & Prakash, R. Polymer/Graphene
oxide nanocomposite thin film for NO2 sensor: an in situ investigation of
electronic, morphological, structural, and spectroscopic properties. Sci. Rep. 10,
1–13 (2020).

73. Sakhare, R., Navale, Y., Jadhav, Y., Mulik, R. & Patil, V. in Techno-Societal 2020
1021–1029 (Springer, 2021).

74. Wang, C. et al. One-step synthesis of polypyrrole/Fe2O3 nanocomposite and
the enhanced response of NO2 at low temperature. J. Colloid interface Sci. 560,
312–320 (2020).

75. Karmakar, N. et al. Room temperature NO2 gas sensing properties of
p-toluenesulfonic acid doped silver-polypyrrole nanocomposite. Sens. Actua-
tors B: Chem. 242, 118–126 (2017).

76. Dhall, S., Kumar, M., Bhatnagar, M. & Mehta, B. Dual gas sensing properties of
graphene-Pd/SnO2 composites for H2 and ethanol: role of nanoparticles-
graphene interface. Int. J. Hydrog. Energy 43, 17921–17927 (2018).

77. Xiang, C. et al. Ammonia sensor based on polypyrrole–graphene nano-
composite decorated with titania nanoparticles. Ceram. Int. 41, 6432–6438
(2015).

78. Zhang, D., Wu, Z. & Zong, X. Metal-organic frameworks-derived zinc oxide
nanopolyhedra/S, N: graphene quantum dots/polyaniline ternary nanohybrid
for high-performance acetone sensing. Sens. Actuators B: Chem. 288, 232–242
(2019).

79. Chen, Z.-W., Hong, Y.-Y., Lin, Z.-D., Liu, L.-M. & Zhang, X.-W. Enhanced for-
maldehyde gas sensing properties of ZnO nanosheets modified with gra-
phene. Electron. Mater. Lett. 13, 270–276 (2017).

80. Zhao, C. et al. Facile synthesis of SnO2 hierarchical porous nanosheets from
graphene oxide sacrificial scaffolds for high-performance gas sensors. Sens.
Actuators B: Chem. 258, 492–500 (2018).

81. Liu, X., Sun, J. & Zhang, X. Novel 3D graphene aerogel–ZnO composites as
efficient detection for NO2 at room temperature. Sens. Actuators B: Chem. 211,
220–226 (2015).

Hwang et al. Microsystems & Nanoengineering            (2023) 9:28 Page 12 of 13

http://www.cadnav.com
http://www.cadnav.com


82. Star, A., Joshi, V., Skarupo, S., Thomas, D. & Gabriel, J.-C. P. Gas sensor array
based on metal-decorated carbon nanotubes. J. Phys. Chem. B 110,
21014–21020 (2006).

83. Tomchenko, A. A., Harmer, G. P., Marquis, B. T. & Allen, J. W. Semiconducting
metal oxide sensor array for the selective detection of combustion gases. Sens.
Actuators B: Chem. 93, 126–134 (2003).

84. Choi, S.-I., Eom, T. & Jeong, G.-M. Gas classification using combined features
based on a discriminant analysis for an electronic nose. J. Sens. 2016 (2016).

85. Yan, K. & Zhang, D. Feature selection and analysis on correlated gas sensor
data with recursive feature elimination. Sens. Actuators B: Chem. 212, 353–363
(2015).

86. Zhan, C., He, J., Pan, M. & Luo, D. Component analysis of gas mixture based on
one-dimensional convolutional neural network. Sensors 21, 347 (2021).

87. Abdoli, S., Cardinal, P. & Koerich, A. L. End-to-end environmental sound clas-
sification using a 1D convolutional neural network. Expert Syst. Appl. 136,
252–263 (2019).

Hwang et al. Microsystems & Nanoengineering            (2023) 9:28 Page 13 of 13


	Multiplexed DNA-functionalized graphene sensor with artificial intelligence-based discrimination performance for analyzing chemical vapor compositions
	Introduction
	Results
	Design and fabrication of a gas sensor array
	Sensing characteristics
	Chemical vapor discrimination with feature selection
	Chemical vapor discrimination with 1D CNN

	Discussion
	Materials and methods
	Sample preparation and characterization
	Sensor array measurements
	Boruta algorithm
	Support vector machine analysis
	1D convolutional neural network analysis

	Acknowledgements




