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Recent progress in three-terminal artificial synapses
based on 2D materials: from mechanisms to
applications
Fanqing Zhang1,2, Chunyang Li1,2, Zhongyi Li1,2, Lixin Dong3✉ and Jing Zhao1,2✉

Abstract
Synapses are essential for the transmission of neural signals. Synaptic plasticity allows for changes in synaptic strength,
enabling the brain to learn from experience. With the rapid development of neuromorphic electronics, tremendous
efforts have been devoted to designing and fabricating electronic devices that can mimic synapse operating modes.
This growing interest in the field will provide unprecedented opportunities for new hardware architectures for artificial
intelligence. In this review, we focus on research of three-terminal artificial synapses based on two-dimensional (2D)
materials regulated by electrical, optical and mechanical stimulation. In addition, we systematically summarize artificial
synapse applications in various sensory systems, including bioplastic bionics, logical transformation, associative
learning, image recognition, and multimodal pattern recognition. Finally, the current challenges and future
perspectives involving integration, power consumption and functionality are outlined.

Introduction
Cognition and memory are the main sources of human

intelligence. Therefore, human beings have vigorously
developed intelligent electronics to imitate biological
functions such as the multifunctional sensing and pro-
cessing of neural signal transmission, storage and feed-
back. Even though the standard von Neumann
architecture has given our software a literally free increase
in performance by increasing the speed of every single
component, the problem of a separate central processing
unit and storage area limiting transmission speed remains
a challenge1–3. In addition, high latency, excessive energy
consumption and insufficient parallelism have become
bottlenecks. In contrast, biological synapses control the
plastic strength of connections between anterior and

posterior neurons to realize data transmission4. There-
fore, the neuromorphic system provides a novel efficient
solution for processing large amounts of complex data. In
this system, neuromorphic devices are applied to simulate
synaptic plasticity, using electrical property changes to
simulate the connection strength of biological synap-
ses5–50. There are various structures of synaptic devices,
including two-, three- and multiple-terminal structures,
where the signal transmission path and weight modula-
tion are different51. Typical two-terminal devices, such as
memristors, phase-change memories, and atomic
switches, can reach a small size and be integrated easily
due to their simple structure34,52–58. In this architecture,
the signal transmission and learning process perform
asynchronously due to the lower number of terminals;
thus, the signal is inhibited during the learning operation
with the output signal as feedback to the synaptic
device59–64. In comparison, three- and multiple-terminal
synaptic transistors can not only realize signal transmis-
sion and self-learning processes simultaneously but also
demonstrate high stability, repeatability and clear oper-
ating mechanisms19,65–83. Figure 1 shows a comparison
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between an artificial neural network and a biological
network. At present, research on three- and multiple-
terminal synaptic transistors is still preliminary, and
neuromorphic transistors have mainly focused on four
types: synapses based on floating gate-regulated, ferro-
electric, photoelectric and electromechanical field effect
transistors (FETs)34,84–97.
Emerging 2D materials (such as graphene, transition

metal chalcogenides (TMDs), and hexagonal boron
nitride (h-BN)) have demonstrated excellent properties to
realize various functions of biological synap-
ses35,36,76,77,93,94,98–105. The atomic structures of these 2D
materials provide high integration, suppressed short-
channel effects and low leakage currents. Their unique
2D layered structures lead to large surface-to-volume
ratios to sensitively perceive external stimulus signal
changes. In addition, stacked 2D materials can act as
channels with variable energy band structures84,106–109. In
recent years, 2D material synaptic devices have attracted
broad research interest (Fig. 2) for extensive applications.
Their outstanding and stable mechanical, thermal, elec-
trical, and optical properties enable them to serve as
artificial synaptic devices with high stability and low-
power consumption16,26,30,36,38,73,74,110–128.
In this article, we summarize recent research on artifi-

cial synapses based on 2D materials. First, we introduce
various three-terminal synaptic devices with different
operating principles, including the biomimetic principles
of floating gate-regulated transistors, ferroelectric layer
transistors, optoelectronic synaptic transistors, and elec-
tromechanical coupling transistors32,33. Second, we focus

on the current development of artificial synapse proper-
ties excited by electrical, optical, mechanical, and hybrid
stimulation. Third, we enumerate advanced applications
of artificial synapses to mimic biological neural beha-
viors129. Finally, the challenges and future perspectives of
artificial synapses are outlined.

Three-terminal synaptic devices
Synaptic devices can be classified as two-, three- and

multiple-terminal devices depending on the number of
terminals. Typical devices with two terminals can be
divided into magnetic random-access memories
(MRAM), resistive random-access memories (RRAM),
and phase-change memories (PCM)130–132. The electrical
signal transmission and material resistance strength can
be regulated by electrical signals between two electrodes.
In contrast, triple-ended synaptic devices can obtain

additional regulation provided by the third terminal. The
synaptic property of the device can change by applying
different voltages at the gate electrode. According to the
various modulation mechanisms derived from different
functionalized layers coupled with 2D materials, three-
terminal artificial synaptic devices can be divided into
synapses based on floating gate field effect transistors
(FGFETs), ferroelectric field effect transistors (FeFETs),
optoelectronic field effect transistors (OFETs), or elec-
tromechanical coupling field effect transistors (MFETs),
as shown in Fig. 374,133–139.

Floating-gate synapses
The structure of an FGFET is shown in Fig. 3a. The

floating gate layer inserted between the channel layer and
gate electrode acts as a charge well, which is isolated by a
tunneling and a blocking layer, respectively140.
The threshold voltage VT of the FGFET is given by

VT ¼ K� QFG

CCG

where QFG and CCG represent the floating gate charge and
the capacitance between the control gate (CG) and
floating gate (FG), respectively. K is a constant depending
on device manufacturing processes.
When a writing gate voltage is applied, charges in the

channel can cross over the tunneling layer through the
Fowler–Nordheim (F–N) tunneling or channel hot elec-
tron injection mechanism and be stored in the floating
gate layer. Thus, the threshold voltage of the device can be
tuned by the QFG when a write/erase operation is
performed48,133,134,140–148.
Paul et al. reported a molybdenum disulfide (MoS2)-

based floating-gate synaptic device using graphene and
hBN as the floating-gate and tunneling layers, respec-
tively133. The device maintained an ideal subthreshold
swing of 77 mV/decade under over four decades of drain
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Fig. 1 Comparison of artificial neural networks and biological
neural networks. a Biological synapse and neural network (including
three components: receptor, axon and synapse). b Artificial synapse
and neural network (including three components: sensor, pathway,
and memory)
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current. In addition, the device, as a biological synapse,
successfully simulated the weight update in response to
external stimuli by modulating the channel conductance.
The high durability (>105 s) and low energy consumption
(~5 fJ for a single pulse) of the device laid the foundation
for FGFET synapses in neuromorphic applications.
Compared with conventional dielectric layers, high-k

materials are better at suppressing the short-channel
effect during device downscaling and can improve the
performance of synaptic devices based on FGFETs. For
example, Joon Young Kwak and coworkers optimized the
thickness of the blocking layer (HfO2) and the tunneling
layer (Al2O3) in a MoS2/graphene structure to achieve
linear synaptic weight updates149. The device exhibited
spike-timing-dependent plasticity (STDP) behavior and
demonstrated the possibility of constructing a synaptic
device using mass-grown 2D materials, implying a route

for spiking neural network (SNN) neuromorphic
hardware.

Ferroelectric synapses
An FeFET has advantages of fast operating speed, long

retention time, large on/off ratios and low-power con-
sumption, making it promising for use in artificial elec-
tronic synapses. Ferroelectric materials are low-symmetry
crystals, and the specific polarization direction can be
formatted under an appropriate external electric field.
Due to the nonlinear relationship between the polariza-
tion of the ferroelectric material and the applied electric
field, a significant electrical hysteresis can be observed in
the polarization–electric field (P-E) loops150–154. There-
fore, the polarization state of the ferroelectric layer can be
changed by applying an appropriate gate pulse voltage,
thus allowing the synapse to be tuned by multidomain
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polarization switching. In addition, the ferroelectric
material can also act as the dielectric layer. Therefore, the
gate voltage can modulate the polarization state in real
time and influence the channel carrier density, leading to
a nonvolatile storage state92,135,136,155–159.
Tian et al. integrated an organic ferroelectric thin film

P(VDF-TrFE) as a dielectric layer in a MoS2 FET and
obtained a switching ratio of ~104160. Typical biological
synaptic plasticity, such as long-term potentiation (LTP),
long-term depression (LTD), and STDP, was successfully
simulated by the dynamic resistive switching of the device.
Due to the polarization flipping ability of the organic
ferroelectric material, the device demonstrated low energy
consumption (~1 fJ per pulse) and decade-long durability.
In addition, Tang et al. constructed a synaptic transistor

using an α-In2Se3 2D ferroelectric semiconductor as the
channel material161. The conductance of the α-In2Se3
channel was adjusted by the gate voltage pulse, resulting
in a synaptic weight change. The authors simulated basic
synaptic behaviors such as single-, paired- and multiple-
spike responses by adjusting the gate voltage pulse width.
This approach used ferroelectric materials as channel

layers and provided a new path for device miniaturization
compared with a device using ferroelectric material as the
dielectric layer. Wang et al. added more control terminals
to the α-In2Se3 ferroelectric transistor, realizing non-
volatile storage and implementing neuromorphic com-
puting162. The memory window can reach 6 V and remain
stable even after 500 cycles. In addition, the device
showed a fast response time and could switch on/off
under 40 ns write pulses. In addition, the flexible synaptic
plasticity of the device with ~fJ power consumption
showed little influence on the nonvolatile memory per-
formance when synaptic weights were updated163.

Optoelectronic synapses
Optical detection, processing and memory are funda-

mental requirements for an artificial vision system. The
image capture system was separated from the memory
unit for conventional devices. The optoelectronic synapse
can realize optical information perception and storage
within a single device, enabling the synergistic processing
of optical and electrical signals138,164–168. Optoelectronic
synapses can simulate synaptic behavior with high energy
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Fig. 3 Structure diagrams of typical three-terminal devices. a–c Structures of the FGFET, FeFET, optoelectronic field effect transistor, and
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efficiency, strong robustness, and good parallelism to
simulate functions as retinal neurons in human
eyes103,137,169,170.
According to a previous study, 2D materials were widely

used in photoelectric devices because of their rich energy
band structure. Excitons can be produced under optical
illumination and be moved inductively by the electric field
between the source and drain electrodes. The carrier
density in the channel affected the threshold voltage of the
device, which exhibited light-tunable synaptic plasticity,
as shown in Fig. 3c. Therefore, researchers have sought to
achieve continuous, reversible and nonvolatile responses
based on photoelectric synapses, leading to visual neural
computing applications.
Seo et al. constructed an optical nerve device based on

the h-BN/WSe2 structure and realized both synaptic and
optical sensing functions30. The conductivity of the WSe2
channel was adjusted by the number of captured electrons
in the oxygen plasma-treated h-BN weight control layer.
The near-linear weight update performance provided
stable conduction states with less than 1% variation.
Additionally, the device showed low-power consumption
with only 66 fJ under a single spike operation at 0.3 V.
Moreover, Sun et al. constructed synapses tuned by

both optical and electrical stimulation based on the MoS2/
h-BN structure171. The ionization and neutralization of
intrinsic defects in h-BN can be co-stimulated by both
optical and electrical spikes. Therefore, the synaptic
weight was enhanced and suppressed, enabling unique
bidirectional weight updating. The high accessibility (<1%
change between cycles), long retention (>21 days), highly
dynamic conductance range (>384) and moderate asym-
metry (<3.9) of the device provided a maximum accuracy
of 96.1% in human electrocardiogram recognition.

Electromechanical synapses
Synaptic devices tuned by mechanical stimuli have been

extensively investigated because they integrate both
external mechanical stimuli perception and subsequent
signal processing74,139,172–174. Therefore, the electro-
mechanical synapse provides a new route for future
applications in artificial electronic skin and neuromorphic
interfaces for robotic and human interactions80,175–178.
Chen et al. presented the first piezoelectric artificial sen-

sory synapse based on a piezoelectric nanogenerator
(PENG) coupled with an ionic gel gated graphene FET74.
The piezoelectric output induced by the mechanical strain
tuned the FET property, enabling the tactile signal input
and transmission process. At the same time, the weight of
the artificial synapse could be effectively modulated by
strain pulses, realizing potentiation/inhibition, spike-time-
dependent plasticity and pair-pulse facilitation. The synapse
provided a new way to construct artificial nerves with effi-
cient perceptual and neuromorphic computing capabilities.

Yang et al. proposed a multifunctional artificial synapse
with a coupling MoS2 FGFET and triboelectric nano-
generator (TENG) for mechanical plasticity179. The
synaptic weight was modulated by mechanically changing
the TENG displacement. The frictional potential coming
from the TENG was coupled to the MoS2 FGFET, mod-
ulating the postsynaptic current and affecting the synaptic
weights. The authors successfully mimicked classic
enhanced and inhibited synaptic plasticity using different
active interactions. Additionally, the device could imple-
ment simple logic operations simultaneously, making it a
favorable candidate for building mechanically derived
artificial neural networks and providing a possible route
to perform neuromorphic logic switching and data sto-
rage simultaneously.
In addition, our group prepared nanographene/MoS2

floating-gate memory coupled with a TENG to realize
multilevel storage states75. The device can be triggered by
both mechanical and optical stimuli without applying an
additional gate voltage. During the programming process,
both the mechanical motion of the TENG and the inci-
dent light can drive stored electrons in the nanographene
layer to the MoS2 channel. In contrast, the reverse motion
of the TENG can penetrate electrons back to the charge
trapping layer, leading to an erasure process. Due to the
excellent mechanical properties of the 2D material, the
device, integrated on a flexible PET substrate, exhibited
stable (105 s) storage performance with a programmed
erasure ratio up to 107 even under strains greater than 1%.
This electromechanical device paved the way for the
development of next-generation low-power bionic
synaptic systems with instant human–computer
interactions.

Plasticity of artificial synapses
The human brain shows better computing capabilities

than supercomputers, including ultrafast response speed
and low-power consumption due to high-density signal
processing. There are ~1011 neurons in the human brain,
and every neuron is connected with another ~104 neu-
rons, thus forming a highly interconnected and complex
network with large-scale parallel computing functions.
Biological synapses play an important role in information
transmission in the nervous system and have time-
dependent plasticity. Synaptic weight can be used to
describe the strength of the connection between two
neurons, which is achieved by adjusting the ion con-
centration (such as Ca2+, Na+, K+, etc.). As a result,
learning, memory and computing functions can be rea-
lized by changing the weights180–190. Simulating the
plastic characteristics of synapses can replicate the basic
principles of the nervous system. The corresponding
biomimetic synapses based on electronic devices can
mimic biological synaptic behavior, forming an important
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branch of neuromorphic electronics and injecting new
vitality into artificial intelligence development. Here, we
discuss the plasticity of artificial synapses, including STP
(excitatory postsynaptic current (EPSC), inhibitory post-
synaptic current (IPSC), paired pulse facilitation (PPF)
and paired pulse depression (PPD)) and LTP (STDP).
Synaptic plasticity can be divided into two main types:
STP and LTP, depending on the time of activity
change163,191–193. By enhancing or inhibiting cerebral
cortex activity in a short time between milliseconds and
minutes, STP conducts synaptic transmission and realizes
spatiotemporal neural activity. In contrast, LTP is widely
recognized as the biological basis for long-term learning
and memory194–197.

STP
EPSCs and IPSCs
A synapse is characterized by a presynaptic pouch-like

structure whose interior is composed of synaptic vesicles
and mitochondria. The adjacent presynaptic membrane
faces the postsynaptic membrane. Impulse signals, one of
the most common signal transmission forms, play an
important role in neural activity. When the human body is
stimulated by an external stimulus, the corresponding
impulse signal then forms and is transmitted to the pre-
synaptic membrane. After receiving the pulse signal, the
neurotransmitter of the synapse is released and trans-
mitted to the postsynaptic membrane, which generates
the membrane potential. EPSCs and IPSCs are the most
fundamental neural activities that process complex
information. To understand the physical mechanism of
IPSCs and EPSCs in artificial synaptic devices under
electrical modulation, the effect of relative positive/
negative control gate voltage pulses on channel currents
was analyzed196,198,199. The source–drain current of the
synaptic transistor remained stable over time before the
presynaptic pulse was applied. Depending on the relative
positive or negative voltage pulse, the source–drain cur-
rent was enhanced (EPSC) or suppressed (IPSC), respec-
tively. It is worth noting that the current cannot return
monotonically to the initial level even after the pulse is
removed. Conversely, after the positive (negative) voltage
pulse jumps to the initial level, the source–drain current
acts as a postsynaptic current, exhibiting a slow relaxation
phenomenon.
In the post-Moore era, on-chip growth integration faces

great challenges. 2D van der Waals materials have
attracted extensive interest in next-generation nanoelec-
tronics due to an atomic-scale thickness that is easily
integrated200,201. In addition, some van der Waals mate-
rials, such as black phosphorus (BP), indium selenide
(InSe), mercury sulfide (HfS2), molybdenum telluride
(MoTe2), and layered organic materials (Ruddlesden‒
Popper perovskite), are naturally sensitive to oxidative

effects and tunable charge trapping. Correspondingly,
transistors are believed to realize synaptic characteristics.
Yang et al. reported an oxidation-enhanced van der Waals
InSe artificial synapse, which successfully mimicked the
basic bidirectional neuromorphic behavior of EPSCs and
IPSCs202. InSe possesses a small effective electron mass
and good intrinsic charge transport properties. In parti-
cular, the unstable characteristic of the air and large
surface area to volume ratio led to hysteretic behavior.
The changed microstructure of InSe FETs under ambient
conditions confirmed that the native oxide formed at the
bottom of the InSe channel can act as a unique charge-
trapping layer to tune the charge transport behavior. This
oxidation-induced InSe artificial synaptic device and
corresponding image recognition system, based on an
ANN, realized basic synaptic functions. The schematic
structure of the artificial synapse based on surface-doped
InSe FETs is shown in Fig. 4a. The applied gate voltage
pulse as the input spike triggering the PSC can be com-
pared to the biological synapse working process (Fig. 4b).
The peaks of EPSCs were gradually augmented with
increasing pulse voltage, corresponding to excitatory
synaptic behavior (Fig. 4c). The value of the voltage spikes
can be greatly reduced for low energy consumption by
decreasing the thickness of the dielectric layers. Further-
more, Fig. 6d shows the typical IPSCs extracted as a
function of retention time by varying the number of input
spikes, illustrating the simulation of LTP behavior. In
addition, the electrical properties of the device gave the
way to simulate the flexible plasticity of PPF and STDP.
This universal research method can be applied to MoTe2,
HfS2, BP and other ultrasensitive van der Waals materials,
which are sensitively affected by oxygen doping, opening
up opportunities to build efficient neuromorphic com-
puting systems.

PPF and PPD
PPF is a common manifestation of short-range synaptic

plasticity in nervous system processing. It describes the
phenomenon of spike-inducing EPSC enhancement when
the second spike follows the previous spike immediately,
leading to a presynaptic calcium ion concentration
increase and in turn triggering synaptic vesicles to release
large amounts of neurotransmitters. In contrast, PPD is a
short-range depression, which is considered a type of
negative feedback in the nervous system and is often
attributed to the depletion of released vesicles. Synaptic
inhibition plays an important role in processing percep-
tual adaptation and sound localization and enhancing
information transfer efficiency203–205.
Recently, TMDs such as MoS2 and WSe2, with unique

interfacial structural, electrical and optical properties,
have been reported as promising candidates for complex
neuromorphic applications. Moreover, 2D organic
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materials such as perylene-3,4,9,10-tetracarboxylic dia-
nhydride (PTCDA) have received increasing attention not
only because of their excellent optoelectronic properties
but also because of their excellent compatibility with most
inorganic 2D materials. Wang et al. demonstrated a novel
2D MoS2/PTCDA heterojunction synaptic transistor,
which exhibited good optoelectronic modulation and
biomimetic synaptic plasticity206. As shown in Fig. 5, the
device can mimic biological synaptic behavior through
both electrical and optical modulation. Transferred elec-
trons at the MoS2/PTCDA heterojunction interface led to
the corresponding STP and LTP synaptic behavior,
similar to the neurotransmitter release process in biolo-
gical synapses. Electrical and optical spikes and the het-
erojunction channel current corresponded to presynaptic
input spikes and PSCs in biosynapses, respectively. The
synaptic device can successfully simulate PPF and PPD
behaviors when a pair of relatively positive or negative Vcg

pulses are applied to the gate (Fig. 5b, c). Because both
MoS2 and PTCDA can strongly absorb green light, a
532 nm laser pulse was used to replace the gate voltage
spike without fabricating the top gate, as shown in Fig. 5d.
When the laser irradiates the hybrid semiconductor,
activated electrons can transfer from PTCDA to MoS2,
leading to a proliferated PSC. The EPSC meant electrons

gradually returned to the PTCDA after withdrawing the
laser pulse; therefore, the PSC returned to the original
level. In addition, increasing the interval between two
laser pulses resulted in a decrease in the PPF, which was
consistent with the result under electrical modulation
(Fig. 5e). The applied positive back gate voltage can
convert STP to LTP (Fig. 5f) due to electrons returning
from MoS2 to PTCDA, prolonging the recovery relaxation
time. The device relied on carrier transfer that occurs at
the hybrid heterojunction interface and successfully
achieved dynamic filtering and long-term weight changes.

LTP
STDP
STDP, an application for Hebbian learning rules in the

nervous system, adjusts the weight of intersynaptic con-
nections by setting the timing of pre- and postsynaptic
pulse sequences in neurons. This phenomenon was also
considered one of the basic principles of brain learning
and memory25,207–209.
Conventional artificial synapses based on memristors or

transistors can achieve simple synaptic functions. How-
ever, it lacked the ability to dynamically reconfigure
excitatory and inhibitory responses without adding
modulation terminals. Tian et al. constructed a tunable
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heterojunction artificial synapse structure using BP and
tin selenide (SnSe), simulating the biological synaptic
effect of releasing excitatory and inhibitory neuro-
transmitters simultaneously29. Heterosynaptic devices
typically rely on a third active terminal to modulate
synaptic responses. The heterojunction device mimicked
synaptic characteristics such as potentiation, inhibition,
and STDP (Fig. 6a–d). The junction between the mid-
bandgap material BP and SnSe can lead to tunable recti-
fying electrical properties, which is analogous to the single
axon-dendritic synaptic connection process, providing a
reconfigurable synaptic signature between excitatory and
inhibitory responses29.
TENGs are capable of efficiently converting mechanical

energy from the surrounding environment into electrical
power. The coupling effect between triboelectric potential
and semiconductor transport properties can potentially be
used to mimic the function of biological sensory neurons
or afferent nerves. Inspired by the phenomena in which
bioreceptors capture touch signals to generate post-
synaptic action potentials, Yu et al. fabricated an artificial
afferent nerve activated by a contact mode. The energy
dissipation of contact-electrification (CE)-activated artifi-
cial afferent nerves has been significantly reduced to the
femtojoule level (11.9 fJ per spike)113. Tribo-potential
modulation caused by the contact charged gate activation

of synaptic transistors generated postsynaptic action
potentials, as shown in Fig. 7a. The TENG was coupled to
a MoS2-based ion gel-regulated transistor. The potential
induced anion/cation migration to form EDLs in the ionic
gel, changing the Fermi level of MoS2 channels and
effectively triggering EPSCs. Stimulated by continuous
and paired contact–separation (CS) mechanical actions,
self-activating artificial afferents represented typical PPF
behavior, in which a second spike elicited an increase in
EPSCs (Fig. 7c). The tunability of the PPF index initialized
by paired CS actions suggested that CE-activated artificial
afferents had excellent short-term synaptic plasticity. In
addition, the artificial afferent can also further enhance
plasticity under multiple consecutive CS action pulses.
This behavior is similar to saturated neurotransmitters
under multiple presynaptic regulation. The current gain
was defined as An/A1 and was closely related to the
number of CS actions (Fig. 7d), demonstrating that the
plasticity of artificial synapses was gradually enhanced
with increased stimulation times. A device using EDL gate
control can successfully demonstrate spatiotemporal
touch pattern recognition on flexible substrates. This
work represents a promising strategy for developing next-
generation biomimetic electronics, low-power neuro-
morphic devices, directly interacting electronic prosthe-
tics and even neurorobots.
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Advanced applications of artificial synapses
Single synaptic devices have realized various synaptic

features. Building a complete neural network system has
become one of the most important branches of neuroe-
lectronics. Multimodal synaptic devices based on 2D
materials can simulate the learning and memory process
of the human brain by synergizing various perceptions
such as vision, smell and hearing. For example, emerging
opto-mechanical synapses broke through the limitation of
traditional electrical synaptic devices and provided a
diverse route to change the synaptic weight. The emerging
artificial synapse with synergistic multimodal plasticity
can be applied to hybrid-modal neuromorphic chips and
unconventional convolutional neural networks, which can
be used in artificial retinas and intelligent robot
applications5,210–213.
In recent years, three-terminal devices have been pro-

posed as artificial neuromorphic synapses that can mimic
the typical functions of biological synapses, such as
dynamic logical circuits, self-learning, and STDP186,214,215.

In 2017, Jiang et al. fabricated a multiterminal MoS2
neuromorphic transistor that successfully simulated
EPSCs, PPF and spike logic regulation216. By applying
multiple presynaptic inputs, pulse-dependent logical
operations, multiplicative neural coding and spatio-
temporally neuronal gain modulation can be simulated in
the neuromorphic device. Figure 8a shows the integration
function of multiple presynaptic dendrites, in which G1

and G2 represent each presynaptic-driven input terminal.
Gm represents the presynaptic modulation terminal. The
authors realized the logic functions of “AND” and “OR”
by adding two voltage pulses, as shown in Fig. 8b–d.
Conditional release is a typical form of associative

learning in biology. John et al. reported a MoS2 three-
terminal neuromorphic transistor that can mimic classic
Pavlovian conditioning27. Researchers have established an
association between STDP and the classic conditional
reflex. The electrical pulses mimicked the process of
ringing the bell (Fig. 9b), while the light pulses mimicked
the feeding behavior (Fig. 9c) due to the different storage
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capacities for light and electrical pulses. After 40 cycles of
training by light (US) and electrical pulse stimulation
(CS), an efficient correlation between the two stimulations
was established. In addition, Pavlovian conditioning can
be performed under all-light stimulation. Furthermore,
the 2D MoS2 neuromorphic transistor demonstrates
comprehensive synaptic behavior for the first time, exhi-
biting different electronic, ion electronic, and photo-
sensitivity operation modes. This optoelectronic synapse
has an ultrafast propagation speed without interconnec-
tion problems, which shows outstanding application
prospects in intelligent optical neurocomputing systems.
Since Mead conducted the first experiment to simulate

the brain’s biological neural network (BNN) in the 1980s,
researchers have successfully simulated BNNs with var-
ious synaptic devices. Furthermore, Seo et al. proposed an
optical-neural synapse (ONS) device based on the h-BN/
WSe2 heterojunction, providing a possible route to inte-
grate sensing and training functions for complex pattern
recognition tasks30. The device can simulate the human

visual system’s color and color mixed mode with recog-
nition capabilities. In optical-neural networks, synaptic
devices exhibit near-linear weight update trajectories,
providing stable conduction states for color and color-
mixing pattern recognition. The synaptic device used O2

plasma-treated h-BN as the charge trapping layer, as
shown in Fig. 10a. An optical-neural network (ONN) was
constructed based on an ONS device (Fig. 10b), which
showed a corresponding response to light with different
wavelengths and demonstrated better recognition results
(exceeded 90%) than a traditional neural network (below
40%) (Fig. 10c). Therefore, the synaptic weight values are
reproduced and visualized as the training number
increases in Fig. 10d.
Humans have complex neural network systems that can

analyze environmental information in parallel with mul-
tisensory cues. Wan et al. developed a bimodal artificial
sensory neuron to implement a sensory fusion process
that collected visual and pressure information through
photodetectors and pressure sensors, respectively114. The
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bimodal information was transmitted through ionic
transistors. Sensory neurons were activated by both visual
and tactile stimuli, demonstrating enhanced task recog-
nition ability after fusion. As shown in Fig. 11b, c, by
combining manipulator pressure and LED light signals on
the ball, researchers designed a matrix with visual-haptic
fusion. which can fully extract shape and transparency
information. This work simulated tactile and visual sen-
sory fusion at the neuronal level, helping to build a highly
integrated perception system to improve current robotics
and artificial intelligence.

Conclusion and outlook
This review summarizes the research progress of elec-

trical, optical and mechanical responsive three-terminal
artificial synapses based on 2D materials and their appli-
cations in artificial sensory systems, including biomimetic
plasticity, logical transformation, associative learning,

image recognition and multimodal pattern recognition. In
recent years, novel three-terminal artificial synapses have
successfully mimicked basic synaptic functional behaviors
and exhibited gate tunability. Tri-terminal neuromorphic
transistors have the advantage of processing data in par-
allel with multiple presynaptic inputs and simulating
spatiotemporal dynamic logic. Neural computing based
on three-terminal devices can play a more important role
in pattern recognition and decision-making applications
relying on massively parallel, highly interconnected neural
circuits, good fault tolerance, self-learning ability and
ultralow power consumption compared with traditional
von Neumann architectures.
2D materials with excellent physical and chemical

properties provide a potential platform to realize artificial
synapses and neural networks. The reliability of the 2D
channel material is a key factor affecting the operation of
synaptic devices. van der Waals heterostructure artificial
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synapses can tune synaptic weights, which depend on the
band alignment of vertically stacked materials. However,
the difficulty in massively scalable and repeatable fabri-
cation and defects introduced by heterostructures led to
device performance variation. Therefore, high-quality
wafer-scale 2D material synthesis promoted the develop-
ment of practical human perception systems and neuro-
morphic computing.
A previous study initially focused on the electrical sti-

mulation of artificial synapses. However, mechanical and
photonic synapses have attracted more attention because
modulations can link tactile and visual interactions. In
particular, optical stimulation enabled the wireless
transmission of synaptic devices. Considering that biolo-
gical neurons have extremely high efficiency and ultralow
power consumption, in the future, ultrasensitive, low-
power, multimodal modulated and high-density inte-
grated devices will become key requirements for building
brain-like electronic systems. Furthermore, the integra-
tion and interconnection of neuromorphic devices are
formidable challenges. Therefore, the reduced device size
will help to increase the 3D integration density and reduce
the power consumption. It is also necessary to process
larger-sized wafers. In addition, matrixed neuromorphic
transistors integrated with various sensors, which are
compatible with conventional complementary metal

oxide semiconductor (CMOS) technology, can realize
more comprehensive and intelligent artificial sensory
systems (e.g., audio, vision, touch, smell). Predictably, the
artificial sensory system can be used in wide applications,
including wearable devices, intelligent robots, and pros-
thetics. Considering the rapid development of materials
science, computer science, artificial intelligence, medical
care and other fields, artificial neural networks and
synaptic electronics will achieve faster development.
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