
Schiwietz et al. Microsystems & Nanoengineering            (2023) 9:11 Microsystems & Nanoengineering
https://doi.org/10.1038/s41378-022-00480-1 www.nature.com/micronano

ART ICLE Open Ac ce s s

Thermoelastic damping in MEMS gyroscopes at
high frequencies
Daniel Schiwietz1,2✉, Eva M. Weig2,3,4✉ and Peter Degenfeld-Schonburg1✉

Abstract
Microelectromechanical systems (MEMS) gyroscopes are widely used, e.g., in modern automotive and consumer
applications, and require signal stability and accuracy in rather harsh environmental conditions. In many use cases,
device reliability must be guaranteed under large external loads at high frequencies. The sensitivity of the sensor to
such external loads depends strongly on the damping, or rather quality factor, of the high-frequency mechanical
modes of the structure. In this paper, we investigate the influence of thermoelastic damping on several high-
frequency modes by comparing finite element simulations with measurements of the quality factor in an application-
relevant temperature range. We measure the quality factors over different temperatures in vacuum, to extract the
relevant thermoelastic material parameters of the polycrystalline MEMS device. Our simulation results show a good
agreement with the measured quantities, therefore proving the applicability of our method for predictive purposes in
the MEMS design process. Overall, we are able to uniquely identify the thermoelastic effects and show their
significance for the damping of the high-frequency modes of an industrial MEMS gyroscope. Our approach is generic
and therefore easily applicable to any mechanical structure with many possible applications in nano- and
micromechanical systems.

Introduction
Microelectromechanical systems (MEMS) gyroscopes

are well established and indispensable in modern con-
sumer and automotive electronics1,2. Especially in auto-
motive applications, where gyroscopes operate in safety-
critical systems, device reliability is of utmost importance.
Functionality has to be ensured under various harsh
environmental conditions3 and the sensor signal stability
has to be maintained despite many adverse linear and
nonlinear effects4,5. Most importantly, sensors have to
withstand temperatures ranging from−40 ∘C to+120 ∘C
and should be insensitive against external vibrations2.
Therefore, the ability to predict the sensitivity of the
sensor to such external conditions is crucial during

MEMS design. In the past, vibrational robustness was
mainly concerned with frequencies up to a few tens of
kHz2,6. State of the art applications, however, are faced
with ever-increasing requirements. Among these
requirements is the robustness against large external
loads, at frequencies much higher than the operational
frequency of the oscillatory gyroscope. High eigen-
frequency modes, far beyond the operational frequency,
can be decisive for the response of the sensor. The
response of the corresponding high-frequency modes is,
among other quantities, determined by their quality fac-
tors. At typical pressures of around a few millibar, the
quality factors of low-frequency modes are known to be
limited by gas damping7,8. However, to the authors’
knowledge, there has been no exhaustive research on the
damping of high-frequency modes in MEMS gyroscopes.
Known damping mechanisms that can contribute to the
quality factors of MEMS resonators are gas damping,
thermoelastic damping (TED), anchor losses, surface
losses, material losses and Akhiezer damping8–16. The
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first three are usually considered as the dominant
mechanisms in polysilicon MEMS resonators. Material
losses are considered negligible for silicon, as it exhibits
very linear material behavior, and surface losses are
mainly relevant in nanoresonators10–12,15. Akhiezer
damping is only expected to be relevant for frequencies
above 10MHz16 and for very high quality factor and
frequency (Q–f) products17.
In this paper, we compare measured and simulated

quality factors of industrial MEMS gyroscopes over a wide
range of eigenfrequencies. The aim of this work is to
illuminate the significance of the thermoelastic damping
contributions for high-frequency modes. We show that
thermolastic damping indeed limits the quality factor of
high-frequency modes of the gyroscope and is thus crucial
for the gyroscope’s response to high-frequency vibrations.
In section “Experimental Setup” we introduce the

MEMS devices and the measurement method. In section
“Numerical analysis of thermoelastic damping” the gov-
erning equations of thermoelasticity are introduced and
an efficient method to simulate thermoelastic damping,
based on the finite element method (FEM), is derived. We
then verify the validity of our method in section “Results”,
by comparing our simulation results to measured data.
Finally, in section “Conclusion”, we summarize our results
and conclude that thermoelastic damping is highly rele-
vant for high-frequency modes in our devices.

Experimental setup
Two different industrial three-axis MEMS gyroscope

designs (A and B), developed by Bosch, were investigated.
The devices are made of polycrystalline silicon and are
therefore assumed to exhibit isotropic material behavior.
The designs were measured with two different scanning
laser Doppler vibrometers (SLDV) from Polytec. The
oscillation modes of the gyroscopes were excited in the
linear regime by broadband signals (see details below). The
measurements were performed on a dense grid of points
over the structures (see details below) and the spectra of
velocity and displacement were obtained from a fast Fourier
transform at each point. The measured displacement maps
obtained from the grid allowed to identify the vibrational
modes by comparing with the simulated mode shapes. The
quality factors of the modes were obtained from the line-
widths of the resonance peaks. The frequency resolution of
~ 1Hz was sufficient for an accurate resolution of the peaks.
Design A is an unencapsulated single chip, that was held

at 1mbar and 25 ∘C inside a vacuum chamber. The exci-
tation was realized dominantly in out-of-plane direction via
a piezo-shaker. A chirp signal in the range from 10 kHz to
2MHz was applied to the piezo-shaker. The measurement
was performed with a 1D SLDV. Therefore, only out-of-
plane modes were detected for design A. The measurement
was performed on a grid of around 400 points over the

structure. The measured out-of-plane modes were semi-
automatically matched to simulated modes. Although this
is prone to errors, it enables the investigation of quality
factor trends over a wide range of eigenfrequencies.
Design B was measured on the wafer and not encapsu-

lated. The excitation of design B was realized electro-
statically. The design contains a capacitive comb-drive as
well as three different electrode pairs for capacitive sensing.
Applying an electric broadband signal to one of the drive or
sense electrode pairs, while grounding the remaining
electrodes, enabled the excitation of various in-plane or
out-of-plane modes. The applied signal was a pseudo-
random broadband signal in the range from 30 kHz to
1.25MHz. The wafer containing design B was mounted on
a thermal chuck inside a vacuum chamber. Thus, tem-
perature and pressure could be varied. A 3D SLDV was
used to measure in-plane and out-of-plane modes of design
B. For the measurement of the out-of-plane modes a grid
of around 100 points over the structure was used. The in-
plane modes were measured inidividually with a grid of
around 30 points each, which were only placed on the
relevant oscillating parts of the structure. The measured
modes of design B were manually identified with simulated
modes, based on mode shapes and eigenfrequencies.
Figure 1 shows the measured quality factors of design

A for several out-of-plane modes up to an eigen-
frequency of 1.8 MHz at 1 mbar and 25 ∘C. The pressure
of 1 mbar is a typical operational value for MEMS
gyroscopes6. Additionally, simulated quality factors
based on gas damping are also included in the figure.
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Fig. 1 Quality factors for all out-of-plane modes up to 1.8 MHz of
design A plotted over the eigenfrequencies of the modes at
1mbar and 25 ∘C. The green dots show the simulated quality factors
based on gas damping. The solid green line is a linear fit of the
simulated quality factors over frequency and indicates the trend of the
gas damping quality factors. The blue dots show the measured quality
factors. The inset shows a magnified plot up to 200 kHz.
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The gas damping simulations have been done using a
Bosch internal gas damping simulation tool based on
molecular flow simulations in COMSOL18. The validity
and precision of the gas damping simulation is high-
lighted in the inset of Fig. 1 showing a closeup of the
frequency regime up to 200 kHz. Up to 200 kHz, the
measured quality factors follow the trend of the simu-
lations. However, for higher eigenfrequencies the mea-
sured quality factors clearly saturate. Gas damping
quality factors, on the other hand, increase approxi-
mately linearly with eigenfrequency7,12. This motivates
the incorporation of additional damping mechanisms
into the simulation, to identify and accurately predict the
damping contributions and the total quality factor. In
this work, we will investigate the influence of TED on the
two MEMS gyroscope designs.

Numerical analysis of thermoelastic damping
Thermoelastic damping arises naturally from the cou-

pling of the displacement and temperature fields. There-
fore, any material with a non-zero thermal expansion
coefficient exhibits TED. When a thermoelastic structure
with a positive thermal expansion coefficient oscillates,
regions under compression will heat up and regions under
tension cool down. Thus, oscillatory temperature gra-
dients arise across the structure. The resulting periodic
heat flow along the temperature gradients is irreversible
and leads to dissipation of energy. Zener pioneered the
research on TED and derived an approximate analytic
equation for the corresponding quality factor of a beam’s
fundamental bending mode19,20. Lifshitz and Roukes later
derived a refined solution for the same problem21. In
order to obtain quality factors for arbitrary geometries,
the finite element method can be employed. It has been
shown, that TED quality factors can be obtained from a
complex eigenvalue problem of the thermoelastic equa-
tions22 or from the calculation of dissipated and stored
energy23–25.
We show how TED of industrial scale problems can be

modeled by deriving a modified equation of motion for
the mechanics, which can then be transferred into a
mechanical reduced order model (ROM). In section
“Governing equations” the governing differential equa-
tions of continuum mechanics are introduced along
with their FEM formulation. In section “Solution
method” an efficient simulation method for the evalua-
tion of TED quality factors is derived.

Governing equations
We start with the fundamental equations of thermo-

elasticity, which can be found e.g. in refs. 26,27. The gov-
erning equation of the mechanical response, i.e., the
equation of motion, is given by the linear momentum
balance. For small deformations and in the absence of

body forces it reads

divðσÞ ¼ ρa; ð1Þ

where σ is the stress tensor, ρ is the density and a is the
acceleration vector. The coupling to the temperature field
affects Eq. (1) via thermal expansion. As this work is
concerned with structures made of polysilicon, linear and
isotropic material behavior will be assumed for mechan-
ical and thermal properties. The constitutive equation
accompanying Eq. (1) is given as

σ ¼ C½ε� 1αΔT �; ð2Þ

where C is the fourth-order elasticity tensor, ε is the total
strain tensor, 1 is the second-order unit tensor, α is the
thermal expansion coefficient and ΔT is the difference
between the temperature field T within the body and the
ambient temperature T0, i.e., ΔT= T− T0. The second
term in the bracket of Eq. (2) signifies the strain due to
thermal expansion. The temperature changes that result
from the thermoelastic coupling are generally very small.
Therefore, the heat equation, which determines ΔT, is
linearized around T0 as

�divðqtÞ � T0αtrð _σÞ ¼ ρCVΔ _T ; ð3Þ

with heat flux vector qt, specific heat CV and time
derivatives denoted by dots above the symbols. It is
assumed that no additional heat sources are present
within the body. The coupling to the stress field in Eq. (3)
manifests itself in the heating of regions under compres-
sion and cooling of regions under tension, if the thermal
expansion coefficient is positive. The constitutive equa-
tion for the heat flux vector is given by Fourier’s law

qt ¼ �κgradðΔTÞ; ð4Þ

where κ is the thermal conductivity.
The global FEM equations can be obtained in the usual

way, by deriving and discretizing the weak forms of the
local equations (1) and (3), leading to

M€uþ Kuuþ KutΔT ¼ f ; ð5Þ

CtΔ _T þ KtΔT ¼ T0ðKutÞT _u; ð6Þ
where M is the mass matrix, Ku the stiffness matrix, Kut

the thermoelastic coupling matrix, Ct the specific heat
matrix, Kt the thermal conductivity matrix, u and ΔT are
the nodal displacement and temperature change vectors
and f is the external force vector. Only the oscillating
structure is considered in the simulations. In Eqs. (5) and
(6) we assume that the displacement and temperature
change are zero at the connection of the oscillating
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structure to the substrate. Furthermore, in Eq. (6) we
assumed insulating boundary conditions on the boundary
that isn’t fixed. See e.g. ref. 28 for the definitions of the
FEM matrices.

Solution method
Several approaches exist to evaluate the thermoelastic

damping of mechanical modes based on Eqs. (5) and (6).
Common but computationally expensive methods solve the
coupled Eqs. (5) and (6) simultaneously. However, these
methods require the solution of non-symmetric equation
systems with 4N degrees of freedom for a mesh with N
nodes. In the modeling of MEMS gyroscopes one usually
deals with models where N > 106 and quality factors have to
be calculated for many modes over a wide frequency range.
Therefore, solving the coupled problem of Eqs. (5) and (6) is
time consuming and numerically expensive. Instead, we will
take a different approach, where we eliminate the heat
equation and arrive at an effective equation of motion,
which can then be efficiently evaluated in a ROM.
We consider the case where Eq. (5) is harmonically

driven at a frequency ω. Thus, the steady-state oscillations
of displacement and temperature change are given as

u ¼ Refu0e
iωtg; ð7Þ

ΔT ¼ RefΔT0e
iωtg; ð8Þ

where u0 and ΔT0 are the complex steady-state ampli-
tudes. Equations (7) and (8) are inserted into the heat
equation (6), which can then be formally solved for ΔT0.
Consequently, one can then express the temperature
change ΔT, based on Eq. (8), in dependence of displace-
ment u and velocity _u as

ΔT ¼ �ωT0ImfAguþ T0RefAg _u; ð9Þ

where A ¼ ðKt þ iωCtÞ�1ðKutÞT . Substituting Eq. (9)
into the equation of motion (5), we obtain the modified
equation of motion

M€uþ ~C _uþ ~Ku ¼ f ; ð10Þ

with damping matrix

~C ¼ T0RefKutAg ð11Þ

and stiffness matrix

~K ¼ Ku � ωT0ImfKutAg: ð12Þ

Note that Eq. (10) is still exact in the sense that it fully
incorporates the effect of the thermoelastic coupling on
the mechanics for harmonic forcing. For oscillatory

structures, such as MEMS gyroscopes, the equation of
motion is usually solved in a modal ROM. The mechan-
ical modes are obtained from the purely mechanical
eigenvalue problem

ðKu � ω2
nMÞϕn ¼ 0; ð13Þ

with eigenfrequency ωn and mode shape ϕn of the n-th
mode. The mode shapes are mass-normalized, i.e.,
ϕT
nMϕn ¼ 1. The displacement is then expressed as a

superposition of the modes

u � Φq; ð14Þ

where qn is the modal coordinate of mode n and
Φ= [ϕ1ϕ2. . .ϕm] is a matrix, which contains the mass-
normalized eigenvector of mode n in the n-th column.
The index m indicates the mode at which the super-
position is truncated, leading to an approximation of the
actual u. Inserting the modal superposition given by Eq.
(14) into Eq. (10) and multiplying by ΦT from the left one
obtains

€q þΦT ~CΦ _q þΦT ~KΦq ¼ ΦT f : ð15Þ

The effect of the thermoelastic coupling thus influences the
mechanical modes by a damping contribution as well as a
change in stiffness, i.e., a change of the eigenfrequencies.
Furthermore, the modal damping and stiffness matrices
ΦT ~CΦ and ΦT ~KΦ are not diagonal, i.e., they lead to a
linear coupling between modes. This is simply a manifesta-
tion of the two-way coupling of Eqs. (5) and (6). The
temperature field that results from the motion of a
mechanical mode and is determined by Eq. (6) may also
impose forces on other mechanical modes in Eq. (5),
providing an intermodal coupling. We assume that the effect
of this coupling is weak and thus only consider the diagonal
entries in Eq. (15). Furthermore, the change of eigenfre-
quency due to thermoelastic coupling is very small and
therefore only a very small error is made by neglecting it.
The damping matrix ~C depends on the oscillation fre-

quency ω. In this work, we are interested in the damping
of a mode at its eigenfrequency ωn. Hence, to obtain the
quality factor of mode n, one can set ω= ωn. The reci-
procal quality factor due to thermoelastic damping Q�1

TED;n
is found by dividing the n-th diagonal entry of ΦT ~CΦ by
ωn, leading to

1
QTED;n

¼ Re
T0

ωn
ϕT
nK

ut K t þ iωnC
tð Þ�1 Kutð ÞTϕn

� �
:

ð16Þ
Remarkably, Eq. (16) allows us to determine the quality
factors by only having to solve a symmetric linear
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equation system of size N, i.e., the size of the temperature
degrees of freedom, per mode. Therefore, this approach is
much more efficient than solving the coupled equations
directly and is suitable for large models. We have
implemented the assembly of the FEM matrices and the
evaluation of Eq. (16) in a self-written Matlab code.
We note that Eq. (16) is equivalent to the result

obtained with a perturbation method in ref. 29. Further-
more, we note that the same expression can be obtained
by calculating the quality factor as the ratio of stored to
dissipated energy, if one calculates the dissipated energy
due to the temperature field given by Eq. (9) and neglects
the effect of temperature on the stored energy.

Results
The main damping mechanisms in MEMS resonators are

gas damping, thermoelastic damping and anchor losses.
Other possible damping mechanisms include material
losses and surface losses. Material losses are known to be
negligible for silicon and surface losses are mainly relevant
for nanoresonators10,11. Additionally, Akhiezer damping
has been observed in silicon MEMS resonators, but is only
expected to be relevant for frequencies above 10MHz16

and for very high Q–f products17.
From here on, when we refer to temperature, we mean

the temperature T0 of the atmosphere surrounding the
oscillating part of the structure, i.e., the temperature
inside the vacuum chamber.
Gas damping depends on temperature T0 and pressure

p, thermoelastic damping only depends on temperature
and anchor losses are assumed to be independent of
pressure and temperature. The total reciprocal quality
factor is obtained from the sum of the reciprocal quality
factors of the individual damping mechanisms

1
QðT0; pÞ ¼

1
QgasðT0; pÞ þ

1
QTEDðT0Þ þ

1
Qanchor

; ð17Þ

with total quality factor Q, gas damping quality factor
Qgas, thermoelastic damping quality factor QTED and
anchor loss quality factor Qanchor. In principal, as already
mentioned, there are also other damping mechanisms that
contribute to Eq. (17). We assume that these other
damping mechanisms are negligible compared to the gas
damping, TED and anchor losses. We note, however, that
other temperature- and pressure-independent damping
mechanisms would not be distinguishable from anchor
losses in our measurements. The dependence of Qgas on
experimental conditions is particularly simple. At very low
pressures, in the molecular regime, it scales as Q�1

gas / p.
At higher pressures, a transition into the viscous gas
damping regime occurs, where the dissipation scales as
Q�1

gas /
ffiffiffi
p

p 12. In the molecular regime, if the pressure isn’t
controlled, the dissipation scales with temperature as
Q�1

gas /
ffiffiffiffiffiffi
T0

p 30.

In order to verify that QTED is determined by Eq. (16),
we measured 7 different modes of design B. In contrast to
design A, which was excited via a piezo-shaker, design B
was excited electrostatically. Due to the placement of the
electrodes, only certain mode shapes were excitable.
Thus, it wasn’t possible to excite as many modes for
design B as for the out-of-plane measurements of design
A. Out of the measured modes, we chose those that could
be identified unambiguously with simulated mode shapes
and exhibited a clear resonance peak in our measure-
ments. This lead to the 7 modes, which are enumerated
by letters a to g, from lowest to highest eigenfrequency.
The lowest measured mode is mode a with a simulated
eigenfrequency of f0= 118.98 kHz and the highest mea-
sured mode is mode g with a simulated eigenfrequency of
f0= 733.46 kHz. Out of the 7 measured modes, 2 are in-
plane modes and the remaining 5 are out-of-
plane modes.

Gas damping
Since Q�1

gas / p in the molecular regime, gas damping can
be made negligible by reducing the pressure sufficiently.
Figure 2 shows the measured quality factors of the 7 mea-
sured modes of design B over pressure at a temperature of
20 ∘C. For each pressure the quality factor of every mode
was measured at 8 different spots on the MEMS structure.
The spots were chosen individually for each mode
according to the mode’s anti-nodes. From the 8 measure-
ments the mean value was calculated and the standard
deviation was used for the vertical errorbars. Furthermore, a
fit is shown, which was obtained for each mode from the
linear relationship of the reciprocal quality factor and
pressure, i.e., Q−1=m ⋅ p+ b, where m is the slope and b is
the pressure-independent offset. It can be seen that all
modes follow this expected trend, which confirms that the
measurements were performed in the molecular regime.
The quality factors only show very little pressure depen-
dence below 10−2 mbar. Subsequent measurements were
performed at 10−3 mbar, to ensure that the gas damping
contribution is negligible and the measured quality factors
are in good approximation equal to the contributions from
thermoelastic damping and anchor losses.

Material parameters
In order to verify Q�1

TED according to Eq. (16), the
correct temperature dependence has to be taken into
account. At first sight Eq. (16) appears to be linear in T0.
However, Q�1

TED also depends on thermal expansion
coefficient α, thermal conductivity κ and specific heat
CV, which exhibit significant temperature dependencies.
On the other hand, Young’s modulus E, Poisson’s ratio ν
and density ρ have much smaller temperature depen-
dencies, which are negligible in this context. To make
the dependence on temperature-dependent material
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properties more explicit, we rewrite Eq. (16) as

1
QTED;n

¼ Re
α2T0

ωn
ϕT
n
~K
ut

κ ~K
t þ iCVωn ~C

t
� ��1

~K
ut

� �T
ϕn

� �
;

ð18Þ

where we defined Kut ¼ α ~K
ut
, Kt ¼ κ ~K

t
and Ct ¼ CV ~C

t
,

so that ~K
ut
, ~K

t
and ~C

t
are then independent of α, κ and

CV. It is clear that Eq. (18) scales with α2. Therefore, the
thermal expansion coefficient α affects every mode in the
same way. Thermal conductivity κ and specific heat CV, on
the other hand, affect every mode in a different way, due to
their appearance within the inverse matrix in Eq. (18). To
predict the quality factors accurately over temperature, the
correct temperature dependencies of the material para-
meters have to be taken into account. For the purely
mechanical properties, we assumed constant values of
E= 161 GPa, ν= 0.22 and ρ= 2330 kgm−3, which are the
standard values used at Bosch for polycrystalline silicon.
Due to a lack of reported data for polysilicon, the
temperature-dependent specific heat CV was calculated
from the Debye model with a Debye temperature of 645 K
for silicon31. The Debye model for silicon has also been
used by others in the context of TED30, albeit for
monocrystalline silicon. We assume that the polycrystalli-
nity has no significant impact on the specific heat. The
value of κ depends strongly on doping concentration and

film thickness. Reported room temperature values for
polysilicon samples of various doping concentrations and
film thicknesses lie between 15Wm−1 K−1 and
60Wm−1 K−1 (ref. 32). However, our samples have a film
thickness of a few dozen micrometers, while the reported
samples in ref. 32 are significantly thinner. The thermal
conductivity is expected to increase with film thickness and
decrease with doping concentration32. Therefore, a thermal
conductivity above 60Wm−1 K−1 would be realistic for
sufficiently low doping concentration. The thermal expan-
sion coefficient α of monocrystalline silicon over tempera-
ture is well documented33. However, there exists no
conclusive data for polycrystalline silicon. It has been
suggested that the thermal expansion coefficient of
polycrystalline silicon thin films might be significantly
higher than that of bulk monocrystalline silicon34,35. Other
researchers have performed measurements that found the
thermal expansion coefficient of polycrystalline silicon to
be constant over temperature and only slighty higher than
that of monocrystalline silicon36. Furthermore, it has been
indicated in ref. 37 that the thermal expansion coefficient of
polycrystalline silicon differs from that of monocrystalline
silicon depending on residual stresses. We conclude that
there is ambiguous data on the temperature dependence of
κ and α for polysilicon thin films. Therefore, we will treat
them as fit coefficients and estimate them from measured
quality factors.
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Fig. 2 Quality factors over pressure for the 7 measured modes of design B, device 1. The measurements were performed at a temperature of
20 °C. The blue circles show the experimental values. The red curves were obtained from a linear fit of the reciprocal quality factors, i.e.,
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Quality factors of design B were measured over tem-
perature at a pressure of 10−3 mbar. The measurements
span the range from−21 ∘C to 114 ∘C. The bond pads of
the device that was measured over pressure were already
damaged from contacting them multiple times. Therefore,
we performed the temperature measurements on a sec-
ond device of design B on the same wafer. Due to the low
pressure, the measured Q−1 is approximately equal to the
contributions from TED and anchor losses. We added the
mean difference between simulated Q�1

TED and measured
Q−1 for each mode to Q�1

TED, to emulate the effect of
temperature-independent anchor loss contributions
Q�1

anchor. We then determined α and κ such that the
simulated Q�1

TED over temperature matched the measured
Q−1 after the mean difference was added. The measured
Q−1 (blue circles), simulated Q�1

TED (red dots) according to
Eq. (16) and Q�1

TED with added offset (black dots) are
shown in Fig. 3 over temperature. It can be seen that the
simulated Q�1

TED is lower than the measured Q−1 for all
modes, as expected. The corresponding Q values are
shown in Fig. 4, revealing that the Q changes by a factor
of ~2 over the application-relevant temperature range.
In order to find suitable values for α and κ, we assumed

simple temperature dependencies. In our temperature

range, the thermal expansion coefficient α of mono-
crystalline silicon increases with a declining slope over
temperature33. We assume a qualitatively similar behavior
for polycrystalline silicon. For simplicity, we choose a
quadratic function for α(T0)

αðT0Þ ¼ α0 þ α1ðT0 � TRTÞ � α2ðT0 � TRTÞ2;
ð19Þ

where α0, α1, and α2 are positive fit parameters and
TRT= 25 ∘C. The thermal conductivity κ of silicon tends
to decrease with 1/T0 in our temperature range32. To
mimic this behavior, we choose the fit function for κ(T0)
in analogy to ref. 38 as

κðT0Þ ¼ κ0 1� κ1
T0 � T low

T0

� �	 

; ð20Þ

where κ0 and κ1 are positive fit parameters and
Tlow=− 21 ∘C is the lowest measured temperature. The
material parameters were estimated from least-square fits.
For that purpose, mode b was excluded, as it showed
irregular behavior. The measured quality factor of mode b
was three times larger for the device that was measured
over temperature than for the device that was measured
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over pressure, as can be seen from Fig. 4(b) and Fig. 2(b).
The devices are nominally identical and one would expect
similar quality factors, as was the case for all other
modes. Furthermore, the quality factor measurement of
mode b showed a clear outlier over temperature, as seen
in Fig. 3(b) and Fig. 4(b) at 114 ∘C. We performed a
measurement of mode b at 10−3 mbar and 25 ∘C on a third
device and obtained a quality factor of 27,000 ± 1000. This
is closer to the value of 23,000 ± 1200 in Fig. 4(b).
Although we can not explain this peculiarity, we expect it
to not be related to thermoelastic damping.
In order to estimate the five unknown parameters α0, α1,

α2, κ0, and κ1, we proceeded as follows: As a first estimate,
we assumed the α(T0) of monocrystalline silicon according
to ref. 33, which is shown as the blue dashed line in Fig. 5.
We then chose κ(T0) according to Eq. (20) and determined
κ0 and κ1 from a least-square fit. For that purpose, we
added the mean difference between measurement and
simulation to the simulated Q�1

TED of each mode, to account
for anchor losses. We then calculated the squared differ-
ences between the resulting values and the measured Q−1

values. The squared differences for all modes over all
temperatures, except mode b, were then added and the
material parameters were determined from the minimiza-
tion of this sum. The κ(T0) that was obtained from this first
fit, based on the α(T0) of monocrystalline silicon, is shown

as a red dashed line in Fig. 5. Subsequently, this κ(T0) was
assumed and α(T0) was chosen as in Eq. (19). The coeffi-
cients α0, α1 and α2 were then determined from a least-
square fit, similar to the previous one, only differing in the
unknown parameters. The resulting α(T0) is shown as a
solid blue line in Fig. 5 and can be seen to be lower than the
α(T0) of monocrystalline silicon. Finally, to obtain a cor-
rected estimate for κ(T0), we assumed this new α(T0) and
treated κ0 and κ1 as fit parameters again. From this final fit
we then obtained the κ(T0) according to the solid red line
in Fig. 5. For verification, we performed a final iteration,
where we assumed κ(T0) according to the solid red line in
Fig. 5 and again obtained the α(T0) according to the solid
blue line. Therefore, we conclude that the fitting process
has converged to some minimum. The final material
parameters, according to the solid red and blue lines in
Fig. 5, will be assumed for the remainder of this paper.
Figures 3 and 4 show the QTED based on these final
material parameters.

Damping contributions
If α(T0) were to be rather constant over temperature, as

suggested in ref. 36, then the simulated values would not
be steep enough to match the measured Q−1 slope over
T0. The α(T0), that was determined via fitting, leads to a
good agreement with the measured Q−1 over T0 slope and
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is in a reasonable range compared to the monocrystalline
values. The κ(T0) values are higher than the reported
values in ref. 32, but seem reasonable due to the few dozen
micrometer thickness of our samples. The change of
around 10Wm−1 K−1 of κ(T0) over our temperature
range is similar to the data in ref. 32. However, we note
that there might be other possible combinations of α0, α1,
α2, κ0, and κ1, which also lead to good agreement with the
measured data. In prinicipal, this is related to the
unknown temperature-independent anchor loss con-
tributions, which manifest themselves as an offset
between Q�1

TED and Q−1. There might be other curves for
α(T0) and κ(T0) that yield a similar slope of Q�1

TED over T0

and only differ in their offset to Q−1. Additionally simu-
lating the anchor losses might help to circumvent this
issue and will be subject of a future publication. Never-
theless, we conclude that the temperature dependence of
the measured Q−1 can be very well reproduced by the
Q�1

TED according to Eq. (16) with reasonable material
parameters. This clearly shows the validity of Eq. (16) and
confirms the assumption that the temperature depen-
dence of Eq. (17), at pressures where gas damping is
negligible, is due to Q�1

TED for the investigated MEMS
gyroscope. In Fig. 4 it can be seen that the Q at 10−3 mbar
increases by roughly a factor of two from the highest to
the lowest temperature. The temperatures are all within
the application-relevant temperature range. To ensure
device functionality over the whole temperature range,
knowledge of quality factors is crucial. The significant
change over temperature highlights the relevance of TED
for the development of MEMS gyroscopes.

In Fig. 6 the Q−1 contributions are shown for a pressure
regime where gas damping is relevant. For that purpose, the
contributions were obtained from the fit Q−1=m ⋅ p+ b in
Fig. 2. The fit was obtained at 20 ∘C. Therefore, one can
calculate Q�1

gasð20�C; pÞ ¼ m � p and Q�1
anchor ¼ b�

Q�1
TEDð20�CÞ. Since Q�1

gas /
ffiffiffiffiffiffi
T0

p
, if the pressure isn’t held

constant, the gas damping can be calculated for other
temperatures based on the known value at 20 ∘C. This is
relevant if the device would be encapsulated, where the
pressure would also change over temperature. Based on
Fig. 2, we extracted the gas damping at 1mbar and 20 ∘C
and then scaled it up to 114 ∘C, which also corresponds to a
higher pressure. Q�1

TED is also shown for 20 ∘C and 114 ∘C,
based on Eq. (16). Q�1

anchor is temperature-independent and
therefore identical for both temperatures. Looking at Fig. 6,
one can see that modes a to d are gas damping dominated.
However, TED gains significance at the higher temperature
of 114 ∘C. This is due to the fact that, at least in our tem-
perature range and with our devices, Q�1

TED scales roughly
linear with T0, as seen in Fig. 3, while Q�1

gas only scales withffiffiffiffiffiffi
T0

p
. On the other hand, for the higher modes e to g, one

can see that even at 20 ∘C the Q�1
TED is comparable to Q�1

gas
and for modes f and g even larger than Q�1

gas. At 114
∘C this

becomes even more pronounced. The Qanchor correspond-
ing to Fig. 6 are between 70,000 and 110,000. The only
exception is mode b with a Qanchor of around 8500. Again,
we note that the Q-factor of mode b from the temperature
and pressure measurements, which were performed on
different but nominally identical devices, differ significantly.
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One can also obtain Q�1
anchor as the offset in Fig. 3. This leads

to comparable values as the ones in Fig. 6, except for mode
b, for which the extracted Qanchor would then be 48,000.
Mode b is a symmetric mode, whereas mode a is the cor-
responding anti-symmetric mode. Therefore, the deviation
for mode b can not be attributed to a simple measurement
error, as the entire spectrum was measured simultaneously
and one would then expect a discrepancy for at least mode
a as well. We also exclude that a MEMS device was faulty,
as we would then also expect to see significant deviations
for the other modes. One possible explanation could be a
substrate-related effect, which was only present in one of
the two devices.

Damping contributions over a wide frequency spectrum
The same quality factors of design A as in Fig. 1 are

shown again in Fig. 7. The quality factors of several out-of-
plane modes, measured at 1mbar and 25 ∘C, are shown as
blue dots. The simulated gas damping quality factors are
shown as green dots. Additionally, the simulated TED
quality factors are included as red dots. Design A is made of
the same material and features the same out-of-plane
thickness as design B. Therefore, the material parameters
according to the solid blue and red lines in Fig. 5 at 25 ∘C
were used. The quality factors resulting from gas damping
plus TED are shown as black dots. Furthermore, trend lines
are included as a guide to the eye. The red horizontal line
signifies that there is no clear up- or downward trend for
TED quality factors over the measured range. It was cal-
culated as the median of the simulated TED quality factors,
to avoid the bias by large outliers. The green line is a linear
fit of the simulated gas damping quality factors over fre-
quency. The black line was obtained from the previous two

trend lines, i.e., based on the trend of TED and gas damp-
ing. Additionally, in order to estimate possible anchor los-
ses, a constant Qanchor of 75,000 was added to the
contributions of the black line, to obtain the blue line.
One can see that up to 200 kHz the influence of TED is

rather small compared to gas damping, as QTED is much
larger than Qgas. Therefore, Q is well approximated by Qgas

alone. However, the incorporation of TED into the model
significantly decreases the simulated Q for higher fre-
quencies. For many modes this leads to a reduction of the
simulated Q by a factor of around 2. In fact, the simulation
based on gas damping and TED is quite close to the mea-
surements up to around 800 kHz. Above 800 kHz almost all
measured modes exhibit a lower quality factor in the mea-
surement than in the simulation. For the highest modes the
measurement is still around 25% below the simulation of gas
damping and TED. For the modes above 800 kHz anchor
losses play an increasing role. TED quality factors show no
clear up- or downward trend over our measurement range.
Gas damping quality factors increase approximately linearly
with frequency. Therefore, for sufficiently high modes the
gas damping quality factors approach the value of the TED
quality factors and the effect of TED becomes relevant. For
the modes above 800 kHz, the gas damping quality factors
are large enough, such that further damping mechanisms,
which tend to have larger quality factors than TED, become
relevant as well. For illustration, a Qanchor of 75,000 was
therefore included in the blue trend line. The blue trend line
then leads to a stronger saturation of Q over mode fre-
quency compared to only including gas damping and TED
and therefore gives a better approximation of the measured
data at high frequencies. However, this is only a pheno-
melogical remedy and it could also be that Qanchor has some
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trend over frequency. Clarifying the influence of anchor
losses and investigating whether the incorporation of an
anchor loss simulation helps to explain the remaining
deviation between simulation and measurement at high
frequencies will be part of future research.
Note that the simulated Qgas is a simplified approx-

imation. Furthermore, the measured data of design A in
Fig. 7 is not as accurate as the measurements on design B.
This is due to the fact that measuring and identifying as
many modes as in Fig. 7 is very elaborate and the semi-
automated evaluation of the quality factors of design A
from the measured data is prone to errors. Therefore,
deviations between measurement and simulation are to be
expected for individual modes. Regardless, the measure-
ment in Fig. 7 shows a clear trend. The simulations and
the measured trend over the broad spectrum clearly show
the significance of TED with increasing frequency. For
higher temperatures or lower pressures TED would
become even more important. The relevance of TED for
higher modes is also in agreement with the observations
made from design B, as was shown in Fig. 6.

Conclusion
We reported quality factor measurements of an industrial

MEMS gyroscope (design A) for a multitude of out-of-plane
modes over a wide frequency range. Although gas damping
matches the observations for the first few modes, up to
200 kHz, we found that for higher modes the measured
quality factors are significantly lower than the pure gas
damping model predicts. The measured quality factors
saturate for high-frequency modes above 800 kHz, while gas
damping quality factors increase approximately linearly
with eigenfrequency. The deviation starts to become nota-
ble above 200 kHz. In order to account for this deviation,
we introduced thermoelastic damping into our model.
We demonstrated an efficient way to simulate thermo-

elastic damping, by eliminating the heat equation and
deriving an effective equation of motion for the harmoni-
cally driven mechanics. The FEM equations were imple-
mented in a self-written code. In order to verify our
thermoelastic damping simulations, we measured the
quality factors for 7 different modes of a second MEMS
gyroscope design (design B) over temperature in a vacuum
chamber. We found a good agreement between simulated
and measured quality factors over temperature. We
showed that the temperature dependence of thermoelastic
material parameters, in particular the thermal expansion
coefficient, has to be taken into account to reproduce the
observed behavior over temperature. Fitting our simulation
results to the measurements, we were able to estimate the
thermal conductivity and thermal expansion coefficient
over temperature. However, we note that the presence of
damping mechanisms which are independent of pressure

and temperature, such as anchor losses, leads to some
uncertainty of the fitted material parameters.
Having validated the thermoelastic damping simulations

and having obtained the relevant material parameters, we
then applied our method to the measurement over a wide
frequency range of gyroscope design A. Taking thermo-
elastic damping and gas damping into account, we then
found good agreement with measured quality factors up to
800 kHz. For even higher frequencies, we found that addi-
tional damping mechanisms might be relevant, as the
simulated quality factors were still higher than the measured
ones. Nevertheless, the simulated quality factors were sig-
nificantly closer to the measured ones over the entire fre-
quency range, as compared to pure gas damping simulations.
Our results clearly show the significance of thermo-

elastic damping for high-frequency modes in MEMS
gyroscopes. On the lower end of the mode spectrum, gas
damping dominates and is the sole relevant damping
mechanism. However, for increasing eigenfrequency,
thermoelastic damping gains relevance and appears to be
the limiting damping mechanism, i.e., it has the smallest
quality factor. At the upper end of the measured spec-
trum, additional damping mechanisms might have to be
taken into account, although thermoelastic damping still
seems to be the primary contribution. Expanding our
model with anchor loss simulations, in order to improve
the accuracy and also investigate the origin of the addi-
tonal damping contributions at high eigenfrequencies, will
be subject of future research. Finally, as our method is
based on FEM, it can be readily applied to other MEMS
and NEMS structures where quality factors and damping
mechanisms are also subject of ongoing research39–41. We
would like to emphasize that, although our discussion was
focused on high-frequency modes, our method is gen-
erally applicable also for low-frequency modes.
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