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Neuron devices: emerging prospects in neural
interfaces and recognition
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Abstract
Neuron interface devices can be used to explore the relationships between neuron firing and synaptic transmission, as
well as to diagnose and treat neurological disorders, such as epilepsy and Alzheimer’s disease. It is crucial to exploit
neuron devices with high sensitivity, high biocompatibility, multifunctional integration and high-speed data
processing. During the past decades, researchers have made significant progress in neural electrodes, artificial sensory
neuron devices, and neuromorphic optic neuron devices. The main part of the review is divided into two sections,
providing an overview of recently developed neuron interface devices for recording electrophysiological signals, as
well as applications in neuromodulation, simulating the human sensory system, and achieving memory and
recognition. We mainly discussed the development, characteristics, functional mechanisms, and applications of neuron
devices and elucidated several key points for clinical translation. The present review highlights the advances in neuron
devices on brain-computer interfaces and neuroscience research.
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Introduction
The nervous system has outstanding cognitive cap-

abilities with 100 billion neurons, and the interrelation-
ships among different types of neurons are extremely
complex and precise1. A disorder of the nervous system
poses a serious threat to human health; thus, developing
high-level technologies and devices is very important for
exploring brain function and understanding neuropatho-
logical progression; therefore, it has attracted great
interest in the scientific community2–8. Correspondingly,
neuron devices could improve the comprehension of
neural networks and promote the diagnosis and treatment
of nervous system diseases.

The development process of neuron devices is shown in
Fig. 1. After the first discovery of electroencephalography
(EEG) signals in the 1920s, neural electrodes and a variety
of different signal detection technologies were gradually
developed9–13. The Turing test sparked a wave of artificial
intelligence in the 1950s, and researchers became
increasingly interested in computer learning, gradually
developing related technologies, such as deep learning
and big data computing14. In the context of the con-
tinuous development of neuroscience and AI, brain-
computer interface (BCI) technology was proposed in the
1970s15. To date, the cross-integration technology of
artificial intelligence (AI) technology and brain science
has boosted the development of neuron devices and
neuroscience16–18. The BCI is currently in the stage of
technological explosion, providing new neurorehabilita-
tion methods and enabling disabled persons to control the
external world by decoding the EEG signals obtained from
neuron devices15,19,20. Furthermore, emerging neuron
devices for simulating biological sensory neurons were
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invented to substitute disabled sense organs21–26. With
the development of ‘big data’ technology, computer
learning technologies based on neural networks have
emerged and have shown great power to facilitate the
development of neuron devices. Neuromorphic hardware
and software systems simulating the plasticity of neurons
and synapses can achieve memory and recognition27,28.
However, some challenges, such as a low signal-to-noise
ratio, immune response in neural tissue, unitary function
and limited data processing capabilities13,29–33, have
impeded the clinical translation of neuron devices.
Therefore, it is of great significance to develop multi-
functional neuron devices with high sensitivity, good
biocompatibility and fast processing for the diagnosis and
treatment of nervous system diseases.
In this review, we summarized representative neuron

devices and their fabrication, properties, and bio-
compatibility; in addition, we highlighted their advances
in biomedical applications. We analyzed the existing
problems and challenges and elucidated future research
directions, especially designing neuron devices com-
bined with AI technology. First, we summarized the
neuron interface devices that can sensitively monitor
neuron firing signals in intracellular and extracellular
space and in optical imaging. Second, we discussed the
applications of neuron devices currently in development,
including neuromodulation in neurological disorders,
“sensory substitution” in motor prostheses, and memory
and recognition in AI. We mainly discussed the devel-
opment, characteristics, functional mechanisms, and

application of neuron devices and elucidated several key
points regarding clinical translation.

Classification for neuron interface devices
High-quality neural signal recording requires sensitive

signal acquisition devices, which can be combined with
signal decoding to achieve self-feedback stimulation or
control of the external world. The original intracellular
neuron recording device was the patch-clamp technique,
developed in the 1970s34, which detected synaptic trans-
mission by manipulating high-temporal resolution elec-
trical impulses on an individual neuron and was the gold
standard for studying the properties of ion channels35,36.
Afterward, integrated microelectrode arrays (MEAs) were
developed to record large-scale neural activity to study
communication between neuronal populations30,37–40.
However, foreign-body responses and inflammatory

reactions can lead to the loss of neural signals in the
electrode-nerve interface; thus, it is necessary to improve
the biocompatibility of electrodes13,30,41. Other emerging
neuron signal technologies, such as optogenetic modula-
tion of neural activity, use optical stimulation, and ima-
ging techniques with fluorescent indicators or genetically
encoded molecular probes to enable large-scale record-
ings of neural activity42,43. In this section, we review the
method of recording signals for neuron interface devices.

Neuron interface devices for intracellular recordings
Intracellular recording remains the best technique for

capturing single-neuron electrical properties that contain
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crucial information regarding membrane ion-channel
activities, receptor channel interactions, etc. The patch-
clamp technique, which establishes direct contact with the
intracellular environment through the penetration of a glass
micropipette (Fig. 2a)44–46, is the most sensitive approach to
investigating neural excitability. Thomas et al. investigated
the propagation of axosomatic action potentials (APs) and
postsynaptic potentials (EPSPs) transmitted to the basal tree
with the patch-clamp technique, demonstrating that EPSPs
are of prime importance to neuronal output (Fig. 2b)47.
Kanako et al. used the patch-clamp technique to study
firing patterns of dopamine neurons by recording the sub-
threshold potentials in vivo48. Nevertheless, this approach is
restricted to single cells or channels and requires a high
technical capability to perform. An automated patch clamp
has the advantages of high throughput, ease of operation,
and parallel detection of numerous cells49. Suhasa et al.

developed a robot that automatically performed patch
clamping and lowered its micropipettes until a cell was
detected (Fig. 2c). Automated intracellular recording has
the characteristics of good yield, throughput and quality50.
However, the patch-clamp technique is invasive and not

suited for parallel execution of high-sensitivity intracel-
lular recording for tens of minutes. Recently, emerging
nanofabrication techniques have realized a large number
of neuron intracellular recordings by developing nanos-
cale devices. A nanowire electrode array (VNEA) was
developed, which can intracellularly record and stimulate
cultured rat cortical neurons, demonstrating biocompat-
ibility and biosafety (Fig. 2d–f)51. However, this kind of
intracellular interface is significantly limited compared to
that of the patch clamp and is inapplicable to neural
networks. Electrical signal transmission between neural
networks is precise and complex, and scalable and

d e f

b

i

VNW

Vp

10 ms

2 
m

V

50 ms

10
 m

V
1 

m
V

20
 m

V

g 
Pseudocurrent-clamp circuit

Pseudovoltage-clamp circuit

Pseudocurrent-clamp circuit intracellular recording

10 mm
5 mm

40 μm

VP

R
s

Rseal
Vm

CmRm

Vrest

a c

Pipette

Brain

Regional
pipette

localization

Neuron
hunting

Gigaseal
formation

Break-in

Zeq ≈ ∞

Zeq ≈ ∞

Ie
Ve

Ie
Vamp

Ve

Ie

Vamp

0 nA

-1 nAIe

Ve

1 
nA

4 
m

A
0.

2 
m

A

4 
m

A AP
EPSPs

Intracellular coupling

Extracellular coupling

25 ms 25 ms

20 s

AP

Vp

VNW

Rs,p

Ra,p

Ra,NW

Vm

CNW

Rs,NW RL

Rm

Cm

Cg

Vrest

h

Fig. 2 Neuron interface devices for intracellular recordings. a Schematic diagram of the working mechanism of the patch clamp. Vp represents
the signal recorded by the pipette. Reprinted from ref. 45. b The patch clamp in the locations of the somatic (blue) and basal dendritic electrodes.
Scale bar, 100 μm47. Copyright 2007 Springer Nature. c The algorithm of automatic patch-clamp in four stages: ‘localization’, ‘neuron hunting’,
‘gigaseal formation’, and ‘breakin'50. Copyright 2012 Springer Nature. d SEM image of VNEA and a rat cortical cell. Scale bar, 2.5 μm. e Equivalent-
circuit model of the VNEA/cell interface. f The measurement of VNEA agreed with those obtained by patch pipette51. g A photograph of CNEI and
false-color scanning electron microscope images of neurons cultured on CNEI. h Simplified signal model of the electrode and neuron interface for
the pCC and pVC configurations. i Extracellular recordings transform into intracellular recordings by triggering an action potential in the pCC
configuration52. Copyright 2020 Springer Nature.
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high-fidelity recording of intracellular signals from a large
number of neurons is needed. A scalable recording
composed of thousands of platinum-black electrodes,
which can record intracellular electrical signals by sti-
mulating a high-density neuron neuroelectronic interface
(CNEI; Fig. 2g), was reported52. The CNEI simulated the
working mechanism of the patch clamp setup and can
operate in either pseudocurrent-clamp (pCC) mode or
pseudovoltage-clamp (pVC) mode; this approach can be
used to record membrane potential and ion channel
currents by switching the two stimulation modes (Fig. 2h).
Extracellular recordings of neurons were converted to
intracellular measurements when given corresponding
electrical stimulation (Fig. 2i). These results demonstrated
that CNEI can be used to effectively perform the intra-
cellular recording of single neuron firing and control

neuronal spontaneous firing, which is important in neu-
rological disorders caused by the high-frequency firing of
spontaneous neurons53,54.

Neuron interface devices for extracellular recordings
Extracellular recording techniques are good for identi-

fying high-frequency APs from single units and low-
frequency local field potentials (LFPs) from groups of
neurons55. The traditional Utah array can extend the
sampling volume laterally (Fig. 3a), but such rigid probes
can cause intrinsic tissue damage56. The electrode size was
later reduced to be closer to that of the neuronal soma in
the NeuroGrid array, which was an electrocorticography
(ECoG) array. Recent advances in silicon Neuropixels
probes have enabled large-scale neural recordings (Fig.
3b)57. The corresponding APs and average LFP were
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collected in the human cortex, suggesting that a Neuro-
pixels probe could be adapted in acute recordings with high
spatial sampling and high-quality spike sorting (Fig. 3c)57.
To address the problem of the large difference between the
bending stiffness of the neural probe and the Young’s
modulus of neural tissue, mesh electronics, which achieved
long-term recording of ~4 months (Fig. 3d, e)58, were
designed. The biocompatibility of the electronic mesh was
determined by exploring the number of astrocytes and
microglia, which were naturally distributed around the
electronic mesh, revealing less inflammation and steady
periodic spike amplitudes.
Multifunctional neural probes integrated with diverse

stimulation modalities, such as electrical, optical, and
chemical stimulation, are becoming essential tools in
neuroscience. Multifunctional probes with a microfluidic
channel can deliver different neuroactive biochemicals
and simultaneously monitor single-unit activities (Fig.
3f)59. In addition, the detection of electrophysiology
combined with neurotransmitters, such as dopamine
(DA), is expected to be a potential therapy for treating
neurodegenerative diseases (Fig. 3g)60. Four representa-
tive channels of multifunctional MEA could be used to
record electrical activities from mature dopaminergic
neurons cultured on the surface of MEA (Fig. 3h).
Fluorescence images showed that dopaminergic neurons
cultured on MEA could highly express specific markers of
mature dopaminergic neurons, demonstrating high bio-
compatibility and biosafety (Fig. 3i)60.

Neuron interface devices for optical imaging recordings
Optical imaging and fluorescent probes provide powerful

tools for the real-time detection of ion dynamics, which
makes use of light as a sensor, providing high spatial
resolution and avoiding electrical wire connections to tis-
sue61,62. Changes in the extracellular potassium ion (K+)
concentration affected the emission of nanosensors, which
significantly regulated the potential, excitability, and spikes
of cell membranes63–65. Extracellular K+ diminished the
current driving power created by the activated K+ channel,
resulting in a longer action potential duration and con-
tinuous excitation of neurons66,67. Some sensors based on
biological components, such as vesicles, use membrane
channel proteins to specifically transport K+ to indica-
tors68. Some modified nanoparticle sensors, such as
upconversion nanoparticle sensors, can convert near-
infrared light to ultraviolet light, which triggers the detec-
tion of K+

fluctuations61. In addition, a highly sensitive and
selective K+ sensor was designed by integrating commer-
cially available K+ indicators into mesoporous silica
nanoparticles (Fig. 4a)69. The recordings of epileptic mice
correlated with the fluorescence signals during seizures
showed that K+ nanosensors can noninvasively monitor
electrical activity in freely moving mice (Fig. 4b)69.

Moreover, calcium (Ca2+) indicators have good
compatibility with fluorescence microscopy, and
genetically encoded indicators with fluorescent proteins
have increased brightness and sensing accuracy (Fig.
4c)70. For example, GCaMPs have been frequently
employed in in vivo research to discuss behavior-
induced activities (Fig. 4d)70,71. The temporal response
of calcium indicators is much slower than that of action
potentials, so the indirect measurements of action
potentials by calcium peaks sometimes do not provide a
clear interpretation of the data72. Furthermore, nano-
materials, such as nanoparticles (NPs) and nanocluster-
based sensors, enable efficient development of robust
imaging probes for quantitative ion detection73–76.
Colloidal nanoparticles with biocompatibility, strong
fluorescence, long emissive lifetimes, and excellent
photostability make them advanced biological sensors
(Fig. 4e)77. Atomic-precision gold nanoclusters were
designed to monitor high-resolution imaging under
excitation of the long wavelength in near-infrared II
(Fig. 4f)32,75. A clear blood vessel on brain images
showed gold clusters with ultrasmall hydrodynamic
sizes, exhibiting better resolution, which may be useful
for future neuroscience applications.

Applications of neuron devices
Neuromodulation
The modern era of neuromodulation began in the early

1960s and refers to electrical stimulation or chemical
substances applied directly to the nervous system to
modify nerve cell activity. The applications of therapeutic
electrical stimulation are very diverse, and new applica-
tions are being developed. In recent years, with the
development of artificial intelligence technology, brain-
computer interface (BCI) technology holds great potential
as a neuromodulation tool for helping patients with
neuromotor dysfunction. Recently, a developed bidirec-
tional BCI system was shown to control robotic pros-
theses in real time through signal monitoring of the
implanted microelectrode array (Fig. 5a)78, which can
evoke tactile sensations by stimulating the motor cortex
and decoding neural recordings to control the prosthesis.
In the future, systematic BCI technology also needs to be
designed with a more complete stimulus encoding and
decoding system, which will promote somatosensory
recovery in patients with motor dysfunction.
Sensing and feedback are two functions of closed-loop

regulation that can rapidly and consistently improve the
treatment of neurological conditions79. Recent studies
have shown that deep brain stimulation (DBS) combined
with closed-loop strategies can treat Parkinson’s disease
and other motor disorders80. Scangos et al. developed an
approach to implement depression-specific biomarker-
driven closed-loop therapy by implanting a chronic deep
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brain sensing and stimulation device (Fig. 5b)81. Such a
device designed with multichannel recording, biomarker
detection and microstimulation technologies was able to
reduce the frequency of seizures with safety and good
tolerance (Fig. 5c, d)81,82. In the future, there is a need for
further development of the loop for DBS, which is wire-
less, compact, robust, and biocompatible. In addition,
noninvasive neuromodulation, such as transcranial alter-
nating current stimulation (tACS), can intervene with
neurophysiological dynamics83. Grover et al.84 used high-

frequency tACS to establish beta-gamma rhythms in
reward learning for obsessive-compulsive disorder (OCD)
(Fig. 5e). The underlying mechanism of OCD was verified,
and the corresponding current-flow model of the cortical
surface was reconstructed in three dimensions (Fig. 5f).
These noninvasive techniques also include transcranial
magnetic stimulation and focused ultrasound, which
provides insight into brain physiology and is used to
modify brain circuits for various therapeutic and neural
enhancements.
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Artificial sensory neuron devices
In biological perception systems, certain types of neu-

rons and receptors, such as photoreceptors and
mechanoreceptors, transform external environmental
signals into electrical spikes (Fig. 6a)85–91. Artificial sen-
sory neuron devices can mimic complicated sensing and
processing functions in biological systems, which can
convert external stimuli into electrical signals. Recently,
emerging devices, such as memristors, have been used to
emulate the functionalities of synapses and neurons. Yuan
et al.91 reported a neuromorphic perception system that
can monitor the curvatures of fingers by using the per-
ception component VO2 (Fig. 6b). In addition, Bao et al.
created an electronic pressure sensor with neuron-like

devices using flexible degradable materials, which can
move to monitor electrocardiogram and electromyogram
signals92. Shun et al. reported an artificial haptic sensory
system that can simulate fast adaptation and slow adap-
tation by stress and vibration and that can then output
physiological signals21. In addition, an artificial intrinsic-
synaptic tactile sensory organ (AiS-TSO) was developed,
which mimicked synaptic connections and had sensory
and memory functions93. The sensing mechanism was the
influx of Ca2+ induced by Merkel cells under pressure
(Fig. 6c)94, which realized the memory function of the
synapse, and the order of touches can be deduced by the
size of the pixel values of the device array (Fig. 6d, e).
Therefore, the simulated tactile receptor with simple
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memory and recognition functions can flexibly control
the reception and processing of tactile information.
Human perception of the external environment is

extremely complex and depends on the fusion of multiple
senses. The fusion and connection of multiple sensors
enables the brain to perform cognition correctly95. For
example, using innovative materials and technologies
resulted in efficient and sensitive monitoring of sensory
information, reaching the level of human receptors96. A
bimodal artificial sensory neuron (BASE) realized the
fusion of visual and haptic modalities97. Pressure sensors
and photodetectors were the major components of the
BASE patch, which operated as receptors in the retina and
skin, respectively, transforming tactile and visual stimuli
into electrical impulses. Signals transmitted from the
BASE patch acted on skeletal myotubes through con-
structed neuromuscular junctions to simulate muscle
motor control (Fig. 6f). Both visual feedback and tactile

feedback were used to create the movement of a robot’s
hands. However, merely supplying one-dimensional
information led to placement problems, and the two
modes cooperated to enable the robot arm to grip the
target more accurately (Fig. 6f, g). Artificial sensory neu-
rons/synapses with a fusion of touch and vision have been
used in applications such as pattern recognition and
postural control, but the perception of reliability, sensi-
tivity, and accuracy of these mechanisms need to be
improved. The artificial sensory system provides sig-
nificant technical support and a driving force for biome-
dical and engineering application research and provides a
bright future for the creation of intelligent prosthetics,
intelligent organs, and humanoid robots.

Artificial intelligence memory and recognition
Neuroscientists are now paying more attention to the

brain’s learning and memory functions98,99. Regarding the
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mechanisms of learning and memory mediated by neural
networks, the current electrophysiological detection and
regulation technology at the cellular level is not
enough22,100–102. A high-performance electronic device
was designed to train hippocampal neurons to learn by
activating their memory function through electrical sti-
mulation (Fig. 7a, b)103. Correlation and synchrony of the
hippocampal neuronal networks with training were
examined by a heatmap, which showed that the synchrony
index increased with increasing training time (Fig. 7b).
Furthermore, based on retinal photoreceptors and bipolar
cells for motion detection and recognition (MDR), the
two-dimensional retinal neuron hardware integrated
three modules of optical perception, memory, and
recognition104,105. The nonvolatile positive photocurrent
(PPC) and negative photocurrent (NPC) matched the
photoconductive switching states of the simulated retina
photoreceptor and bipolar cell processing memory,

realizing the detection and memory of moving objects
(Fig. 7c, d)106. The motion detection function showed that
the normalized pixel brightness of the static object was
approximately zero, while the pixel brightness of a moving
object was distributed in the whole region (Fig. 7e). This
MDR hardware that was developed to simulate the
function of the human retina can achieve efficient
recognition and memory functions, which greatly pro-
moted retinal simulation technology.
In addition, an all-optical pulse neuron device was

designed to accomplish the AI task of pattern recogni-
tion107. A light pulse entered from the presynaptic neu-
ron, forming postsynaptic spikes after certain weight
processing, which was transmitted to a postsynaptic
neuron (Fig. 7f). Neuron circuit components were applied
to realize the function of AI108. In supervised mode, the
device correctly learned and recognized “1010” and
trained successfully when the neuron was subjected to
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input mode (Fig. 7g). The results showed that the neu-
rosynaptic network circuit simulated synapses and pulse
transmission between pairs of neurons using phase tran-
sitions of light-triggered material with the correct learning
function. In addition, the neural network composed of
four neurons showed different spike intensity changes
after the four training modes, indicating that the designed
neural network successfully recognized the four modes
(Fig. 7h). The neural network simulated by this integrated
design can self-learn to complete simple recognition tasks,
and it runs several orders of magnitude faster than bio-
logical neural networks; thus, it can process large amounts
of data in a short time. Deciphering the mechanisms of
human memory is a major goal of neuroscience, and
artificial intelligence memory and recognition could
advance the treatment of memory disorders in humans.

Conclusions
By imitating the intricate design and function of the

brain, neuron devices were developed to probe neural
networks. To better understand and utilize the functional
mechanism of the nervous system, neural signals were
combined with various applied devices to advance science

and society. The fusion of AI technology and neu-
roscience will facilitate the development of neuron devi-
ces, which is a common concern for researchers and
patients. Of note, the integration of the efficiency and
biosafety of materials will become design criteria for
neuron devices, and several challenges should be
addressed before clinical use109–111.
The design of neuron devices may focus on exploring a

stable neural-electrode interface, an exquisite design pro-
cess and efficient data processing. To develop ideal neuron
devices, several aspects should be taken into account, as
shown in Fig. 8. First, more sensitive neuron devices need
to be developed to overcome the limitations of low sen-
sitivity for neural signal recording13,31,109–113. The design
of implant electrodes with smaller size and higher spa-
tiotemporal resolution of sensors, such as optogenetic
nanomaterials, biosensors and chemical sensors, may
enable long-term sensitive signal recording6,32,33,114–118.
Second, biocompatibility is important for the development
of neuron devices. An electrode can be modified with
nanomaterials possessing high catalytic activity, such as
nanoclusters114,119–123, atomic level nanozymes122,124–129

and two-dimensional materials130–133, to reduce the
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inflammatory response of neural tissue. Third, integrated
neuron devices can be developed to achieve multiple
functions simultaneously134–136. For example, closed-loop
monitoring-stimulation systems can be implanted into
abnormal brain regions for long-term monitoring and
treatment of neurological disorders, such as epilepsy and
Alzheimer’s disease. Finally, AI technology can be used to
achieve fast and efficient data processing. Combining AI
with BCI and exploiting neural network algorithms will
propel the development of neuron devices and improve
neuroscience research.
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