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Abstract
The geometric designs of MEMS devices can profoundly impact their physical properties and eventual performances.
However, it is challenging for researchers to rationally consider a large number of possible designs, as it would be very
time- and resource-consuming to study all these cases using numerical simulation. In this paper, we report the use of
deep learning techniques to accelerate the MEMS design cycle by quickly and accurately predicting the physical
properties of numerous design candidates with vastly different geometric features. Design candidates are represented
in a nonparameterized, topologically unconstrained form using pixelated black-and-white images. After sufficient
training, a deep neural network can quickly calculate the physical properties of interest with good accuracy without
using conventional numerical tools such as finite element analysis. As an example, we apply our deep learning
approach in the prediction of the modal frequency and quality factor of disk-shaped microscale resonators. With
reasonable training, our deep learning neural network becomes a high-speed, high-accuracy calculator: it can identify
the flexural mode frequency and the quality factor 4.6 × 103 times and 2.6 × 104 times faster, respectively, than
conventional numerical simulation packages, with good accuracies of 98.8 ± 1.6% and 96.8 ± 3.1%, respectively. When
simultaneously predicting the frequency and the quality factor, up to ~96.0% of the total computation time can be
saved during the design process. The proposed technique can rapidly screen over thousands of design candidates and
promotes experience-free and data-driven MEMS structural designs.

Introduction
Over recent decades, machine learning (ML) has been

considered an important innovation with prodigious
success in industry1. One key aspect of ML is that it
improves itself automatically by uncovering the critical
relationship between raw inputs and final outputs from a
given dataset. This self-updating nature of ML has
benefited a broad range of interdisciplinary fields, such as
robotics2, health informatics3, protein engineering4, sta-
tistical physics5, computational chemistry6, and material
discoveries7. Modern ML technologies can be integrated
with advances in mechanics to drive optimal design
solutions in MEMS. In previous research, ML techniques

have been successfully implemented to analyze device
signals8–10 and to design device structures11–14. While
the latter works have led to pioneering results for data-
driven MEMS design, they generally require a high level
of prior knowledge in the field. In these works, the basic
design topology is first determined, and the detailed
structural parameters are then optimized using ML
algorithms. In this study, we introduce a data-driven
nonparameterized design approach as an important
alternative. The nonparameterized design method con-
structs target structures voxel-by-voxel from scratch,
without constraints in given topologies15–22. Instead,
when given a few design variables, such as the overall size
and material properties, a very large number of design
combinations can be created. Historically, this approach
was computationally expensive for traditional ML, and
the generated innumerable datasets resulted in com-
plexities during analysis. The deep learning (DL) tech-
nique used in this study provides a good solution, as it
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can effectively learn the hidden patterns from a large
number of datasets. The DL approach builds predictive
models with multiple levels of simple but nonlinear
modules that transform the representations at each level
to a slightly higher level of representations. With a suf-
ficient number of layers, very complex hidden patterns
can be determined by the model23.
Using DL models, we have built an automated system

framework applicable for experience-free, non-
parameterized design of many categories of MEMS devi-
ces. In this work, we present MEMS resonators as an
example. MEMS resonators have been intensively studied
in the past for a wide range of applications, such as timing
references, filters in wireless communication systems, and
sensing elements in various modules24. Two important
properties of a MEMS resonator are (1) the resonant
modes/frequencies and (2) the quality (simply abbreviated
as “Q”) factor. While a resonator has an infinite number of
resonant modes, only a limited number of them have
practical usage, such as the flexural mode25, bulk mode26

and wine-glass mode27. For many applications, a critical
goal for resonator structural design is reducing the energy
loss of a chosen mode (or, in other words, enhancing the
Q-factor of that mode) to improve the sensitivity, reso-
lution, and accuracy of the device28. Finding the right
geometric structures is crucial in achieving the desirable
resonant mode and frequency and a high Q-factor29–31.
However, this search for the right design was a very
challenging and time-consuming process for human
intuition and numerical analysis. Our work aims to
address this problem.
In this work, the geometries of disk-shaped MEMS

resonators are represented with binary pixelated images.
The two physical properties of interest are the resonant
frequencies f and the Q-factor due to anchor loss Qanchor

(one iconic damping mechanism for microresonators, in
addition to viscous and material damping)26,29,32,33. The
computational results (f and Qanchor) obtained from
carefully performed finite element analyses (FEA) fol-
lowing validated procedures are considered the ground
truth34–37 and are used to label the images correspond-
ing to each geometric configuration before the training
of our DL model. After being trained by tens of thou-
sands of samples, the DL model can accurately predict
both f and Qanchor with good accuracy, such that new
candidate geometric configurations can be considered
without even performing FEA on them. The DL models
can predict the required physical properties of one
design in 8.9 × 10−3 s. Since the forward computation of
the DL models can be orders of magnitude (~2.6 × 104

times) faster than FEA simulations, the DL models are
used as high-speed surrogate calculators to remarkably
reduce the time costs of the design process. We expect
that the proposed method can also be extended beyond

resonators and contribute to the design process of many
categories of MEMS devices.

Methods
System architecture
The major components of the proposed system are

illustrated in Fig. 1a, including the training process and
the testing process. In the training process, a structure
generator creates binary images representing the reso-
nator structures, while the physical properties (f and
Qanchor) of the corresponding geometries are labeled with
FEA results. The DL model is trained using abundant
labeled samples (referred to as “training samples”) in
many epochs to form a DL calculator with good accuracy.
In the testing process, the structure generator passes new
samples (referred to as “testing samples”) to the DL cal-
culator, and the DL calculator predicts the physical
properties of these samples that have never appeared in
the training process. After enough training, the DL cal-
culator can accurately analyze the physics of candidate
designs and help select good designs without the need for
additional numerical simulations.
In this work, the resonators are made of polysilicon with

density ρ= 2.3 × 103 kg/m3, Young’s modulus E= 150GPa,
and Poisson’s ratio v= 0.29. For each disk resonator con-
figuration, the diameters of the inner and outer rings, the
diameter of the central anchor stem, and the thicknesses of
the disk layer and the anchor stem are fixed parameters, as
shown in Fig. S1. An example disk resonator pattern is
shown in Fig. 1b as a 100 × 100 binary matrix, where 0
represents a void element and 1 represents a solid element.
For the structural layer, each voxel is 0.44 µm in width and
length and 0.5 µm in depth. This binary representation of
the geometries is the key to achieving nonparameterized
design. The agent is defined as a 2 × 2 × 4 solid element
region that can move randomly stepwise along the four
cardinal directions within one quadrant of the design
domain. The trajectory of the Brownian-like motion for the
agent always begins from the start point near the center
anchor stem and stops at the endpoint near the inner
annulus of the resonator. As another geometric constraint,
the total area covered by the trajectory can be assigned a
programmable value. By folding the trajectories along the
two axes of symmetry, the agent connects the anchor stem
and the outer annulus of the resonator. As such, the non-
parameterized and pixelated geometric configurations of
the resonator are formulated.
The physical properties of the resonator structures can

be predicted with state-of-the-art DL models such as a
residual neural network (ResNet)38, dense convolutional
network (DenseNet)39, and EfficientNet40. The detailed
modeling settings based on the PyTorch41 API of the
three different DL models are described in Supplementary
Note S1. Figure 1c presents the structure of a customized
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ResNet, which is the DL model eventually selected in this
study. The model structure includes five basic compo-
nents: the input image, 2D features, residual blocks, the
neural network, and the output targets. The 2D feature
maps are generated via matrix multiplication between
the original input image and the convolution kernels to
capture the influence of nearby pixels. The max pooling
layer selects the maximum of feature maps as the inputs
to subsequent layers. ResNet skips the training of a few
layers by using residual blocks to solve the degradation
problem of neural networks. The 2D vectors are then
flattened into a 1D vector as the neural network input,
while the fully connected layer applies a linear transfor-
mation to the input vector through a weighted matrix.
The number of final output neuron(s), representing the
physical properties of a MEMS design, can be either single
or multiple.

Modal frequency and anchor loss simulation
In this study, extensive FEA is conducted to generate

results that are considered the “ground truth” in the train-
ing and validation processes. Two types of FEA are per-
formed, namely, (1) natural frequency analysis for
identifying the vibrational mode of interest42 and (2)

complex frequency analysis for extracting Qanchor. As
detailed in Supplementary Note S2, the natural frequency
analysis yields the ideal, undamped frequency (real eigen-
value), the mode shape and the effective mass corre-
sponding to each vibrational mode. For a certain mode α,
the vibration motion of the resonator can be projected into
six directions (j), namely, translation along the X, Y, or Z
axis (i=XT, YT, or ZT) and rotation about the X, Y, or Z
axis (i=XR, YR, or ZR). As described in Supplementary
Note S2, the effective mass from FEA outputs meff is a two-
dimensional tensor, with one component meff

αi describing
the amount of mass in the system participating in motions
along a certain direction j in a vibration mode α. Using this
critical tensor meff, a vibrational mode α can be auto-
matically identified by comparing the relative values of each
component meff

αi in the row, instead of through tedious
human visual inspections of the mode shapes. In this
manner, the corresponding vibrational modes at calculated
natural frequencies can be distinctly identified and labeled,
which significantly reduces the time and labor consumption
during the data training or testing preparation process
when dealing with thousands of samples. As an example,
Fig. 2a–d show the mode shapes (upper row) and the dis-
tributions of effective mass components (lower row)
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Fig. 1 System components of the DL-assisted nonparameterized MEMS design. a The major components for the proposed system architecture,
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Inset: representative finite element mesh for a 2 × 2 solid region. c The structure of the deep residual neural network model used in this work,
featuring input images, 2D features, residual blocks, the neural network, and the output target.

Guo et al. Microsystems & Nanoengineering            (2022) 8:91 Page 3 of 10



corresponding to the first four vibrational modes of one
resonator. The four modes are the torsional mode about the
X axis (α= 1), torsional mode about the Y axis (α= 2), in-
plane spinning mode (α= 3), and out-of-plane flexural
mode (α= 4). The radar charts show the rankings of the six
directional effective mass components in these modes, from
the highest (ranking= 1, outermost) to lowest (ranking= 6,
innermost). As expected, the corresponding rotational
components (meff

1XR, m
eff
2YR, m

eff
3ZR) are ranked first in the two

torsional modes and the spinning mode, while the
Z-direction translation (meff

4ZT) is the highest in the flexural
mode. Utilizing this information, we can conveniently

distinguish the mode of interest (the “flexural mode”, α= 4)
from all the modes computed through FEA and obtain the
corresponding natural frequency ωflex.
The computed natural frequency for the flexural mode,

ωflex, is then used in subsequent complex frequency
analysis studies, where 0.98ωflex and 1.02ωflex define the
lower and upper bounds for frequency searching. The
±2% range accounts for the difference in value between
damped and undamped natural frequencies. As shown in
Fig. 2e, the bottom surface of the resonator’s anchor is
attached to a sufficiently large hemispherical substrate
(radius= 0.5 mm, 22.7 times larger than the resonator
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structure) in the complex frequency analysis. The sub-
strate is enclosed by a layer of infinite elements for
absorbing the transmitting elastic waves without reflec-
tion. With this FEA setup, we can calculate the complex-
valued frequency for the flexural mode, ωC

flex, and obtain

the Q-factor due to anchor loss, Qanchor ¼ Real ωC
flex½ �

2Imag ωC
flex½ �, to

label each sample. Figure 2f illustrates the frequency
response of the representative resonator structure shown
in Fig. 2a–e, featuring the peak at the damped natural
frequency and the corresponding Qanchor value. For the
resonator structure shown in Fig. 2a–e, this complex
frequency analysis step yields a damped natural fre-
quency and Qanchor of 910,731 Hz and 5.78 × 105,
respectively. These values are consistent with the fre-
quency response shown in Fig. 2f obtained from a steady-
state dynamics study.

Results and discussions
Dataset description and DL calculator interpretation
The region between the anchor stem at the center and

the outer annulus structure introduces a vast design

space. To provide a sufficient number of training samples,
29,984 unduplicated resonator patterns are created. Pat-
terns are shown in Fig. 3a as an example, in which the
ratio of void elements versus the total pixel numbers in
the design space is defined as “porosity” and labeled to the
pattern. To provide a balanced representation of the
design space with the dataset, equal numbers of samples
are generated at approximately 15 levels of porosity
values, which are evenly spaced from 0.2 to 0.9, with an
interval of 0.05. The computation time for generating
each structure input is as low as 1.2 s on average such that
the proposed input configuration generation method has
high throughput. Figure 3b illustrates the relationship
between the resonant frequency, porosity and Qanchor

value of the samples. As can be observed from the dataset,
the dominating trend is that the energy loss increases and
the Qanchor value decreases as the resonating frequency
increases, which is typical for MEMS resonators43–45 and
reveals the difficulty in achieving high Qanchor and high
frequency simultaneously. All obtained f-Qanchor products
are of the same order of magnitude, with an average value
of (2.2 ± 1.0) × 1011. The correlations among porosity,
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frequency and Qanchor are plotted in Fig. S2a, b. While as
an overall trend, the resonant frequency and Qanchor

increase and decrease, respectively, with higher porosity,
the wide spreads of data (almost ten times different) in
these graphs suggest that we cannot oversimplify the
dependency of resonator properties on geometric details
to one on a single parameter, porosity. Therefore, we
must utilize DL to comprehensively learn the geometric
details from pixelated images and find more hidden pat-
terns to accurately predict these physical properties.
In the data preparation process, ~90% of the dataset

(26,985 samples, all with FEA results) is labeled and used
as the training set, and the remaining ~10% (2999 sam-
ples) is used as the testing set. The two ResNet-based
single-output DL calculators for frequency and Qanchor

predictions are trained separately using the training set
and validated using the testing set. After the training
process, both DL models are explained using the
t-distributed stochastic neighbor embedding (t-SNE)
method with the default scikitlearn46 settings, which
visualizes high-dimensional vectors by assigning each
data point a location in a two-dimensional map47. If the
vectors share similar features, their corresponding loca-
tions are close to each other in the low-dimensional map.
As each resonator pattern image is inputted into each DL
calculator and the last layer hidden neuron values are
calculated, a high-dimensional vector with a size of 2048
is obtained. For the predictions of the DL calculator on
the testing set, the corresponding high-dimensional
vectors are grouped together and visualized through
t-SNE in Fig. 3c, d, where the data points are colorized
with the FEA-calculated frequency labels (Fig. 3c) and
Qanchor labels (Fig. 3d). It can be observed that the fre-
quency and Qanchor values of the testing samples
smoothly change from one end of the shape to the other
end, indicating effective training of the DL networks, as
testing samples with similar physical properties would
indeed be neighboring points in the high-dimensional
space. The same visualization approach is also applied to
the training set samples in Fig. S3a, b, where the dom-
inating trend matches well with results from the testing
set. In addition, we find that data points colorized by
porosity values Figs. S4 and S5 do not yield a smooth
transition in color. This finding agrees with the results in
Fig. S2 and further proves that the physical properties of a
resonator would depend on the geometric details, not on
just the porosity of the structure.

Performance evaluation of the DL calculators
Three evaluation metrics are considered in this study

to select a suitable DL model. (1) The forward calcula-
tion efficiency for predicting the target physical prop-
erties, as measured by the sample averaged testing time.

(2) The computational time costs to obtain the DL cal-
culators, as measured by the total model training (back
propagation) time. (3) Regression accuracies of the tar-

get physical properties, evaluated at each sample point as

Accuracy ¼ 1� yi�ŷi
yi

�
�
�

�
�
�, where yi is the ground-truth label

value (from FEA) of sample i and ŷi is the predicted value
from the DL models. As shown in
Fig. S6a, b, the ResNet50 models are approximately 3
and 2 times faster than the DenseNet201 and Effi-
cientNetB4 alternatives for forward calculation. Fig. S6c,
d shows that the total training time t increases linearly
with respect to the sample number x, while the ResNet50
models are 1.8 and 1.7 times faster than those of Dense-
Net201 and EfficientNetB4 for the model training process.
On the other hand, the differences in accuracies among
the three models are within 1% when the total sample
amount reaches 24,300 (Fig. S6e, f). Based on these
results, ResNet50 is selected for the subsequent studies.

Figure 4a, b show a comparison between the ResNet50-
based single-output DL predictions and FEA simulations
for frequency and Qanchor, respectively. Trained with
26,985 samples (90% of the total 29,984 samples), the
highest average accuracies of the testing sets (2999 sam-
ples) are 98.8 ± 1.6% and 96.8 ± 3.1% for the frequency
and Qanchor regression, respectively. The learning curves
for this experiment in Fig. S7a, b show the L1 loss versus
training epochs, where both the training and the testing
curves converge in the end. Figure 4c, d illustrate the
sample distribution of data in the testing set from the DL
model and from FEA. For both frequency and Qanchor,
the DL and FEA distributions show good alignment. The
frequency distribution could be viewed as a right-skewed
distribution with peak density at ~2MHz and a nearly
even distribution in the range between 2.5 and 4.8MHz.
It is noteworthy that Qanchor also shows a right-skewed
distribution but with high kurtosis. This matches our
expectation that most geometries provide low Qanchor

values and that geometric designs with exceptionally high
Q values are rare and would require plenty of iteration
efforts. Figure 4e, f shows how the regression accuracy
changes with the number of samples for the frequency
and Qanchor predictions, respectively. Before the sample
amount reaches 10,000, increasing the number of sam-
ples leads to obviously higher accuracy and lower stan-
dard deviation. The performance enhancement becomes
less obvious with further added samples. Given that the
average testing accuracy surpasses 95% for both fre-
quency and Qanchor, we consider the sample amount to
be sufficient at this point. These findings are also sup-
ported by the learning curves and DL vs. FEA compar-
isons performed on 300, 900, 2700, and 8100 samples in
Figs. S8 and S9.
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DL calculators for design ranking and computation time
cost reduction
To be applicable in the highly demanded field of high-Q-

factor resonator designs, the DL calculator must be capable
of recognizing whether one design is superior to another.
During the experiment, the testing samples are first sorted
in ascending order according to their DL predicted Qanchor

values and labeled by the predicted rankings, obtaining a
natural number sequence <1, 2, …n>, where n is the total
number of testing samples for ranking. Afterward, the
testing samples are sorted in ascending order according to
their actual FEA simulated Qanchor values and the previously
defined natural number sequence transforms to a new
sequence X= <x1, x2, …, xn>. Here, we quantitatively
evaluate the performance of our DL model in comparing
vast different samples based on Qanchor values using ranking
accuracy (RA) as the metric, which is defined as

RA ¼ #fði; jÞjðxi � xjÞði� jÞ> 0; 1 � i; j � ng
nðn� 1Þ=2 ð1Þ

The symbol # denotes the number of elements that
satisfies the described conditions. Each correctly predicted
pair of unique integers xi and xj at the ith and jth positions
of the sequence X should have (xi–xj)(i-j) > 0, and the

corresponding (i,j) pair is recorded as a valid element. The
total number of possible (i,j) pairs is n(n-1)/2; thus, RA
indicates the portion of correctly ranked pairs within the
total possible combinations. The overall RA value is
98.44%, as shown in Fig. 5a, when using the results of the
testing set for evaluation. For the samples with the top
10% Qanchor (considered to be “good designs”) in Fig. 5b,
our DL calculator could still achieve a high RA value of
89.83% and can successfully find all the designs in the top
10%. To showcase our DL calculator’s capacity in identi-
fying the desirable designs with exceptionally high Qanchor

(top 8 ranked, or equivalently top 0.3%), we show the
specific geometries of these samples in Fig. 5c, along with
their rankings using FEA (ground truth) and using our DL
calculator. Even for this domain with very limited training
data (due to the scarcity of high-Q structures), our DL
calculator still performs remarkably, as it manages to find
all eight best structures, correctly identifies three rankings
(1st, 6th, and 8th), and yields a RA value of 82.14%.
After sufficient training, the DL calculators are not

only accurate but also much faster than FEA in gen-
erating results for frequency and Qanchor. As shown in
Fig. S10, FEA simulations take 41.3 ± 6.2 seconds and
235.5 ± 14.1 seconds on average to yield sample results
for the frequency and Qanchor, respectively, whereas the
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single-output DL calculators only take 1.27 ± 0.013 seconds
and 1.26 ± 0.008 seconds during the training process (back
propagation) and 8.9 ± 0.67 × 10−3 s and 8.9 ± 0.48 × 10−3 s
during the testing process (forward calculation). Therefore,
the DL calculators can produce results for a given geo-
metric structure 4.6 × 103 times faster (in frequency cal-
culation) and 2.6 × 104 times faster (in Qanchor calculation)
than FEA for the single-output DL models. The above
results indicate that while the time consumption for the
FEA simulations can be very different for required physical

properties, the averaged forward computation time costs
for DL calculators are always negligible. The DL calculator
can be trained to simultaneously predict two outputs (the
frequency and Qanchor) to further accelerate the computa-
tion process. The testing regression accuracies for the fre-
quency and Qanchor of the double-output DL calculator are
98.6 ± 1.9% and 96.5 ± 4.1%, respectively, which are com-
parable with those of the single-output DL calculators, as
shown in Fig. S11. In the histogram of Fig. 5d, the double-
output DL calculator only takes 1.20 ± 0.024 s per sample to
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train the model and 9.3 ± 0.61 × 10−3 s per sample to
simultaneously predict both outputs. The pie chart shows
the break-up of time consumption in this study for this
double-output model, where only 3.8% of time is spent on
the training/testing of the DL calculators and the data
preprocessing process (details described in Supplementary
Note S1), while the remaining 96.2% of time is spent in FEA
to generate high-quality label data for the training process.
As such, for future design screening, a well-trained, double-
output DL calculator can reduce the computation time by
up to ~96.0% compared to purely FEA-based simulations.

Conclusions
In this study, we applied a deep learning (DL) technique

to calculate the physical properties of MEMS structures
effectively and accurately. The geometries of numerous
candidate designs were represented by pixelated binary
images, which were then labeled by numerical simulation
results and used in the training of neural networks. With
sufficient training, the networks can learn the hidden
patterns in the vast number of candidate geometries and
calculate the physical properties (such as the frequency and
quality factor of disk-shaped microresonators) quickly and
accurately. The networks can also be used to rank thou-
sands of candidate geometries based on a certain quantity
of interest (e.g., quality factor) and guide researchers
toward good designs. Not limited to the resonator design,
the proposed approaches can be extended to other types of
MEMS devices, such as microscale piezoelectric energy
harvesters48 accelerometers, gyroscopes, etc. By combining
the DL calculator with a DL designer in the future, the
calculation results could directly guide the generation of
new candidate geometries toward a desired design goal.
Another possible future direction is to incorporate multi-
layer structural features in MEMS in our neural networks
to apply our data-driven approach to even more complex
MEMS devices. After choosing the desirable structural
design, the data-driven approach could also be applied to
predict and enhance the microfabrication process to
account for the effects on the final device performance and
reliability from parameters in key process steps (spin-
coating, exposure, polysilicon and oxide deposition, etch-
ing, annealing, etc.), material surface morphology and
imperfections, and anomalies during the process49–52.
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