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Abstract
Advances in microfluidic technologies rely on engineered 3D flow patterns to manipulate samples at the microscale.
However, current methods for mapping flows only provide limited 3D and temporal resolutions or require highly
specialized optical set-ups. Here, we present a simple defocusing approach based on brightfield microscopy and
open-source software to map micro-flows in 3D at high spatial and temporal resolution. Our workflow is both
integrated in ImageJ and modular. We track seed particles in 2D before classifying their Z-position using a reference
library. We compare the performance of a traditional cross-correlation method and a deep learning model in
performing the classification step. We validate our method on three highly relevant microfluidic examples: a channel
step expansion and displacement structures as single-phase flow examples, and droplet microfluidics as a two-
phase flow example. First, we elucidate how displacement structures efficiently shift large particles across
streamlines. Second, we reveal novel recirculation structures and folding patterns in the internal flow of microfluidic
droplets. Our simple and widely accessible brightfield technique generates high-resolution flow maps and it will
address the increasing demand for controlling fluids at the microscale by supporting the efficient design of novel
microfluidic structures.

Introduction
Microfluidic advances increasingly rely on engineered

3D flow patterns to manipulate samples at the micro-
nscale. Numerical methods can provide insights into flow
patterns; however, complex driving forces, conduit geo-
metries, and fluid/surface interactions can preclude the
accurate numerical simulation of microflows. It is also
critical to validate flow topologies experimentally, which
requires high-resolution 3D flow mapping techniques.
Micro-particle image velocimetry (µPIV) is the “gold
standard” for mapping single1–3 and multi-phase4–6

microflows. It cross-correlates local patterns created by
densely seeded particles, and it is thus inherently a

2-dimensional method with a Z-resolution limited to
several µm4,7. The flow between data slices can be cal-
culated via the continuity equation8,9 at a high computing
cost. Methods to improve PIV resolution include multiple
camera set-ups10–13 or controlled sample illumination
with a confocal disk7,9. In sum, added cost and complexity
make high-resolution PIV techniques inadequate for
broader adoption by the scientific community.
In contrast, single-particle tracking provides sub-pixel

resolution in 2D that can be expanded into the third
dimension by comparing particle images to a reference
library of defocused patterns at known depths14–16.
Defocusing micro-particle tracking velocimetry (µPTV)
uses this approach to track tracer particles in micro-
flows14,17,18. µPTV has been mostly implemented with
fluorescence microscopy combined with either a
3-pinhole aperture12 or a cylindrical lens19 that create an
asymmetric defocusing pattern. In these approaches, the
low fluorescence signal is further attenuated by the
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additional optical components and the use of low
numerical aperture (NA) objectives that provide a large
depth of field at the expense of light collection. Overall,
fluorescence microscopy and customized set-ups have
decreased the utility of defocusing µPTV because they
provide limited temporal resolution and require dedicated
or elaborate17 optical set-ups.
Here, we establish a high-resolution µPTV approach

based on a simple brightfield microscope set-up that
alleviates current limitations. Our method is further made
accessible by using open-source software (Fiji20) and
plugin (TrackMate21) to track seed particles in 2D. In our
modular workflow, the classification step can be per-
formed by different methods. Deep learning models have
proven very useful in classification problems in many
different situations, and we develop and compare a deep
learning model to the more classic cross-correlation
method14,18. We measure the performance of the two
classification approaches on experimental data. We then
validate and demonstrate the usefulness of our 3D flow
mapping method by characterizing the flow pattern of
three representative microfluidic examples. First, we map
the velocity field at a channel step expansion and then
evaluate continuity error. Second, we demonstrate how
our mapping method elucidates the working principles of
displacement structures that allow for perfect particle
trapping22. Third, we generate high-resolution maps of
the internal flow of microfluidic droplets in a straight
channel and in a curved channel known to induce mixing.
Those real-life examples emphasize the utility of analyzing
pathlines in addition to velocity fields to provide a detailed
flow map. All experimental data can be explored in 3D
with an online viewer at https://www.stonybrook.edu/
commcms/defocusing_3D_mapping/index.html.

Results
Strategy
Our novel technique to map microflows in 3D and at

high resolution uses widely accessible brightfield micro-
scopy and open-source algorithms. Efficient determina-
tion of Z-position relies on an optimal asymmetric
defocusing pattern with the largest cone angle and dee-
pest field of view (SI Appendix, Fig. S1). We use 3 μm
diameter polystyrene microbeads to provide ideal defo-
cusing patterns and sufficient pixels for efficient
Z-prediction without off-center effects. We adjust the
correction ring of the 20x/0.45NA objective to 0.2 mm to
introduce spherical aberrations and remove ambiguity
about the focal plane (SI Appendix, Fig. S2). Our two-
step strategy first uses TrackMate21, a GUI-based particle
tracking tool included in the Fiji distribution of ImageJ, to
provide lateral (XY) particle trajectories. Particle density
influences the number of “collisions” between seed par-
ticles. Higher seed densities yield more tracking data for a

given video length and thus a higher resolution of the
flow field; however, overlapping or near-overlapping
particle events become more common. This challenges
both TrackMate’s spot detection and particle linking
algorithms. These errors require manual corrections to
fix track defects if long pathlines are desired or to
delete erroneous spots if velocity vectors are desired.
Particle linking errors are more labor intensive to correct.
We experimentally determined that a particle image
density lower than 0.01 (pixel/pixel) provides a good
compromise between data density and manual input (SI
Appendix Seed Density Analysis, Table S1 and Fig. S3).
Second, we expand these trajectories in 3D by extracting
the Z-position encoded in the particle images by classi-
fication against a reference library of defocused patterns
at known Z-levels (Fig. 1). We leverage a deep learning
model for Z-position prediction (SI Appendix, Fig. S4)
and compare its performance against normalized cross-
correlation on experimental data.

Evaluating accuracy and precision
Accuracy (denoted σ) represents the agreement between

predicted Z-positions and ground-truth labels, and pre-
cision (denoted Eprec) the extent of the low-amplitude
variation around the average Z-position along an in-plane
displacement. We quantified the accuracy of the XY
localization via TrackMate using synthetic images
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Fig. 1 Brightfield defocusing strategy. a TrackMate, an ImageJ
plugin, detects beads as “spots” (purple circles, n = 14) from high-
speed video frames. It links spots from consecutive frames into 2D
tracks (not shown here). b Particle coordinates are extended to 3D by
image classification against a reference library of defocus patterns at
known Z-location using either a cross-correlation algorithm or a deep
learning model. Both approaches provide continuous positions based
on discrete classes in the reference image set

Lammertse et al. Microsystems & Nanoengineering            (2022) 8:72 Page 2 of 15

https://www.stonybrook.edu/commcms/defocusing_3D_mapping/index.html
https://www.stonybrook.edu/commcms/defocusing_3D_mapping/index.html


(SI Appendix, Fig. S5), and of the Z-localization via cross-
correlation and our deep learning model. We report the
root mean square error (RMSE) between the predicted
and ground-truth label values as the measure of σ (Fig. 2,
see Material and Methods). XY σ is minimum (0.04 µm in
X, 0.05 µm in Y) near the negative extreme of the Z-range
and increases roughly linearly to a maximum (0.20 µm in
X, 0.40 µm in Y) at the positive extreme. Overall, the
median XY σ is 0.12 µm in X and 0.21 µm in Y. We
attribute this discrepancy in X and Y to a slight distortion
of the defocus pattern of particles, which becomes more
apparent with increasing Z (SI Appendix, Fig. S6). For Z-
localization, the prediction σ for the cross-correlation and
deep learning strategies fluctuate across the median for
most of the Z-range, only increasing near the negative
extreme at Z <−25 µm. This result indicates that the
Z-range (h) is adequately sized but is approaching the
limits of the optical system at the lower end of the range.
For the cross-correlation method, the median σ is 0.63 µm
with a normalized value σ/h= 0.012 (h= 54 µm) in
agreement with previously reported performance14.
However, in contrast to a previous report23, our deep
learning model provides a higher accuracy than cross-
correlation with a value of 0.41 µm with σ/h= 0.0075. The
normalized value σ/h may be improved in our case by
expanding the Z range in the positive direction because
that region exhibits a low σ. Decreasing the step size is
unlikely to improve σ/h because the step size is compar-
able to the median σ values and thus the resolution.
To estimate precision, we quantified the Z-position of

particles using experimental data, for which no ground
truth is available but whose trajectories are predictable.
We recorded high-speed videos of a Poiseuille flow
through a straight rectangular channel. Pathlines are
expected to be monotonous with little change in defocus
pattern across their linear trajectory. Thus, variation in

Z-position across each track reflects only the imprecision
of the prediction method. We inject seed particles sus-
pended at 0.25 mg/ml in a 45/55 (% v/v) solution of water
in glycerol to match the refractive indices of the single-
phase and PDMS. The microfluidic channel has a
90 µm × 35 µm (width × height) rectangular cross-section.
After predicting the Z-position of particles in each frame,
we calculate the precision Eprec as the median RMSE along
each pathline fitted against a 1-D Z(X,Y) linear regression
model to account for a slight tilt of the system. Eprec for
both methods are similar, with 0.14 µm for the cross-
correlation and 0.17 µm for the deep learning prediction,
with non-parametric interquartile ranges of 0.06 µm (SI
Appendix, Fig. S7). The Y-Eprec is 0.12 µm. The Z-Eprec of
our method is comparable to this value, which under-
scores its capability to measure full-3D pathlines at high
resolution.

Re-labeling training images is critical for the deep learning
model
We considered a dataset with a tilt around the Y-axis to

assess the impact of re-labeling image particles. In this
instance, the particle Z-positions in the reference image
for the 0 µm level vary linearly from −2 µm to +2 µm as
determined by cross-correlation (SI Appendix, Fig. S8).
We quantify the impact of re-labeling on the precision
measurement in a horizontal Poiseuille flow. In the
absence of re-labeling, the deep learning model provides a
lower average value for the pathlines slope (−0.0012 µm/
µm vs. −0.0036 µm/µm), while the Eprec is almost twice as
large as with the cross-correlation (0.26 µm vs. 0.14 µm).
After re-labeling and retraining the deep learning model,
the Eprec for the deep learning model decreases from
0.26 µm to 0.17 µm, and the median slope is identical to
the cross-correlation case (0.0036 µm/µm). The cross-
correlation method is less sensitive to biased labeling
because it compares particle images to the median image
of each Z-level, which eliminates the most extreme
deviations from the image motifs. It is noteworthy that
visual inspection cannot detect a 4 µm tilt across the field
of view. Our results highlight a critical aspect of deep
learning applications to defocusing µPTV using experi-
mental (rather than synthetic23) training sets: labeling
errors or bias must be systematically evaluated and cor-
rected. Even slight perturbations or misalignment of the
microfluidic device relative to the focal plane can cause
labeling errors that significantly impact the performance
of the deep learning model.

Channel Step Experiment
We characterized a single-phase flow at a channel step

where a 45 µm wide and 13 µm deep cross-section
expands to a 90 µm wide and 35 µm deep cross-section
(Fig. 3). We injected a 0.52 mg/ml bead suspension at
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Fig. 2 Method accuracy using synthetic images. Accuracy (σ) in X,
Y, and Z is reported as the RMSE between predicted and actual
coordinates across the n = 110 Z-levels comprising the working
range. The deep learning model (in red) shows an improved σ

(0.41 µm) over the cross-correlation algorithm (in black, 0.63 µm)
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5 µL/hr and captured 701 pathlines with a median length
of 121 spots for a total spot count of 79,814 from a single
8300 frame video taken at 300fps and 1920 × 1080
resolution.
Both classification methods generate very similar path-

lines and yield very few gross errors (SI Appendix,
Fig. S9). The scarcity of near-wall information is con-
spicuous as near-wall flow is difficult to capture. Similar
to all seed particle-based methods, flow velocities cannot
be measured within one particle radius (1.5 µm here) from
the walls. Near-wall particles are rare because of the low
seed density inherent to defocusing-based µPTV. In
contrast to other defocusing-based µPTV approaches
relying on fluorescence microscopy, the use of brightfield
enables the precise location of channel walls or other
stationary features.
3D trajectories illustrate the topography of hydro-

dynamic flows, but we can also extract the velocity fields
that provide critical information, such as hydrodynamic
forces. We calculated the instantaneous velocity vectors
from between-frame particle displacements and then
lattice-averaged them. We filtered out unphysical vectors
greater than a wmax of 1300 µm/sec (see Material and
Methods), which corresponds to the fastest out-of-plane
motion just downstream of the step expansion (Fig. 3b, c).
Both classification methods generate very few unphysical
vectors: 20 for the cross-correlation method and 4 the

deep learning model, out of a total of 79,112 instanta-
neous vectors. We lattice-averaged the 416 µm × 93 µm ×
43 µm (X,Y,Z) measurement volume with a 4 µm × 2 µm
× 1 µm element size and 50% overlap. This lattice yielded
a median count of 10 vectors for non-empty elements.
Upstream of the step expansion, the flow is unidirectional,
and the parabolic velocity profile typical of Poiseuille flow
is visible (Fig. 3d). About 10 µm before the expansion, the
flow begins diverging upward in Z and symmetrically
outward in Y. The flow expansion continues for several
tens of µm downstream of the step as the streamlines
expand to fill the greater channel volume. The maximum
out-of-plane velocity is observed immediately down-
stream of the expansion before asymptotically returning
to zero in the downstream flow. The upward flow
expansion continues very gradually at about 40 µm
downstream of the step.

Continuity Error Analysis
In absence of ground truth, we assess the physical

validity of the velocity field of the channel step by
evaluating its deviation from the conservation of mass,
or continuity equation, that should be zero for a non-
compressible flow (SI Appendix Continuity Error Ana-
lysis)24. We evaluated the scalar η (continuity error
parameter) field for the channel step dataset across a
range of lattice element sizes. We considered a
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Fig. 3 Flow maps at a channel step using the cross-correlation algorithm. Vectors sourced from n = 79,814 spots across 701 pathlines
with a median length of 121 spots. a Isometric view of 14 selected individual pathlines. b Isometric view of the lattice-averaged 3D velocity
vector field using a 4 µm × 2 µm × 1 µm element size. c XZ planar side view of the velocity field. Vector length codes for the velocity
magnitude and color codes for the value of its Z-component. d Parabolic velocity profile characteristic of a Poiseuille flow observed upstream
of the channel step
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subvolume centered on the step expansion
(178 µm< x < 255 µm in Fig. 3c) because this region
contains most of the out-of-plane flow and is thus the
most sensitive to Z-prediction. The median value across
the scalar field, η~, typically varies from 0 (perfect
continuity) to 1 (uncorrelated velocity components). η ̃
is smaller than 0.5 for all element sizes, except 1 µm ×
1 µm × 1 µm (Table 1). η ̃ is maximum for the smallest
element size, 1 µm × 1 µm × 1 µm, and then declines
with increasing element sizes to a minimum at 4 µm ×
4 µm × 4 µm, before increasing slightly again at 6 µm ×
6 µm × 6 µm. These results follow the expected evolu-
tion of η ̃ as a function of the element size. Smaller
element sizes are more sensitive to noise or errors
because they contain fewer vectors. This is confirmed
for the 1 µm × 1 µm × 1 µm element size by looking at
its distribution (SI Appendix Continuity Error Analysis
and Fig. S10). In addition, continuity is affected when
the element size becomes comparable to the precision
of particle location, which increases the chance of
assigning a vector to the wrong lattice element. Thus, η ̃
is expected to be greater for small element sizes, to
decline with increasing element sizes, until the element
size encompasses flow vectors with true different
directions and generates discretization errors. Classifi-
cation by cross-correlation and deep learning also
produced very similar results (Table 1).
In addition, we investigated the effect of rectangular

lattice elements. In the channel step case, the resolution of
the out-of-plane (Z) and lateral (Y) motion near the step
expansion is more critical than the resolution along the
streamwise (X) direction. A 4 µm × 2 µm × 1 µm lattice
element (used size in Fig. 3) enables to resolve the flow to
1 µm in Z without exhibiting a loss in continuity. The
result is also confirmed by plotting the scatterplots of Δu/
Δx vs. –(Δv/Δy+Δw/Δz) (SI Appendix Continuity Error
Analysis and Fig. S11). This result suggests that users can
adjust the lattice element to increase the resolution of the
velocity field along a specific axis. Overall, the continuity
analysis of the velocity field of the channel step confirms
that it follows the conservation of mass.

Computation cost analysis
We compared the computational costs of the cross-

correlation and the deep learning-based Z-prediction
algorithms, by analyzing a set of 2681 particle image time-
stacks with a median track length of 53 frames. The
dataset contains particle images extracted from 4 high-
speed videos aggregated from 3 experiments performed at
the same flow rate (25 µL/hr), with different focal plane
heights and local flow characteristics. The deep learning
model ran on a GPU (NVIDIA GeForce RTX 2070
SUPER, 7.79GB), while the cross-correlation algorithm
was run on a Windows 10 PC with Intel i5-4570S
(2.9 GHz) 4-core processor and 16 GB RAM.
Training of the neural network took 4572 s (about

76 min). Classification by the deep learning model was 2
orders of magnitude faster than classification by cross-
correlation: the median Z-prediction time per stack
across 2681 time-stacks was 0.049 s via the deep
learning model and 20.6 s via cross-correlation (SI
Appendix, Fig. S12). The cost of the deep learning
model training is also one order of magnitude lower
than the classification time by cross-correlation in our
example. This difference will only grow larger with
larger dataset, for which the speed advantage of the
deep learning model increases. It is important to note
that, in our case, the deep learning model can use GPU
scaling while the cross-correlation implementation
used is CPU limited. These results underscore that deep
learning models are well suited for applications invol-
ving a series of experiments, such as design optimiza-
tion of a complex microfluidic geometry and high-
resolution flow mapping.

Single-phase flow induced by displacement structures
Displacement structures enable capture of single cells

or particles with near-perfect efficiency by shifting their
center of mass within the streamlines that flow through
chambers22. They consist of 19 μm thick overhangs in a
30 μm deep channel designed to exclude large particles
and act as a conduit to divert flow underneath (Fig. 4a).
It has been suggested that particles are displaced due to
the helicoidal shape of the flow22; however, the flow
pattern induced by those structures has not been
detailed experimentally.
We injected a solution of seed particles at 0.42 mg/ml

at 5 µl/hr close to the overhangs using a 20 µl/hr co-
flow. The flow map, generated with the cross-
correlation algorithm, shows four trajectory types
depending on the initial proximity of the seed particles
to the wall. Particles close to the wall tend to remain
underneath the overhangs (Type 1, cyan, and dark blue
trajectories in Fig. 4b) or get displaced upward and
outward after interaction with a tooth (Type 2). Inter-
estingly, seed particles that follow Type 1 and 2

Table 1 Variation of ~η with lattice element size

Lattice Element Size ~η (Cross-correlation) ~η (Deep learning)

4 µm x 2 µm x 1 µm 0.45 0.50

1 µm x 1 µm x 1 µm 0.88 0.90

2 µm x 2 µm x 2 µm 0.30 0.29

4 µm x 4 µm x 4 µm 0.14 0.14

6 µm x 6 µm x 6 µm 0.17 0.16
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trajectories start at the same distance from the wall but
at different depths. Seed particles further away from the
wall are displaced right away towards the tip of the first
tooth (Type 3 and 4) but can slip under one of the
following teeth and even divert back towards the wall
(Type 3). All particles exhibit vertical wavy trajectories
when interacting with the teeth (Fig. 4c, d Type 1 to 4).
Interestingly, we can enumerate the number of specific
pathlines to confirm how the displacement structures
manipulate the fluid and displace large particles to the
opposite wall (Table 2). The proportion of pathlines
that flow under the structure (Type 1) is higher than
that of pathlines diverted outwards (Type 2). Also, the
proportion of pathlines that slip under the tips and
towards the wall (Type 3) is much lower than that of
pathlines that remain at the structure tips (Type 4).
These proportions challenge the direct effect of a
helicoidal flow pattern but instead support the role of
flow diversion in the streamline jumping effect. Indeed,
our data support a mechanism where the structure
constrains large particles to a portion of the channel
section while the flow diverted underneath the struc-
ture acts as a co-flow that maintain particles in their
new positions. 3D trajectories of seed particles highlight
the complexity of the flow generated by the displace-
ment structures and tease out the underlying mechan-
ism that drives particles to change streamlines.
We further verified that the deep learning model gen-

erated similar pathlines (data not shown). Finally, we
changed the position of the focal plane, from below to
above the bottom of the structures, to confirm that it has
no incidence on the flow maps (data not shown).

Two-phase droplet flow in a straight rectangular channel
We validate our method by mapping the internal flow of

microfluidic droplets, a case that is notoriously challen-
ging because of the optical distortion due to the interface.
We generated 1.1 nL droplets that flowed into a channel
with a 120 µm wide and 38 µm deep rectangular cross-
section. We collected data on two movies containing 54
and 34 droplets with mean seed densities of 3.7 and 2.6
particles per droplet. We produced two datasets to assess
the impact of data loss near the interface. The first one,
called the Auto dataset, uses only spots detected by
TrackMate. The second, called the Corrected dataset,
includes missed spots (false negatives) that we added
manually. TrackMate’s detection (true positive) rate for
the Auto dataset is 91% and 96% for the two movies.
The flow maps generated illustrate the topological

characteristics of the internal flow of droplets (Fig. 5,
Corrected dataset). The recirculation flow exhibits mid-
planes of symmetry both vertically (XZ) and horizontally
(XY), as shown by the end-on view of the 3D pathlines in
Fig. 5c, d. Those planes divide the flow into 4 quadrants
spanning the length of the droplet. We manually colored
the pathlines to highlight features of the flow structure:
pink pathlines depict recirculation flow around the
perimeter of each quadrant, green pathlines depict local
vortices in the front and rear of each quadrant, and
yellow pathlines represent transitions between the red
and green patterns. In microfluidic droplets, the internal
flow topology is strongly affected by the capillary num-
ber Ca25,26 and channel width/height aspect ratio27, and
topological regimes can be delineated by critical Ca
values that are in turn dependent on the inner-to-outer
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viscosity ratio λ25. The topology revealed here reflects a
low-Ca regime described previously26,27. This is expected
given the transition trends described by Jakiela et al.25

and the low Ca (6.9 × 10−4) and λ (0.67) values in this
case. In rectangular channels, the continuous phase
typically overtakes droplets through gutters located
between the interface and the channel corners25. The
shear induced by the higher velocity gutter flows pro-
pagates through the interface and drives the recircula-
tion flow within droplets. Even at low Ca, the viscous
shear stress exerted by the gutter flow on the droplet
slightly deforms the front endcap. This effect increases
its curvature and surface area, which results in a greater
transfer of viscous energy across the front endcap and
larger local vortices at the droplet front (Fig. 5a, b).
Intriguingly, the blue pathlines depict small local vortices
found in the vertical extremes of the droplet near the
junction between the endcaps and the channel walls (see
SI Appendix, Movie S1 for a sequence that reveals one of
the blue vortices). These vortices are located at the
extremities of the gutters (Fig. 5e, f) and may be driven
by the splitting of the continuous phase into gutter flows.
Notably, the thickness of those vortices is in the order of
a few μm, and to our knowledge, they have not been
described with other techniques. Our approach allows to
describe the flow map in minute detail.
Both classification methods generate Z-prediction

errors, reflected in single-error spikes and “error pla-
teaus” (sustained errors over several consecutive posi-
tions). These errors are more common near the droplet
interface (Fig. 5c–f) and at a higher rate for the deep
learning model (Fig. 5c and e and d and f). They are due to
confusing motifs in the particle images, such as the
interface or nearby particles, for which the model is not
trained. We applied a 5th-order median filter along each
pathline sequence of Z-coordinates to smooth out these
errors (SI Appendix, Materials and Methods). We calcu-
late the instantaneous velocity vectors and lattice-average
them using a 4 µm × 2 µm × 4 µm element with a 50%
overlap, which results in a median of at least seven
instantaneous vectors per non-empty element (Fig. 6).
Those velocity vectors can additionally be filtered to
remove unphysical values. In this case, we established a
physical wmax limit of 1000 µm/sec (SI Appendix, Mate-
rials and Methods). Downstream vortices appear larger
than the upstream vortices and are covered by a greater

density of vectors, revealing the axial front-rear asym-
metry of the local recirculation flow within each quadrant.
We notice the flow of the continuous phase through
the gutters that is indicated by the faster near-interface
downstream flow in the 13.2 µm plane compared to the
1.2 µm plane.
Interestingly, we do not observe backward flow near the

channel walls in the 1.2 µm plane. Typically present in
lower aspect ratio channels (1.025 and 1.526), the backward
flow is indicative of the viscous drag due to the oil film
between the droplet and the channel wall. Our experi-
ment used a much higher aspect ratio channel (3.2), and
more closely reflects the µPIV results of Li et al.27 that
also (in a 2.5 aspect ratio channel) showed only forward-
directed flow near the channel walls at the mid-plane in
the low Ca regime. Increasing the channel aspect ratio
reduces the film area and the viscous energy transfer
across the side interfaces, thinning or eliminating the
band of backward-directed internal flow adjacent to
the interface27. Our results further underscore that the
channel aspect ratio is a critical parameter determining
the topology of the internal flow of microfluidic droplets.
Finally, we compare the Auto (21,777 vectors) and

Corrected datasets (23,216 vectors) to evaluate the rele-
vance of the latter by quantifying the number of unphy-
sical vectors in both sets and after applying a 5th order
median filter to pathlines (SI Appendix, Table S2). Overall,
the Corrected dataset does not improve quantitatively
because the correction adds only a few percent of velocity
vectors. Those numbers do not significantly affect the
vector density and hence the element size or spatial
resolution. The foreign image features challenge both the
spot detection by TrackMate and Z prediction algorithms;
however, the Corrected dataset addresses only the
detection step but not the classification step. Yet, the
Corrected dataset partially restores the loss of velocity
vectors near the interface. Vectors in those regions are
disproportionally filtered out due to the presence of the
interface in images (a few % of the vectors are lost near
the interface compared to a few 0.1% in the center of
droplets). All considered, the 5th-order median filter has
the most significant impact on recovering data near the
interface compared to the effect of the Corrected dataset
that requires manual input.
Using our technique, we generate a highly detailed 3D

map of the recirculation topology inside microfluidic
droplets. Our results are consistent with the general
patterns of recirculation described previously using
µPIV4,5,9. Coincidently, the fully-3D pathline-level map-
ping permits the detection of novel features such as the
narrow corner vortices that cannot be easily detected with
µPIV because of their shallow thicknesses. The spatial
resolution of the velocity field is fully tunable and can be
adjusted by collecting additional data.

Table 2 Proportion of each trajectory type across
displacement structures

Type 1 Type 2 Type 3 Type 4

79% 3.4% 15.6% 1.9%
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Two-phase droplet flow in a semi-circular rectangular
channel
We use our method to study the mixing effect of a

curved channel within microfluidic droplets. We gener-
ated 1.1 nL droplets that flowed in a rectangular channel
with a 120 µm wide and 38 µm deep cross-section that
describes an arc section (Fig. 7a). We recorded the motion
of 40 droplets with a mean density of 17.8 single seed
particles. TrackMate’s detection rate was 78.1% in the
Auto dataset.
We manually colored the pathlines to highlight the flow

structure using the previous nomenclature after applying

a 5th-order median filter (Fig. 7b–f, Corrected dataset).
Consistent with the straight channel results, more errors
are visible in the deep learning than cross-correlation
dataset, especially near the droplet interface. Here the
higher seed density likely increases the frequency at which
interface and foreign-particle motifs are observed in par-
ticle images, increasing the overall error rate (Fig. 7c, d).
Small narrow vortices (blue) are also present at the
extremities of the gutter at the droplet rear (SI Appendix,
Movie S2). We observe an asymmetry between the prin-
cipal inner and outer main recirculation vortices (pink)
(Fig. 7b). Other topological features recall those observed
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in the straight channel case with some variations. The
local recirculation vortices (green) are seen in both the
front and rear of the droplet, but the downstream vortices
are larger and more irregular. The channel curvature
induces a radial asymmetry due to a difference in the
shear induced by the gutter flows. The wider inner vortex
is driven by a higher flowrate than the outer vortex
because the continuous phase splits between gutters of
different lengths and thus hydrodynamic resistances in
this case. Indeed, interfacial energy predominates over
viscous, centrifugal, and inertial effects because of the low
Capillary, Dean, and Weber numbers (Ca � 1:10�3, De �
0:01, We � 2:10�5). Minimal interfacial deformation is
expected, and the relative hydrodynamic resistances of the
gutters depend only on their relative lengths. We estimate
the relative resistance ratio to be about 1.6 based on the
56° arc angle of the droplet (SI Appendix, Materials and
Methods).
Importantly, the yellow pathlines emphasize the tran-

sition between the well-defined red and green vortices
and illustrate the enhanced in-droplet mixing observed in
curved channel (Fig. 7b–f). Here, tracer particles travel
from one vortex to another along the yellow pathlines
(SI Appendix, Movie S3). They curve backward from the
downstream lower corner (arrow in Fig. 7e) before
sharply turning back (asterisk in Fig. 7e) into the down-
stream upper green vortex. Those trajectories have a

pronounced Z-displacement (Fig. 7f) and appear to cross
pink pathlines (Fig. 7b). This result clearly illustrates the
ability of our method to reveal critical information about
flow structures.
We lattice-average the vector field using both a 4 µm ×

2 µm × 4 µm lattice element and a 2 µm × 1 µm × 4 µm
lattice element with 50% overlap (Fig. 8). These element
sizes result in a median of 7 and 2 instantaneous vectors
per non-empty element, respectively (SI Appendix, Table
S3). The cross-correlation and deep learning results
are similar (SI Appendix, Fig. S8). Critically, the flow
structure illustrates the mixing mechanism close to the
midplane. The inner and outer vortices communicate via a
region between 150 µm < X < 200 µm (Fig. 8a and c). Flow
from the inner vortex is diverted upward to the outer
section of the droplet and joins the local recirculation
vortex shown in the upper right. The downstream highest
velocity flow near the droplet interface completes the
folding effect. The bulk of the droplet interior is sparsely
defined, indicating a low-velocity, low-flow region inside
the wide inner vortex. The folding effect is more apparent
in the map generated with the smaller lattice element
(Fig. 8c vs. 8a). Closer to the top interface, no mixing-
inducing folding is evident (Fig. 8b and d). We observe the
signature of the gutter flow near the interface in the top
plane and its higher velocity next to the inner surface
(Fig. 8e). By selecting the Z-component of velocity vectors,
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we can underscore that most out-of-plane velocities occur
primarily in the droplet endcaps (Fig. 8f). Taken together,
those findings support our hypothesis that the asymmetry
seen in the internal recirculation flow is due to an asym-
metry of the gutter flow and not a centrifugal effect.
Our droplet data showcase the strength of our method

by revealing several novel features of the topology of their
recirculation flow. Droplets flowing in a straight channel
develop small recirculation vortices at their corners. Also,
droplets in a semi-circular channel exhibit a centrifugal-
like effect despite flowing at a low Dean number. Our
high-resolution 3D flow map identifies the mixing pattern
induced by the channel curvature in three dimensions.
The folding pattern could not be observed with PIV
techniques that tend to average movement in XY and lack
high resolution in Z.

Discussion
Our results demonstrate that we can generate a 3D

map of experimental microflows at micron-scale reso-
lution using a brightfield microscope equipped with a
low numerical aperture objective, a simple set-up that
makes it easily accessible to the scientific community. It
delivers sub-micron precision and accuracy in three
dimensions. Additionally, our strategy provides a greater
temporal resolution than fluorescence28,29, phase con-
trast14, or pinhole-aperture30–32 approaches that limit
light collection. Data presented in this report were
recorded at up to 5 mm/s, in contrast to other methods
that perform both multi-frame particle tracking and
velocimetry at lower velocities32,33. Only an expensive
optical set-up can provide higher temporal resolution
with fluorescence microscopy17. Our approach also
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precisely locates channel walls and other stationary
features.
The accessibility of our method is furthered by the use

of the open-source tracking algorithm TrackMate, avail-
able as a standard Fiji plugin. Our data indicate that
TrackMate can provide sub-micron localization of seed
particles and efficiently link particle positions between
frames. However, the algorithm can be challenged by
foreign structures or overlapping particles and could
benefit from integrating more advanced detection and
anti-collision algorithms34–37.
Using a reference library to determine the Z-position of

seed particles is essentially an image classification pro-
blem. For that reason, we developed a deep learning
model and compared its performance to a cross-
correlation method. Overall, both classification methods
yielded similar performances and results when applied to

experimental data. Our work highlights that assessing and
correcting for labeling bias in the training set is critical
when using a deep learning model. The relative perfor-
mance of the deep learning model could be attributed to
the structure of the motifs to classify. The defocusing
patterns possess limited features and change very gradu-
ally between classes. At this point, it is unclear whether
deep learning will surpass cross-correlation methods in
classifying Z-positions for experimental data. Cross-
correlation methods are robust and do not require as
many reference images; however, the presence of foreign
objects in images challenge both methods. Critically, deep
learning models can use GPU scaling and are adapted to
process large amount of data at high-speed even after
taking into account the initial collection of images to
create the training library. The fact that recent plugins,
such as DeepImageJ38 (not used in this manuscript),
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enables the implementation of trained deep learning
models in ImageJ further underscore the modularity and
accessibility of our workflow. Deep learning could also be
used to generate artificial libraries to classify non-
symmetrical objects, such as mammalian cells whose
defocus patterns cannot be approximated using micro-
spheres like bacteria14. Conversely, ray tracing algorithms
can be used to generate libraries of non-symmetrical
objects39. Alternatively, cell images taken at a few discrete
Z levels can be interpolated to alleviate the labor-intensive
task of collecting enough library images18. Finally, it
remains to be seen how a library and a trained deep
learning model could be shared between laboratories.
We validate our method on two highly relevant

microfluidic examples. First, our data highlight the flow
structure induced by displacement structures and eluci-
date how it efficiently shifts large particles across
streamlines. Second, our high-resolution 3D flow maps of
microfluidic droplets reveal novel recirculation structures
and folding patterns that could not be previously observed
with typical flow mapping techniques like PIV. These
examples demonstrate the capabilities of our method to
generate true 3D flow maps at high spatial and temporal
resolution. Compared to PIV methods, our strategy maps
microflows in three-dimension and at high spatial and
temporal resolution. High depth-resolution in PIV
requires elaborate illumination schemes and expensive
high NA objectives. PIV also tends to spatially average
information as it cross-correlates textural information
created by seed particles between frames. In contrast, our
data reveal the power of observing individual pathlines to
uncover flow patterns. For instance, we observed crossing
streamlines in displacement structures and uncovered
critical details of the folding pattern of droplet internal
flow in curved channels. Revealing those novel patterns
hinges on the ability to track individual trajectories of seed
particles. Our method will support the design and
development of novel microfluidic structures to address
the growing demand for manipulating samples at the
microscale.

Materials and methods
For a complete description of the Materials and Meth-

ods, see Supplementary Information (SI) Materials and
Methods.

Experimental set-up
An inverted motorized microscope (Eclipse Ti-E,

Nikon, Tokyo, Japan) controlled by NIS Elements soft-
ware (Nikon), a 20x/0.45NA objective (Plan Fluor ELWD,
Nikon), a fiber-optic LED illuminator (SugarCUBE, Ushio,
Tokyo, Japan) and a high-speed camera with a
1920 × 1080 sensor array and a 0.32 µm × 0.32 µm pixel
size (Q-MIZE HD v2, AOS Technologies AG, Baden,

Switzerland) are used to capture videos. We perform
experiments with the aperture diaphragm open at 75%
and the field aperture fully open. The correction ring is
adjusted to 0.2 mm despite using 1mm thick glass slides
to induce asymmetry in the Point Spread Function and
eliminate ambiguity in the Z-position of particles about
the focal plane. One mL glass syringes (Gastight #1001,
Hamilton, Reno, NV, USA) actuated by a low-pulsation
syringe pump (NEMESYS 290 N, Cetoni GmbH, Kor-
bußen, Germany) are used to inject solutions into
microfluidic devices via a PEEK tubing (0.254 mm ID,
0.787 mm OD, Zeus, Orangeburg, SC, USA).

Microfluidic designs and microfabrication
Microfluidic circuits are designed with 2D CAD soft-

ware (AutoCAD, Autodesk, San Rafael, CA, USA) (SI
Appendix, File S1), and printed onto transparency masks
(CAD/ART Services, Bend, OR, USA). PDMS devices are
fabricated using soft lithography40. For a complete
description of the microfluidic designs and their micro-
fabrication, see SI Materials and Methods.

Seed particle solutions
3 µm polystyrene beads (#100223-10, Corpuscular, Cold

Spring, NY, USA), (25 mg/mL) are used for the experi-
ments. The particle solution is first diluted with water and
then mixed with glycerol in a 45/55 (% v/v) ratio to match
the refractive index of PDMS. The particle suspension is
vortexed for 30 seconds and sonicated for 30min to break
up particle aggregates. Addition of Tween-80 (Fisher
Scientific, Fair Lawn, NJ, USA) up to 0.8% (v/v) sub-
stantially reduces particle aggregation. The final suspen-
sion is vortexed for 30 seconds. For the droplet
experiments, the continuous phase is a 31.9/68.1 (% v/v)
mixture of perfluorohexyloctane (F6H8, Apollo Scientific,
Stockport, UK) in mineral oil (Sigma, St. Louis, MO,
USA), also to match the refractive index of PDMS. The
dispersed phase remains a solution of water in glycerol at
45/55 (% v/v) without Tween-80. For description of seed
particle selection and refractive index matching, see SI
Materials and Methods.

TrackMate
TrackMate21 involves two steps: (1) spots are detected

within frames at a sub-pixel resolution (Fig. 1a), and (2)
spots are linked across frames to create particle pathlines
(“tracks”). A Laplacian-of-Gaussian (LoG) filter is applied
by TrackMate to a movie frame-stack and spots are
detected as local maxima41. The generated tracks may
contain false positives (erroneous spots), false negatives
(missed spots), and/or linking errors (crossed tracks). The
TrackScheme tool is used to correct only false positives
and linking errors. The resulting dataset is referred to as
the Auto dataset. In droplet experiments, missed spots are
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more often located near the droplet interface. A “Cor-
rected” dataset is generated by manually placing spots in
the Auto dataset to recover missed spots (false negatives).
This adds a spot to a pathline but does not modify the raw
image of the bead located at that spot. For each track, a
time-stack is created by extracting 32 × 32 pixel images
centered on each spot of the trajectory. The Z-position of
each spot is then predicted by image classification against
the reference stacks via cross-correlation or the deep
learning model.

Generation of reference stacks
The same source images are used to create the cross-

correlation reference stack and the deep learning model’s
training set. They consist of 32 × 32 pixel particle images
that are extracted from video frames recorded at incre-
mental distances from the focal plane by moving the
objective during recording with the high-speed camera. A
script in NIS Elements (Nikon) is executed to move the
objective down to the lower limit of the Z-range and then
up to the upper limit in discrete increments equal to the
step size along the Z-axis. The step size is corrected for
the refractive index mismatch between the objective
immersion medium (air) and the working fluid42:

Objective Step Size ¼ Desired Z � step Size
nwf =nair

ð1Þ

The reference stack covers a 54 µm Z-range with a
0.5 µm step size (Nsteps = 110). We determined the focal
plane (Z = 0 µm) using the maximum Brenner gradient,
and the other Z-levels are labeled based on the number of
steps away from the focal plane. For a complete descrip-
tion of the generation of reference stacks, see SI Materials
and Methods.

Relabeling reference images
Labeling of reference images using the focal plane

assumes that the fields of view are perfectly horizontal.
This is not the case in practice, and particle images from
the same FOV may not represent the same Z-position,
especially for Z-steps as small as 0.5 μm and a large FOV.
We assess for slide tilt and re-label the reference images
to correct for this effect; for a complete description, see SI
Materials and Methods.

Cross-correlation algorithm
For a complete description of the cross-correlation

algorithm, see SI Materials and Methods.

Deep learning model
A deep learning model is trained on labeled particle

images to predict the Z-position. The prediction of the
Z-position is formulated as a regression analysis. In

contrast to a classification task that selects from discrete
classification labels, a regression task can produce con-
tinuous outcomes with enhanced interpretability. The
regression model is built on a Resnet-5043 convolutional
neural network architecture with a depth of 50 layers and
is pre-trained on the ImageNet44 dataset. Instead of
connecting the output of one convolution block to the
next block, Resnet-50 includes new skip connections that
connect the original input to the output of the current
block for improved performance. Such new skip con-
nections enable the free flow of gradients and thereby help
reduce the vanishing gradient problem43. Resnet-50 is
expanded into a model for regression analysis by adding a
flatten and regression head layer (Fig. S4). The machine
learning library Autokeras is used to train our deep
learning model45. All reference images are partitioned
into the training, validation, and testing sets with a ratio of
64:16:20.

Error calculations (accuracy σ and precision Eprec)
We calculate the accuracy metric of our technique, σ, as

the root mean square error (RMSE) between measured
values along the in-plane (X,Y) and out-of-plane (Z) axes
and the corresponding ground-truth values:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 apredicted � aground�truth

N

s

Where apredicted is the coordinate value predicted via
TrackMate (for in-plane X,Y predictions) or via either
cross-correlation or deep learning (for predictions along
the Z-axis), and N is the number of independent predic-
tions at a given ground-truth value.
We calculate the precision metric, Eprec, similarly but we

replace the known ground-truth value with a value pre-
dicted by a linear regression model for a given pathline.
Here, amodel = Z(X,Y) for out-of-plane precision or amodel

= Y(X,Z) for in-plane precision and L is the pathline
length (number of spots/frames):

Eprec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL

i¼1 apredicted � amodel

L

s

Filtering unphysical velocity vectors
Sharp jumps in Z-position resulting from gross errors

typically produce unphysically large velocity values.
Instantaneous velocity vectors whose magnitude is
beyond an unphysical limit (wmax) are filtered out.
Determination of wmax is described in the SI Materials
and Methods.
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3D Visualization with a web browser based graphic user
interface (GUI)
All data presented in this paper can be explored

with a web-based GUI at: https://www.stonybrook.edu/
commcms/defocusing_3D_mapping/index.html. For a
detailed description of this interface, see the SI Mate-
rials and Methods.

Single phase (displacement structures)
A particle suspension, diluted to 0.42 mg/ml of 45/55 (%

v/v) water in glycerol, is injected at 5 µl/hr into a micro-
fluidic channel with overhanging displacement structures.
The particles are focused against the structures using a
20 µl/hr co-flow of a bead-free solution of the same
composition. The illumination is adjusted to match the
mean grey value of the reference stacks and the objective
position so that particles flow both above and below the
focal plane. A single high-speed video is recorded at
1920 × 1080 resolution, with 8300 frames at 300 frames/
sec with a 150 µs exposure. For description of post-
processing and TrackMate results, see SI Materials and
Methods.

Internal droplet flow
The flow field is mapped inside microfluidic droplets

flowing in a straight channel and along a semi-circular
curve. A particle suspension, diluted to 1.04 mg/ml of 45/
55 (% v/v) water in glycerol, is used as the dispersed phase.
Flow rates of 10 µl/hr and 40 µl/hr are used for the dis-
persed and continuous phases, respectively. The illumi-
nation is adjusted to match the mean grey value of the
reference stacks and the objective position so that parti-
cles flow both above and below the focal plane. For the
straight channel experiments, two high-speed videos are
recorded at 1920 × 1080 resolution, each with 8,300
frames taken at 500 frames/sec with a 150 µs exposure.
The videos contain 54 and 34 drops, respectively. For the
curved channel experiment, a single 1920 × 1080 resolu-
tion video is recorded with 8300 frames taken at 300
frames/sec with a 150 µs exposure, capturing 98 droplets
in total, of which we post-processed only the first 40.
Droplets are sufficiently spaced such that only a single
droplet is captured within the FOV at any given time. For
description of post-processing and TrackMate results, see
SI Materials and Methods.

Coordinate transformations of droplet data
The challenge of transforming the TrackMate data to

the droplet’s internal reference frame is different for the
straight and curved channel cases. In the straight channel
case, stacks of images centered and cropped around every
droplet are compiled to subtract the droplet’s bulk motion
implicitly. In the curved channel case, transforming 2D
TrackMate data to the reference frame of the droplet

requires compensating for the angular displacement of
the droplet along the curve. That displacement is com-
puted by substracting the droplet arc displacement to the
individual bead displacement as a function of their radial
position. For complete descriptions of these coordinate
transformations, see SI Materials and Methods.

Dimensionless numbers
For the droplet experiments, the Reynolds number Re is

calculated as Re ¼ ρVdDh=μd where ρ;Vd;Dh; and μc are
the fluid density, droplet velocity, hydraulic diameter of
the channel cross-section, and dynamic viscosity of the
continuous phase respectively. Re = 0.013 and 0.022 for
the straight and curved channel cases respectively. The
relative magnitude of viscous, inertial, and buoyancy
forces are compared to the interfacial tension ϒ by cal-
culating the Capillary number (Ca ¼ μcVd=γ), Weber
number (We ¼ ρV 2

dDh=γ), and Bond number (Bo ¼
ΔρgD2

h=γ). Ca ¼ 6:9 ´ 10�4 and 1:2´ 10�3 and We ¼
9 ´ 10�6 and 2:4 ´ 10�5 for the straight and curved dro-
plet experiments respectively, and Bo ¼ 1:6 ´ 10�4 for
both cases. Thus, interfacial tension is expected to dom-
inate the droplet dynamics with minimal interfacial
deformation, and buoyancy and fluid inertial forces can be
neglected. For the curved channel experiment, the Dean
number κ ¼ ffiffiffiffiffiffiffiffiffiffiffi

w=2R
p

Re is calculated to be 0.011≪ 1,
where w is the channel width and R is the mean arc radius.
Below κ ~ 1, secondary Dean flow is not expected to be a
significant component of the continuous phase flow or the
internal droplet recirculation.
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