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Abstract
Cardiovascular disease is the number one cause of death in humans. Therefore, cardiotoxicity is one of the most
important adverse effects assessed by arrhythmia recognition in drug development. Recently, cell-based techniques
developed for arrhythmia recognition primarily employ linear methods such as time-domain analysis that detect and
compare individual waveforms and thus fall short in some applications that require automated and efficient
arrhythmia recognition from large datasets. We carried out the first report to develop a biosensing system that
integrated impedance measurement and multiparameter nonlinear dynamic algorithm (MNDA) analysis for drug-
induced arrhythmia recognition and classification. The biosensing system cultured cardiomyocytes as physiologically
relevant models, used interdigitated electrodes to detect the mechanical beating of the cardiomyocytes, and
employed MNDA analysis to recognize drug-induced arrhythmia from the cardiomyocyte beating recording. The best
performing MNDA parameter, approximate entropy, enabled the system to recognize the appearance of sertindole-
and norepinephrine-induced arrhythmia in the recording. The MNDA reconstruction in phase space enabled the
system to classify the different arrhythmias and quantify the severity of arrhythmia. This new biosensing system
utilizing MNDA provides a promising and alternative method for drug-induced arrhythmia recognition and
classification in cardiological and pharmaceutical applications.

Introduction
Cardiac arrhythmias consist of too fast, too slow, or

irregular heartbeats, which are termed tachycardia,
tachycardia and irregular pulsation, respectively1–3. Ser-
ious arrhythmias can lead to less effectiveness in heart
pumps and may result in loss of heart function in sudden
cardiac death (SCD), which can cause 17.9 million deaths

worldwide every year4,5. Drugs treating noncardiac diseases
can also cause cardiac arrhythmias in a number of clinical
situations6–8. Considering the high mortality of SCD, car-
diac arrhythmias caused by drugs have become one of the
most crucial adverse effects to be assessed in novel drug
development and postmarketing drug surveillance9–11.
Despite the adverse effect assessments, up to now, ~45% of
all drug withdrawals from the market are due to possible
cardiotoxicity that may cause arrhythmias12,13. Hence, it is
important to develop techniques to detect and analyze
drug-induced arrhythmias in drug development to prevent
drug-induced cardiac damage to human beings and avoid
economic losses from drug recalls.
To assess drug-induced arrhythmias, researchers have

developed several in vivo and in vitro techniques to record
cardiac electrophysiology, such as self-powered ultrasensitive
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pulse sensors14 and bioresorbable triboelectric sensors15.
Several in vivo techniques use animal models such as dogs,
monkeys, and mice to obtain electrocardiograms and mirror
drug-induced arrhythmias in clinical trials16,17. Although
these techniques could closely report correlations between
the drugs and arrhythmias, they are severely limited by the
low economic and time efficiency of animal experiments
required during large drug library screening. Moreover, step-
by-step animal operations, such as drug injection and 12-
lead electrocardiography, further increase the difficulty of
achieving high-throughput arrhythmia detection. To over-
come these limitations, cell-based electrophysiological
techniques such as patch clamps, microelectrode arrays
(MEAs), and interdigitated electrodes (IDEs) have emerged
to culture cardiomyocytes in vitro as physiologically relevant
models for arrhythmia detection18–20. Cell-based techniques
take advantage of the electrophysiological properties of
cardiomyocytes to capture drug-induced arrhythmias,
thereby minimizing animal sacrifice and enabling low-cost
electrophysiological recording in screening the arrhythmia
risk for large drug libraries. Typically, cell-based techniques
such as MEA and IDE can achieve simultaneous multi-
channel recording of membrane potential or mechanical
beating signals, which further facilitates low-cost and high-
throughput cardiac electrophysiological recording for drug-
induced arrhythmia detection. Cell-based techniques have
already been applied to investigate drug-induced arrhythmia
and approved as a sensitive, robust, and efficient platform for
testing drug effectiveness and for arrhythmia screening21,22.
The high efficiency of cell-based techniques such as the

MEA and IDE have endowed them with a great capacity
to predict arrhythmia risk by producing a large amount of
data about membrane potential and mechanical beat-
ing23–25. However, most data analysis methods usually
depend on conventional parameter extractions or naked
eye examinations, which are less efficient in analyzing
large datasets from MEA and IDE recordings24,26. Several
studies have reported on automated template matching to
improve the efficiency of arrhythmia recognition27,28.
Although matching comparisons can report the existence
of arrhythmias, they cannot provide the classification of
arrhythmias. Thus, the development of data analyzing
methods using cell-based techniques (e.g., MEA and IDE)
lags behind the development of cell-based technique
capacities that measure the data concerning membrane
potential and mechanical beating for arrhythmia recog-
nition. All these facts show that an analysis method for
the data recorded by cell-based techniques is the next key
point to fabricate more efficient biosensing systems for
drug-induced arrhythmia assessment.
Nonlinear dynamics analysis is a promising method for

information processing in numerous fields, including phy-
sics, engineering, biology, and medicine29–31. Most non-
linear approaches are based on the geometrical and

topological analysis of the trajectories and attractors in
phase space. Some commonly used nonlinear dynamics
signal analysis methods include reconstructed phase space
analysis, Lyapunov exponents, correlation dimension,
approximate entropy, and sample entropy32,33. Recently,
several new approaches via nonlinear dynamics analysis
have been reported to process electrocardiogram (ECG)
signals that present similar electrophysiological profiles with
cell-based cardiac electrophysiological recording34–36. For
example, nonlinear dynamics analysis has been employed to
classify five different arrhythmias based on ECG data37. The
nonlinear dynamics approaches can complement the tra-
ditional analysis that uses time- and frequency-domain
linear methods by monitoring the dynamic change of ECG
signals without individual waveform comparisons. However,
to the best of our knowledge, no previous study has
demonstrated applications of nonlinear dynamic analysis in
cell-based cardiac electrophysiological recording or further
drug-induced arrhythmia assessment of cell-based record-
ing. It remains unanswered whether nonlinear dynamics
analysis can work well on cell-based cardiac electro-
physiological recording, especially on cardiac mechanical
beating, whose profile differs from conventional cardiac
electrophysiological signals.
Here, we developed a biosensing system that integrated

the IDE impedance measurement and the multiparameter
nonlinear dynamic algorithm (MNDA) analysis for drug-
induced arrhythmia recognition and classification (Fig. 1).
The IDEs were applied to detect the mechanical beating of
human-induced pluripotent stem cell-derived cardiomyo-
cytes (iPSC-CMs). Sertindole- and norepinephrine-induced
arrhythmias were investigated due to their ability to cause
torsades de pointes arrhythmia and sustained increases in
human iPSC-CM beating frequency, respectively21,38,39. To
explore whether MNDA analysis works for arrhythmia
recognition, our work examined several nonlinear
dynamics methods to generate ten MNDA parameters,
including delay time, correlation dimension, embedding
dimension, box dimension, largest Lyapunov exponent
(LLE), Kolmogorov entropy, comentropy, approximate
entropy, spectral entropy, and CO complexity, as candi-
dates to analyze mechanical beating signals and recognize
drug-induced arrhythmia. An MNDA parameter among
the candidates, approximate entropy, showed a highly
sensitive response to the occurrence of the arrhythmia
induced by drug treatment. It was demonstrated that the
approximate entropy can work well as a main indicator of
MNDA analysis for both sertindole- and norepinephrine
(NE)-induced arrhythmia, although these two drugs
induced arrhythmia with different distorted profiles. To
classify the different drug-induced arrhythmias, we recon-
structed two-dimensional phase space to gain different
plots for different drug-induced arrhythmias and further
analyzed the plot with principal component analysis (PCA),
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which has enabled MNDA analysis to distinguish
arrhythmias and quantify the severity of variant arrhyth-
mias. To our knowledge, this is the first report to analyze
cardiomyocyte mechanical beating signals with nonlinear
techniques. This new biosensing system, by integrating the
IDE impedance measurement and the MNDA analysis, can
provide a promising and alternative method for the
recognition and classification of drug-induced arrhythmia
in cardiological and pharmaceutical applications.

Experiments and methods
IDE device fabrication
The IDE device was fabricated by conventional micro-

fabrication techniques, including photolithography,

deposition, and liftoff processes (Fig. 2a). A 2 × 8 IDE
array was fabricated on an 80 mm× 15mm borosilicate
glass slide to measure the mechanical beating of cardio-
myocytes. The fabrication process of the IDE device has
four steps. The first step was cleaning the glass slide: the
glass slide was washed with acetone, isopropanol, and
deionized water consecutively and dehydrated on a 200 °C
hotplate for 10 min. The second step was printing the
electrode pattern on the glass slide. Microposit photo-
resist (S1813, Rohm and Haas) was spin-coated on a glass
slide at a speed of 3000 rpm, prebaked for 60 s at 115 °C,
exposed to a 20mW/cm2 I-line for 2.5 s, and developed in
a Microposit developer (MF CD-26, Shipley) for 40 s.
Interdigitated electrode branches were patterned with a

Sertindole

Norepinephrine (NE)

Interdigitated electrodes

Nonlinear dynamic analysis

Biosensing Analyzing

Radar map PCA

Blocking

NE receptor
proteins

Stimulating
NE receptorhERG

Ca2+
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b

Fig. 1 Schematic of the biosensing system integrating IDE impedance measurement and MNDA analysis for drug-induced arrhythmia
recognition. a The drug-induced arrhythmia of cardiomyocytes. Sertindole blocks K+ channels on the cell membrane of cardiomyocytes, and
norepinephrine (NE) increases the beating rate of cardiomyocytes. They both change the electrophysiological profiles of cardiomyocytes. b The
biosensing system recognized arrhythmia from cardiomyocyte mechanical beating signals by MNDA analysis. The interdigitated electrodes collected
the cardiomyocyte mechanical beating signals by the impedance measurement technique. The cardiomyocyte beating signals showed significant
arrhythmias with the treatment of drugs including sertindole and norepinephrine. The MNDA analysis and PCA clustering recognized and
distinguished the arrhythmias from the cardiomyocyte beating signals
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90-µm-diameter circle-on-line and 120 μm center-to-
center space of the adjacent branches. The third step was
fabricating the conductive layer for the IDE device. A 10-
nm-thick Ti layer was sputtered onto the surface of the
pattern slide by a thermal evaporator (TE-3, Sharon), and
then a 100-nm-thick Au layer was coated. The Ti layer
can increase the adhesion between the Au layer and glass
slide. The fourth step was removing the conductive layer
from the electrode pattern. The glass slide was immersed
in acetone and then rinsed with isopropanol and deio-
nized water to remove the photoresist, and the 10 nm Ti
layer and 100 nm Au layer were placed on top of the
photoresist. An image of the interdigitated electrode
branches of our IDE device is shown in Fig. 2b.

Cardiomyocyte culture
The IDE device was sterilized in 70% ethanol (443611,

Sigma–Aldrich) and exposed to UV irradiation for 2 h in a
biosafety cabinet. The sterilized IDE device was incubated
with 10mg/ml fibronectin (10838039001, Sigma–Aldrich)
in Ca2+/Mg2+-free phosphate-buffered solution (PBS,
P3619, Sigma–Aldrich) at 37 °C with 5.0% CO2 for 2 h to
improve the biocompatibility of the device surface for cell
adhesion. Before cell culture, human-iPSC-CMs (iCell
cardiomyocytes 11713, Cellular Dynamic International)
were cryopreserved in a vial with liquid nitrogen before
cell culture. To thaw the cardiomyocytes, subpackaged
cryovials containing 1.5 × 106 cardiomyocytes were
immersed and shaken in a 37 °C water bath. The thawed
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Fig. 2 Design and implementation of the biosensing system combining IDE impedance measurements and MNDA analysis for drug-
induced arrhythmia recognition. a The fabrication procedures of IDEs for cardiomyocyte mechanical beating recording by the impedance
measurement technique. b Photo of the IDE devices and optical imaging of IDEs with a microscope. The red box shows the region of optical imaging
of IDEs. c Block diagram of the biosensing system for arrhythmia recognition. The DAC module generated specific frequency sinusoidal voltages for
the stimulation, and the ADC module received feedback signals for the calculation of the cardiomyocyte beating signals. Several algorithms,
including MNDA analysis and PCA clustering, further worked on cardiomyocyte beating signals to achieve arrhythmia recognition and classification
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cardiomyocytes were immediately diluted with 10mL of
prechilled medium (iCell Cardiomyocytes Media Kit,
Cellular Dynamic International) and moved to a 15 mL
centrifuge tube. The medium was centrifuged at 1000 rpm
to collect the thawed cardiomyocytes. The collected car-
diomyocytes were resuspended in 1mL of plating med-
ium and seeded in wells of the IDE device at a
concentration of 5 × 104 cells per well. After seeding, the
IDE device was fixed on the recording system and main-
tained in an incubator at 37 °C and 5% CO2. The culture
medium was refreshed every 48 h.

Detection principle of cardiomyocyte mechanical beating
An IDE-based impedance measurement was applied to

detect the mechanical beating of cardiomyocytes. The
detection mechanism was based on the variations in the
ion current between cardiomyocytes and electrodes dur-
ing cell attachment, spreading, and proliferation when
culturing the cardiomyocytes on the IDEs. Therefore, the
mechanical beating of cardiomyocytes can modulate the
ion current between cardiomyocytes and electrodes,
including weak impedance fluctuations of IDEs, due to
changes in cell morphology, cell–cell attachment, and
cell-substrate attachment. In the impedance measure-
ment, a low-amplitude sinusoidal signal was con-
ventionally applied on the IDE with a fixed working
frequency to generate an ion current between IDE pairs.
Feedback of the sinusoidal signal going through the IDEs
was detected to calculate the impedance between IDEs.
The measured impedance can rhythmically change with
the mechanical beating of cardiomyocytes due to rhyth-
mic changes in the ion current. Therefore, the measured
IDE impedance variation can represent the mechanical
beating of cardiomyocytes.

Impedance measurement of cardiomyocyte mechanical
beating
The multichannel cellular impedance measurement and

MNDA together achieved a biosensing system for drug-
induced arrhythmia recognition. The biosensing system
consisted of a hardware part about data acquisition
(DAQ) and a software part about data analysis (Fig. 2c).
For the data acquisition, the digital-to-analog converter
(DAC) module on the DAQ device generated a sinusoidal
signal with an amplitude of 30 mV and a frequency of
10 kHz, which was the input for the IDE device. To match
the electrical property of the IDE device, the sinusoidal
signal was processed through a signal attenuator and
voltage buffer modules before being input into the IDE
device. The output sinusoidal current of the IDE device
was converted and amplified into an output voltage signal
by a transimpedance amplifier. Then, the voltage signal
was preprocessed by a high-pass filter, and the impedance
was adjusted with a voltage follower and collected by an

analog-to-digital (ADC) module on a DAQ device. Digital
signal processing was employed to produce mechanical
beating signals of cardiomyocytes from the input and
output voltage signals with a customized MATLAB pro-
gram and LABVIEW program. The signal was further
denoised by 5-point smoothing filtering to reduce the
noise interference for MNDA analysis regarding drug-
induced arrhythmia recognition.

MNDA analysis of cardiomyocyte mechanical beating
Nonlinear dynamics is a great tool to analyze time-

domain signals. In this work, we studied whether MNDA
recognized arrhythmia from the recording of cardio-
myocyte mechanical beating by calculating ten nonlinear
dynamic indices, including delay time, correlation
dimension, embedding dimension, Kolmogorov entropy,
LLE, CO complexity, comentropy, approximate entropy,
spectral entropy, and box dimension. The calculation of
the MNDA analysis was performed by customized
MATLAB programs. The details of the formula of MNDA
parameters and the procedures of calculations are
described in the supplemental materials.

Drug assay
Drug assays were conducted after obtaining stable

recordings of cardiomyocyte mechanical beating. In this
study, the hERG K+ channel inhibitor sertindole (HY-
14543, MedchemExpress) at a concentration of 2.0 μM
was used to treat cardiomyocytes to induce irregular
pulsation, while the cardiac stimulant norepinephrine
(T7044, Topscience) at concentrations of 80 nM and
400 nM was used to treat cardiomyocytes to induce
tachycardia. Before being added to the culture medium,
these drugs were dissolved in dimethylsulfoxide (DMSO)
and PBS mixed solution and prewarmed in a 37 °C water
bath for 5 min.

Data analysis
Signal processing and principal component analysis

(PCA) were realized with a customized LabVIEW and
MATLAB program. All statistical analyses were per-
formed using GraphPad Prism 8.0 and OriginPro 2016.
All statistical results and error bars are presented as the
mean ± standard deviation (SD). Data were analyzed with
an unpaired Student’s t test, and differences between
groups were considered statistically significant when
P < 0.05.

Results and discussion
MNDA parameter calculation and evaluation
Our work cultured iCell cardiomyocytes on the IDE

device and used an impedance measurement system to
detect mechanical beating signals of cardiomyocytes. At
the beginning of the cardiomyocyte culture, the amplitude
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and pulse frequency for arrhythmia recognition of the
mechanical beating recording was not stable because the
impedance measurement was influenced by the pro-
liferation and growth of the cardiomyocyte. After 10 days
of culture, the cardiomyocytes stopped proliferating and
started beating rhythmically, which enabled mechanical
beating recording to show stable amplitude and pulse
frequency in most recording channels (Fig. 3a). The
recording of cardiomyocyte beating continued to main-
tain a similar amplitude and pulse frequency over the
following days in normal culture without drug treatment
(Fig. S1). Thus, the stable mechanical beating recording of
the cardiomyocyte culture from the 11th to 14th day was
used to explore whether MNDA analysis can provide
several parameters to represent the mechanical beating
property of cardiomyocytes for arrhythmia recognition in
the following work.
The expected MNDA parameters for arrhythmia

recognition should be stable from the 11th to 14th day, as
we assumed that the parameters were efficiently related to

the beating property of cardiomyocytes and were mini-
mally affected by imperceptible and random environ-
mental noise during the recording. Ten commonly used
MNDA parameters, including delay time, correlation
dimension, embedding dimension, box dimension, LLE,
Kolmogorov entropy, comentropy, approximate entropy,
spectral entropy, and CO complexity, were extracted from
the recording of cardiomyocyte beating and shown in
statistics over days (Fig. 3c–i). The statistics reported
mean values with standard deviations that suggested sta-
bility of MNDA parameters within one day and over
multiple days. The ratio between the standard deviation
and the mean value of the parameters on the same day
revealed the stability of parameters in different measure-
ments within one day. For the stability within one day,
both LLE and Kolmogorov entropy showed large fluc-
tuations, with the maximum standard deviation being ~14
times the mean value on the same day (0.00058 ± 0.00798
for LLE on the 11th day). The other eight parameters all
showed good stability in different measurements on the
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same day, and the measurement deviations were always
smaller than 10% of the mean value. On the other hand,
the mean value change of the MNDA parameters over
days suggested the stability of parameters over days. For
the stability over days, LLE showed poor stability again
and varied more than 10 times in the comparison between
parameters extracted from recordings on different days,
although no significant difference was observed between
different day recordings. The other nine parameters
showed good stabilities and varied <10% in the compar-
ison of different day recordings, while the Kolmogorov
entropy showed slight variances in different day record-
ings. Overall, LLE and Kolmogorov entropy were not the
appropriate indicators to represent the mechanical beat-
ing property of cardiomyocytes as a consequence of their
poor stability within one day and over days. The poor
performances of LLE and Kolmogorov entropy might be

caused by the short time periods (20 s) used in this work
since long-term data with several hours or days duration
were required by these two parameters. The other eight
parameters with good stability can be further screened to
find sensitive MNDA parameters for arrhythmia recog-
nition with the recoding of cardiomyocyte beating.

Sertindole-induced arrhythmia recognition by the
biosensing system using MNDA analysis
To explore the capacity of MNDA parameters to recog-

nize arrhythmia from cardiomyocyte beating recordings, we
employed an hERG K+ channel inhibitor named sertindole
to induce arrhythmia and recorded normal cardiomyocyte
beating and arrhythmia beating through impedance mea-
surements. Before sertindole treatment, the recordings of
cardiomyocyte beating showed normal profiles with stable
amplitude and frequency in the control group (Fig. 4a).
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arrhythmias were both induced by the 0.2 μM sertindole treatment. d–k Statistical comparisons of the MNDA parameters among the control group,
the two-peak arrhythmia group, and the three-peak arrhythmia group. The MNDA parameters include d delay time, e correlation dimension,
f embedding dimension, g box dimension, h comentropy, i approximate entropy, j spectral entropy, and k CO complexity. Error bars are S.D. and
significant differences were performed by t-test, n= 10 recordings for each group, *p < 0.05, **p < 0.01, ***p < 0.001, n.s. not significant. l The radar
map of delay time, correlation dimension, embedding dimension, box dimension, comentropy, approximate entropy, spectral entropy, and CO
complexity for the control group, the two-peak arrhythmia group, and the three-peak arrhythmia group. The approximate entropy was the most
sensitive to the occurrence of arrhythmia
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After 2 μM sertindole treatment, the recording of cardio-
myocyte beating showed two or three abnormal peak pro-
files in one beating and had a longer duration of a single
beating from ~2 s to ~3 s (Fig. 4b, c). The recording of
cardiomyocyte beating with sertindole treatment provided
an arrhythmia sample with multiple distorted peak profiles
for MNDA analysis.
To study the sensitivity of the MNDA parameters for

sertindole-induced arrhythmia recognition, we selected
eight MNDA parameters, including delay time, correla-
tion dimension, embedding dimension, box dimension,
comentropy, approximate entropy, spectral entropy, and
CO complexity, and extracted these parameters from the
cardiomyocyte beating recordings of the control group,
two-peak arrhythmia group and three-peak arrhythmia
group (Fig. 4d–k). Based on their sensitivity, we classified
the MNDA parameters into three categories. The first
category included box dimension and comentropy, which
showed no significant differences between the control
group and one of the multipeak arrhythmia groups. They
were not sensitive to the occurrence of arrhythmia and
could not serve as indicators for arrhythmia recognition.
The second category included delay time, which showed
slight differences between the control group and the
multipeak arrhythmia groups. There was no obvious
increase when the arrhythmia changed from two peaks to
three peaks. This implied that the delay time had low
sensitivity to the occurrence of arrhythmia with multiple
distorted peak profiles and could not recognize the
severity of the arrhythmia, considering that the
arrhythmia of the three-peak group was more serious
than that of the two-peak group. The third category
included correlation dimension, embedding dimension,
approximate entropy, spectral entropy, and CO com-
plexity, which showed significant differences between the
control group and the multipeak arrhythmia groups and
revealed more than 10% increments when the arrhythmia
changed from two peaks to three peaks. This demon-
strated that the five parameters were highly sensitive to
the occurrence of arrhythmia with multiple distorted
peak profiles and were also sensitive enough to recognize
the severity of the arrhythmia. Among the five para-
meters, the approximate entropy showed the largest
increment when the arrhythmia changed from the two-
peak group to the three-peak group, making it the best
candidate to indicate the severity of the arrhythmia
(Fig. 4i). A radar map collected the responses of eight
MNDA parameters together and showed that the
approximate entropy was the most sensitive parameter to
indicate the occurrence of the arrhythmia (Fig. 4l).
Therefore, approximate entropy enabled the MNDA
analysis to recognize the arrhythmia with distorted peaks
and evaluate the severity of the arrhythmia through
cardiomyocyte beating recording.

NE-induced arrhythmia recognition using MNDA analysis
In addition to the arrhythmia with distorted multi-

peak profiles, some arrhythmias showed abnormal
beating rates in the mechanical beating recording of
cardiomyocytes after drug treatment. To further test
the performance of MNDA analysis in recognizing
these arrhythmias with abnormal beating rates, the
current study employed a hormone signaling substance
named NE at concentrations of 80 nM and 400 nM to
induce the arrhythmia. Before NE treatment, the
recording of cardiomyocyte beating showed a normal
beating rate of ~0.6 s−1, which was similar to that of the
control group (Fig. 5a). After 80 nM NE treatment, the
recording of cardiomyocyte beating showed a quicker
beating rate of ~0.8 s−1, which was 30% faster than that
of the control group (Fig. 5b). Increasing the NE con-
centration of the treatment made the beating rate much
faster in the cardiomyocyte beating recording. The
beating rate reached ~1.1 s−1 with NE treatment at
400 nM. The beating rate of the 400 nM NE-treated
group was more than 100% faster than that of the
control group (Fig. 5c). Both the 80 nM and 400 nM
NE-treated groups did not show significant multipeak
distortions in the individual beating of the recording.
The recording of cardiomyocyte beating with NE
treatment provided an arrhythmia sample whose beat-
ing rate was faster than normal and whose peak was not
distorted on profiles for MNDA analysis.
To study the sensitivity of the MNDA parameters for

NE-induced arrhythmia recognition, we obtained eight
MNDA parameters from the cardiomyocyte beating
recordings of the control group, 80 nM NE-treated
group, and 400 nM NE-treated group (Fig. 5d–k). Based
on their sensitivities, the MNDA parameters can also be
classified into three categories. The first category con-
sisted of embedding dimension, CO complexity, and
spectral entropy, which showed no significant differences
between the control group and one of the NE-treated
groups. These three MNDA parameters of the first
category were nonsensitive to the occurrence of the
arrhythmia and cannot be taken as the indicators for NE-
treated arrhythmia recognition. The second category
contained box dimension and comentropy, which showed
significant differences between the control group and two
NE-treated groups, although there was little difference
between the 80 nM NE-treated group and 400 nM NE-
treated group. It is implied that these two parameters of
the second category had low sensitivity to beating rate
change of arrhythmia and did not have sufficient sensi-
tivity to recognize the arrhythmia included by NE at
different concentrations. The third category included
delay time, correlation dimension, and approximate
entropy, which showed significant differences between
the control group and the two NE-treated groups.
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These parameters were significantly different between the
80 nM NE-treated group and the 400 nM NE-treated
group. The approximate entropy showed the largest
increment when the NE concentration of the treatment
changed from 80 nM to 400 nM and the beating rate of
the recording changed from 0.8 s−1 to 1.1 s−1. This result
suggested that the approximate entropy maintained a
strong positive correlation with the beating rate that
indicated the severity of the arrhythmia (Fig. 5i). A radar
map collected responses of the eight MNDA parameters
to the NE-induced arrhythmia together and showed that
the approximate entropy was the most sensitive para-
meter to describe the occurrence and severity of the
arrhythmia. This was the same as the statistical results.
Thus, the approximate entropy allowed the MNDA
analysis to recognize the arrhythmia with an abnormal
quick beating rate from the mechanical beating recording
of cardiomyocytes.

Arrhythmia classification by the biosensing system using
MNDA analysis
After demonstrating the validity of the approximate

entropy of MNDA analysis in recognizing the occurrence
of arrhythmia, we further explored whether MNDA ana-
lysis can distinguish different arrhythmias and classified
the different arrhythmias into several groups. Two-
dimensional phase space reconstruction was applied to
analyze the arrhythmia induced by various drugs at dif-
ferent concentrations. The reconstruction converted car-
diomyocyte beating signals in the time domain into phase
space graphs in the two-dimensional space domain by
setting x(n) serial as the x-coordinate and x(n+ τ) serial as
the y-coordinate when τ was the delay time from auto-
correlating calculation (Fig. 6a, see Methods). For
sertindole-induced arrhythmia with distorted peak pro-
files, the phase space graphs showed different plotting for
the control group, the two-peak group, and the three-peak
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group. There were two and three circles in the graph of
the two-peak group and three-peak group, respectively;
however, there was only a single circle in the graph of the
control group (Fig. 6a–c). The number and size of the
circles in the graph were strongly associated with the
number and the size of the peak in one beating, suggesting
that the phase space reconstruction has well-represented
arrhythmia information in the two-dimensional space
plotting. The imaging process can further extract length,
width, and area information from the graphs to compare
the control group and arrhythmia groups. There were
significant differences between the control group and the
arrhythmia groups in all three statistics in length, width,
and area information, although there was little difference
between the two arrhythmia groups. The results sug-
gested that the two-dimensional phase space reconstruc-
tion allowed MNDA analysis to graphically recognize the
occurrence of the sertindole-induced arrhythmia with
distorted peaks, while the reconstruction graph could not
quantify and classify different degrees of the arrhythmias.
We also used two-dimensional phase space recon-

struction to analyze NE-included arrhythmias that had
undistorted peaks and faster beating rates than normal
samples (Fig. 6g–i). There was only one circle in all phase
space graphs of the control group, 80 nM NE-treated
group, and 400 nM NE-treated group because the
recording of all groups showed only one peak in one
beating. The results were consistent with those of the
sertindole-induced arrhythmia analysis. The graphical
analysis showed that the area of the circles in the graph
was strongly related to the beating rate of the arrhythmia.
Hence, we further extracted length, width, and area
information from the graphs to perform comparisons
between the control group and the NE-induced arrhyth-
mia groups. The comparison indicated that there were
significant differences between the control group and the
arrhythmia group in all three statistics regarding the
length, width, and area information (Fig. 6j–l). However,
the differences between the two NE-induced arrhythmias

were not easy to distinguish, similar to the graphical
analysis of the sertindole-induced arrhythmia. The results
suggested that the MNDA analysis using phase space
reconstruction recognized the occurrence of NE-induced
arrhythmia with a fast-beating rate and partly classified
the severity of the arrhythmia.
To classify different arrhythmias well, we plotted all the

two-dimensional phase space reconstructed curves of the
control groups, the sertindole-induced arrhythmia group,
and the NE-induced arrhythmia group in one graph
(Fig. 6m). In the graph, the curves of the arrhythmia
groups always showed smaller areas than those of the
control group and showed high diversity in shape details
across group members. To quantify the difference, we
employed principal component analysis (PCA) to reduce
the dimensionality of the curves and minimize the infor-
mation loss of the curves for the arrhythmia classification.
The PCA created two new uncorrelated variables, PC1
and PC2, which can successfully classify the control group
and four arrhythmia groups into five major clusters
(Fig. 6n). Distances between the clusters of the control
group and the four arrhythmia groups showed a strong
linear relationship with the severity of the arrhythmias
(Figs. 6n and S2). For sertindole-induced arrhythmia, the
distance between the control group and the three-peak
group was ~2.5 times the distance between the control
group and the three-peak group. For NE-induced
arrhythmia, the distance between the control group and
400 nM NE-treated group was approximately twice the
distance between the control group and 80 nM NE-
treated group. All the results obviously suggested that the
PCA for the two-dimensional phase space plotting of
MNDA analysis can recognize different arrhythmias and
semiquantify the severity of the arrhythmias.

Discussion
Our work showed a biosensing system that combined

MNDA analysis and the IDE technique to recognize drug-
induced arrhythmias from the cardiomyocyte beating

(see figure on previous page)
Fig. 6 Arrhythmia classification by the biosensing system with MNDA analysis. a–c Two-dimensional phase space reconstruction of a the control
group, b the two-peak arrhythmia group, and c the three-peak arrhythmia group. The two-peak and three-peak arrhythmias were both induced by the
0.2 μM sertindole treatment. d–f Statistical comparisons of the shape features of the reconstructed plotting among the control group, the two-peak
arrhythmia group, and the three-peak arrhythmia group. The shape features include d length, e width, and f area of the reconstructed plot. g–i Two-
dimensional phase space reconstruction of g the control group, h the 80 nM NE-treated arrhythmia group, and i the 400 nM NE-treated arrhythmia group.
j–l Statistical comparisons of the shape features of the reconstructed plot among the control group, the 80 nM NE-treated arrhythmia group, and the
400 nM NE-treated arrhythmia group. The shape features include j length, k width, and l area of the reconstructed plot. n Two-dimensional phase space
reconstructions of all types of cardiomyocyte beating recordings, including the control group (green), the two-peak arrhythmia group (red), the three-peak
arrhythmia group (blue), the 80 nM NE-treated arrhythmia group (orange), and the 400 nM NE-treated arrhythmia group (purple), in one graph. The two-
peak and three-peak arrhythmias were both induced by the 0.2 μM sertindole treatment. m The PCA clustering of the MNDA reconstructed plots of the
control group, the two-peak arrhythmia group, the three-peak arrhythmia group, the 80 nM NE-treated arrhythmia group, and the 400 nM NE-treated
arrhythmia group. Error bars are S.D. and significant differences were performed by t test, n= 10 recordings for each group, *p < 0.05, **p < 0.01, ***p <
0.001, n.s. not significant

Wang et al. Microsystems & Nanoengineering            (2022) 8:49 Page 11 of 14



signals. This is the first report to apply nonlinear dynamics
analysis to identify drug-induced arrhythmias based on
cardiomyocyte mechanical beating signals. The IDE
impedance measurement provided a multichannel
recording of the mechanical beating of cardiomyocytes.
After testing ten commonly used MNDA parameters, our
work screened out an arrhythmia-sensitive MNDA para-
meter, approximate entropy, which can efficiently analyze
the recording and reliably indicate the occurrence of drug-
induced arrhythmia. In the test, the two drugs, sertindole,
and NE, induced two types of arrhythmias that possessed
distorted peak profiles and abnormally fast-beating rates,
respectively. We found that the correlation dimension and
approximate entropy were the only two MNDA para-
meters that were sensitive to both the distorted peak
profiles and the abnormally fast-beating rates of the
arrhythmias. Among the two parameters, the approximate
entropy showed a large increment with the severity of the
arrhythmias, providing a quantitative parameter to indi-
cate the severity of the arrhythmias. Compared to the
previously reported automated template matching28, the
quantification using the approximate entropy avoided the
comparison between the recording and the control tem-
plate through the one-by-one matching of the beating
waveform. This usage of the MNDA parameter to analyze
the recording of cardiomyocyte beating further simplified
the steps of recognizing drug-induced arrhythmias and
improved the efficiency of recognition over large datasets.
This biosensing system also identified the difference
between 80 nM norepinephrine and the control with sig-
nificance p < 0.001 using the parameter approximate
entropy. This result demonstrated the sensitivity of our
biosensing system to low drug concentrations.
Our work demonstrated the application of MNDA

analysis in distinguishing different arrhythmias with sev-
eral drug treatments. The MNDA parameter, approx-
imate entropy, can recognize drug-induced arrhythmias
but fails to distinguish arrhythmias induced by different
drug treatments. This limitation on arrhythmia distin-
guishing also existed in a previously reported method
using automated template matching to recognize
arrhythmias28,40. To overcome this limitation, our work
employed two-dimensional phase space reconstruction in
MNDA analysis for drug-induced arrhythmia classifica-
tion based on cardiomyocyte beating recording. The
reconstruction converted the long time-series recording
into the graphical plotting in the limited spatial space. The
graphical plotting provided significant differences to dis-
tinguish the arrhythmias induced by different drugs or by
the same drugs at different concentrations. Combined
with PCA, the plotting classified the arrhythmias into
several major clusters in a two-dimensional space and
thus successfully distinguished the arrhythmias that were
induced by different drugs. Furthermore, the arrhythmia

classification clearly grouped the clusters of the arrhyth-
mias induced by the same drug. The distances between
the same drug-induced arrhythmia clusters and the con-
trol cluster increased with the severity of the arrhythmia
and therefore can quantify the severity of the arrhythmia,
which is crucial to drug development. Another limitation
of our work is that only two drugs, sertindole, and nor-
epinephrine, were studied. However, the arrhythmia-like
traces induced by these drugs covered most of the
representative traces, including the two-peak trace, mul-
tipeak trace, and accelerated trace presented by Blinova
et al.41, which used 28 drugs with a range of proar-
rhythmic capacities. To improve the capacity of the bio-
sensing system in identifying different drug-induced
arrhythmias, artificial intelligence-based methods will be
combined with the MNDA. More drugs will be intro-
duced to test the capacity of this improved biosensing
system. Overall, the application of MNDA in analyzing
cardiomyocyte beating recordings provides a promising
way to distinguish different arrhythmias and quantify the
severity of arrhythmias.
Apart from cardiomyocyte beating recording, our work

can also influence the analysis of other electrophysical and
electrophysiological recordings. The MNDA can poten-
tially be applied in other biosensing systems to recognize
cardiac diseases42–45. Of the MNDA parameters, approx-
imate entropy can precisely recognize the occurrence of
drug-induced arrhythmia, and the MNDA phase space
reconstruction can reliably distinguish drug-induced
arrhythmias. The MNDA reconstruction can also quan-
tify the severity of drug-induced arrhythmias, which is
useful for drug development. MNDA analysis can also
benefit the signal processing of other physiological
recordings (e.g., calcium transients of neurons and action
potentials of cardiomyocytes) that have been led by the
one-by-one matching of individual waveforms in screen
distorted profiles46–48. Therefore, the application of
MNDA analysis in signal processing is likely to improve
the data analysis efficiency and thereby boost our under-
standing of the recording. This MNDA-based biosensing
system also showed advantages compared to other cell-
based methods that analyze arrhythmias (Table S1). Our
work provides a new and promising approach to analyze
physiological recordings, especially cardiac‐related signals.

Conclusion
In summary, we reported a biosensing system utilizing

MNDA analysis to recognize and classify drug-induced
arrhythmias from cardiomyocyte beating signals recorded
by IDE impedance measurements. This biosensing system
can successfully recognize the data features of arrhyth-
mias via the screened MNDA parameter of approximate
entropy, distinguish different arrhythmias by two-
dimensional phase space reconstruction in MNDA
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analysis, and quantify the severity of arrhythmias by
combining MNDA reconstruction and PCA clustering.
This new biosensing system is a promising tool for
recognizing and classifying drug-induced arrhythmias in
cardiological and pharmaceutical applications.
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