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Abstract
Customizable, portable, battery-operated, wireless platforms for interfacing high-sensitivity nanoscale sensors are a
means to improve spatiotemporal measurement coverage of physical parameters. Such a platform can enable the
expansion of IoT for environmental and lifestyle applications. Here we report a platform capable of acquiring currents
ranging from 1.5 nA to 7.2 µA full-scale with 20-bit resolution and variable sampling rates of up to 3.125 kSPS. In
addition, it features a bipolar voltage programmable in the range of −10 V to +5 V with a 3.65 mV resolution. A Finite
State Machine steers the system by executing a set of embedded functions. The FSM allows for dynamic, customized
adjustments of the nanosensor bias, including elevated bias schemes for self-heating, measurement range, bandwidth,
sampling rate, and measurement time intervals. Furthermore, it enables data logging on external memory (SD card)
and data transmission over a Bluetooth low energy connection. The average power consumption of the platform is
64.5 mW for a measurement protocol of three samples per second, including a BLE advertisement of a 0 dBm
transmission power. A state-of-the-art (SoA) application of the platform performance using a CNT nanosensor, exposed
to NO2 gas concentrations from 200 ppb down to 1 ppb, has been demonstrated. Although sensor signals are
measured for NO2 concentrations of 1 ppb, the 3σ limit of detection (LOD) of 23 ppb is determined (1σ: 7 ppb) in slope
detection mode, including the sensor signal variations in repeated measurements. The platform’s wide current range
and high versatility make it suitable for signal acquisition from resistive nanosensors such as silicon nanowires, carbon
nanotubes, graphene, and other 2D materials. Along with its overall low power consumption, the proposed platform is
highly suitable for various sensing applications within the context of IoT.

Introduction
Recent studies have shown that poor air quality is a

significant cause of premature death. WHO estimates
worldwide casualties of seven million per year1. Conven-
tional air pollution monitoring solutions are based on gas
chromatography, which leads to relatively large, heavy,
and expensive equipment. In addition, such equipment is
stationary; requires high installation cost and strict
maintenance routines. This has led to increased demand
for portable, low-power consuming, customizable gas
sensing platforms2.
Air quality monitoring systems are used in heating,

ventilation, air conditioning systems, air purifiers, and IoT
applications. Various IoT applications were developed

during the last decade for sensing physical events and
transmitting sensor data via wireless communications2,3.
For example, modern, portable, IoT compatible solu-
tions4–6 have enabled air pollution monitoring on a larger
scale with the potential for very high spatiotemporal
coverage at only a fraction of the cost7. Such sensor
technology facilitates expanded use by communities,
enabling new applications and increasing data volume and
access8. To compare the results with other available
sensors for ambient gas monitoring9, we will refer to the
regulatory requirements and exposure limits for NO2.
According to the EU ambient air quality limit values set
by directive 2008/50/EC for the protection of human
health10, the maximum admissible NO2 hourly limit value
for urban areas is set to 140 μg/m3 (corresponding to
around 72 ppb) (Assuming an ambient pressure of 1 atm.,
µg/m3= (ppb) ·(12.187) ·(M)/(273.15+ °C) where M= 46
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g/mol represents the molecular weight of NO2.), whereas
on a yearly average, the NO2 level shall not exceed 40 µg/
m3 (corresponding to around 21 ppb). An example of field
NO2 daily average result in Europe is presented in Fig. S1.
The United States Environmental Protection Agency
(EPA), sets the hourly limit standard to 100 ppb and the
annual average to 53 ppb. Recently, a large number of
commercial sensors11–13 can accommodate measurement
intervals recommended by the EU, e.g., MAK14 con-
centration range for NO, NH3, CO, CO2, NO2, or O3. A
comprehensive review of available sensors for ambient gas
monitoring can be found in9. Energy efficiency, size, and
weight are among the most critical design parameters of
an embedded sensor platform with System-on-Chip
integration15. The commercial sensing solution pre-
sented in11 proposes a similar portable system on a PCB
(60 mm× 75mm) (see Table 1). It is based on commercial
off-the-shelf sensors offering multiple gas (O3, NO2, CO,
NH3, VOC, H2S, SO2, and CH4) sensing capabilities.
Despite the broad range of gases, it requires voltages
above 11 up to 24 V with a total power consumption of
2.5–6W. The configurability of the system is performed
using hardware switches. The output resolution is limited
to 8 bits without local storage capabilities or wireless data
transfer. Another sensing solution is presented in ref. 12,
offering a compact CO2 module (30 mm× 15.6 mm ×
8.6 mm) for indoor air quality monitoring. It is a single gas
sensor operated at 5 V, drawing 20mA up to 200 mA of
current. The signal is updated every 5 s and it features a
proprietary self-calibration algorithm. However, this sys-
tem is not reprogrammable and does not offer an
embedded wireless transmission. For data transfer, an I2C
standard interface is available. More recent work is pre-
sented in13 and proposes a personal wearable multi-
pollutant monitoring platform based on commercial off-
the-shelf gas sensors. This solution tackles the challenge
of low-cost MOX sensor calibration with the help of
neural networks for updating the parameters with mini-
mal user intervention. The system integrates two sensors
for O3 and CO2, drawing 50mA when both sensors are
operated. The system demonstrates accurate measure-
ment results in the presence of human interferences.
Another work4 proposes a similar monitoring system for
CO, SO2, and NO2 temperature and pressure based on
commercial sensors. The system offers 16 bits of resolu-
tion and reprogrammable software with the help of a µC.
It is powered by a 3.7 V Li-Poly battery cell, consuming an
average power of 150 mW including the BLE connection.
The capability of reprogramming the platform is however
not explored. Although it relies on embedded software, it
does not use the full capabilities of building custom
readout functions or involving sensor signal calibration
procedures. All of the aforementioned solutions are using
non-SMD or bulky electrochemical sensing elements.

Nanomaterials16 such as nanowires17,18, graphene19–21,
modified graphene22,23, graphene composite24,25, carbon
nanotubes (CNTs)26–28, and metal oxide (MOx) nano-
composite structures29–31 have been the subject of
extensive research for sensing applications32 due to their
low dimension and high surface-to-volume ratio. A
complete H2S sensing system based on SnO2 nanowires
and dedicated front-end electronics, data post-processing,
and storage33. A NO2 gas sensor based on SWCNTs as a
MEMS structure has been demonstrated in ref. 34 with a
detection trace level from 1 to 5 ppm. Although the
sensor resistance exhibits linearity on exposure to NO2

gas concentrations from 1 ppm to 5 ppm, the detection
range is higher than the EU limit of 21 parts per billion
(ppb) with an averaging period of 1 year10. Numerous
technological challenges of nanomaterial transducers,
such as device variation35 and ON current decrease over
time as reported in ref. 36, remain unknown.
This work proposes a versatile embedded system that

facilitates interfacing of such nanosensors using software
configurable front-end readout electronics. The system
demonstrates an SoA interface to ultra-sensitive CNT
nanosensors for gas sensing applications, operable within
the MAK limits required by the EU standards.

Embedded hardware
At the core of the platform design, the ATmega2560

microcontroller (µC) is used, which features flexible
timer/counters for external interruptions, a serial per-
ipheral interface (SPI) including a serial port, and
software-predefined power-saving modes. The µC offers
short start-up times and low power consumption (~3 mW
at 1MHz in Active Mode)37. The data management is
ensured by a local SD card storage connected via the SPI
interface. An additional transmission (TX) module was
chosen to support the wireless transmission. Most IoT
solutions are based on Wi-Fi communication featuring
different data protocols38, with a few hundred meters of
link budget, 16 Mbps TX rate but relatively high current
consumption of ~300mA39. Alternatively, the long-range
modem (LoRa) provides a few kbps data rate with three-
kilometer link budgets for current consumption of
~120mA40. However, Bluetooth low energy (BLE) offers
the best compromise between a data rate of ~Mbps and
low current consumption of ~10mA41. Due to the high
presence of BLE mobile devices in urban areas, this
solution was preferred as the wireless form of engagement
with the platform. A simplified schematic of the proposed
embedded system is shown in Fig. 1a.
This platform uses a current-mode readout, a widely

used technique for acquiring signals from resistive nano-
sensors, fabricated using silicon nanowires42 and CNTs43.
Depending on the sensor and its application, the readout
interface must be compatible with current values ranging
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from pA to µA. For instance, the CNT has a typical
resistance of ~100 kΩ to 20MΩ

44,45, resulting in a current
from 1 µA to 5 nA (bias= 100mV). For this purpose, the
embedded platform features integrated circuits capable of
acquiring such low currents by a current to digital con-
verter (CDC) and applying a potential bias with the help of
a Digital to Analog Converter (DAC) to nanosensors.

Sensor bias block (SBB)
An adjustable, reprogrammable bias is highly desirable

during nanosensor operation. As illustrated in Fig. 1b, the
potential bias of the sensor is software-defined and con-
verted by a 12-bit DAC MCP492246, offering 1.25 mV
resolution on each channel. The software-based solution
allows for easy adjustment of measurement conditions
and parameters, such as sensitivity or current base-
line47,48, which can be dynamically tuned over time, and
extendable towards advanced, automated calibration
procedures if desired. For a single 5 V battery-operated

platform, an additional negative voltage is locally gener-
ated and doubled by using two charge pumps MAX66049

connected in cascade, as presented in the bottom part of
Fig. 1b. The latter allows the potential bias to be pro-
grammed in the [−10 V… + 5 V] range with a 3.65 mV
resolution. In Supplementary Section 1, Eq. (1), the
derivation is provided.

Sensor signal acquisition (SSA)
A multichannel CDC is desirable for acquiring and

digitizing the nanosensor currents. Figure 1c shows the
detailed schematic of DDC11450 time-interleaved inte-
grators in “Convert Configuration” and “Integrate Con-
figuration” with the timing diagram. The front-end
integrators are followed by dedicated ADCs (16 or 20-bit
configurable resolution) connected to the serial output
interface. This solution offers true integration with a
variable sampling rate and a Full Scale (FS) range pro-
grammable by two parameters: Tconv and Crange, the
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integration time, and integrator capacitance. The timing
of the CDC is critical for accurate operation, thereby
influencing the high precision results. For this purpose, an
external interruption timer integrated into the µC ensures
accurate clocking of the CDC integrators. A variable
sampling rate ranging from [0.001…3.125] kSPS has been
achieved by programming the Tconv period in the [2000…
0.64] ms range interval.
The Crange is set by a combination of three dedicated

digital signals, which select one out of eight possible
values formed by the CDC integrated capacitor bank of [3,
12.5, 25, 50] pF50. The resulting CDC FS output equation
is presented in Supplementary Section 1, Eq. (2). Those
two CDC parameters allow the system to dynamically
configure its FS current range from 1.5 nA to 7.2 µA. In
addition, this solution allows daisy chain connection
possibilities, thereby facilitating the data shift through
multiple devices. Consequently, the control signals are
shared to maintain minimal digital control overhead50.
An event-triggered finite state machine (FSM) operating

on the µC has been realized for sensing routine automa-
tion. Each of the states and transitions presented in Fig. 2a
is defined to perform a single discrete action, such as
programming the bias voltage amplitude and duration,
controlling the CDC configuration, storing measurements
on the SD card, or transmitting the data via BLE. The
state transitions of the FSM can be reconfigured with the
help of a comma-separated file (CSV) stored on the SD
card. The CSV file contains a customizable potential bias
scheme that operates the nanosensors for a predefined
time interval. The resulting current measurements are
stored in a separate CSV file on the SD card. An overview
of the configuration file system is shown in Fig. 2b.

Results
Wireless platform characterization
The platform was designed to accommodate a sealed

test chamber with a gas inlet and outlet on the PCB (see
Fig. 3a). This allows for a controlled gas exposure of
nanosensors under lab conditions. A smartphone paired
with the platform via BLE shows tests current signals as
illustrated in Fig. 3b. The SSA and the SBB are among
the most critical parts of the signal acquisition path.
The platform’s FS represents the maximum input cur-
rent value (common for all channels, IN1 to IN4) of the
SSA and is determined by the CDC’s two Tconv and
Crange programmable parameters. The FS range is pre-
sented in Fig. 3c by the corresponding level contours.
The platform’s bandwidth (BW) is given by the front-
end integrators of the CDC50. They operate as classical
continuous-time integrators wherein the feedback
capacitor Crange accumulates charge for a predefined
integration time Tconv. Their derived transfer function
can be found in Supplementary Section 1, Eq. (3). To
fine-tune the SSA frequency response, one can set a
Tconv parameter as shown in Fig. 3d. Various features of
the platform, such as the noise, parasitic capacitances,
and leakage currents originating from the PCB tracks,
socket, and ceramic package, have been evaluated. With
the four channels in an “open” state, Fig. 3e shows the
input-referred current RMSnoise together with the cur-
rent offset. A test bias file has been used for char-
acterizing the SBB, as illustrated in Fig. 3f, where the
five Vbias programmed in a staircase voltage step are
shown. The values and the shape are adjustable with a
predefined time step using the Stimuli.CSV stored on
the SD card.
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NO2 sensing using a CNT nanosensor
For the SoA demonstration of the sensing platform, we

refer to a CNT device (transfer and output characteristics
presented in Supplementary Fig. S2) as a resistive

nanosensor, exposed to NO2 gas. The suspended archi-
tecture and the residue-free fabrication process flow of
the CNT device are detailed in ref. 51. A short description
is presented in Supplementary Fig. S3. Aspects of the
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general gas sensor key performance parameters are pre-
sented elsewhere35,48,52. Measurements of the CNT
nanosensor were performed at atmospheric pressure by
using a customized gas mixing setup. A detailed
description of the setup can be found in ref. 53. The CNT
nanosensor was exposed to NO2 gas concentrations of [0,
200, 150, 100, 50, 10, 1, 0, 0] ppb under constant dry
airflow54. The concentration steps were chosen to start
from high to low NO2 values preceded by dry air exposure
for two main reasons: first, to define a baseline of the CNT
nanosensor drain current in the absence of NO2 gas, and
second, to highlight the effectiveness of CNT nanosensor
reset by evaluating this baseline. Experimental evaluation
of the baseline concerning sensing bias voltage and reset
time/energy is presented in Supplementary Figs. S4 and
S5. For the current set of experiments, the FSM has been
programmed to acquire consecutive samples with a
temporal delay of 1/3 s in between. Denoted as τ in ref. 55,
this sampling period has been chosen due to strong signal
correlation, given by the 1/f noise, and mitigating the
white noise with the LPF effect. For the same CNT
devices, the influence of the observation window and the
sampling frequency has been investigated in a previous
work which can be found in ref. 55. Depending on the
application requirements, the sampling rate of the
embedded platform can be increased up to 3.125 kSPS
which offers sufficient BW for acquiring a large variety of
bio-signals56. The detailed sampling structure and the
sampling rate power consumption overhead are presented
in Supplementary Figs. S6 and S7.

The experiments in Fig. 4 present a reproducible, cur-
rent response of the CNT nanosensor to NO2 exposure.
For the CNT nanosensor reset, a self-heating (SH)
operation was performed after each concentration of NO2

exposure. The SH effect enables an accelerated gas des-
orption mechanism, as observable in the top part of Fig. 4.
In this bias region, the CNT current is saturated, which

induces the SH onset resulting in a negative-differential
conductance behavior45. The bottom part of Fig. 4 shows the
CNT drain current values when exposed to NO2, biased at a
VGS=−2.7 V and VDS= 0.1 V. In addition, the top part of
Fig. 4 shows the sensor recovery window at an elevated bias
voltage of VGS=−7.5 V and VDS= 0.9 V after each exposure
sequence (experimental determination of these bias levels
are presented in Supplementary Figs. S4, S5, and S8). The
current samples denoted as “outlier” in Fig. 4 can be ignored
since they represent CDC’s first integration cycle50 imme-
diately after power-on-reset. The experimental sequence was
repeated thrice at the same bias levels and NO2 gas con-
centrations for consistency. Significant repeatability and the
effective sensor reset between the measurements data sets
[#1, #2, #3] (gray level) are observable in Fig. 4.

Discussion
CNT nanosensor signal evaluation
One of the widely used measures to characterize the

sensing performance of a transducer is the LOD value.
This performance parameter is represented by the lowest
NO2 concentration for the CNT nanosensor, measured
with a three-sigma (3σ) confidence interval. Compared to
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another type of sensor response (i.e., AlphaSense57

response presented in Fig. S9), the signal evaluation of the
current CNT device is based on the former research
work55 of the group, which presents an extensive analysis
of slope detection (SD) versus quasi-steady-state (QSS)
sensing regimes. By observing the CNT nanosensor cur-
rent evolution over time, three different regions within a
NO2 exposure pulse are highlighted in Fig. 4. The regions
are named as (i) settling time (ST) of ~20min, (ii) SD
region from five to 20 min, and (iii) QSS during the last
5 min. Langmuir isotherm model58 can be used to analyze
the adsorption state on the CNT nanosensor surface.
According to this model, the initial slope of the current
signal dependency upon gas concentration can be
expressed as dθ t ¼ 0ð Þ=dt ¼ Kads � p, wherein θ repre-
sents the CNT nanosensor surface coverage, p is the
analyte concentration or partial pressure and Kads is the
adsorption coefficient. This shows the advantage of
the initial slope signal, which is linearly proportional to
the gas concentration under evaluation. An ST of 20 min
was considered after the NO2 gas flow was started, as
depicted in Fig. 4. After the ST, the initial slope, SD
response of the nanosensor is investigated at various time
windows ranging from five up to 20min.
In Fig. 5a, the initial slope of the CNT nanosensor

current response during the first 12 min of NO2 exposure
in the SD region is presented. Excellent sensor linearity
can be observed within this time window, evaluated using
the linear fit coefficient of determination R2. Estimation of
the LOD and R2 vs. the time window size is detailed in
Supplementary Fig. S10.

The result presented in Fig. 5b shows the data from
Fig. 4 denoted as QSS, wherein the average steady-state
current response during the last 5 min of the 2-h NO2

exposure is evaluated as CNT nanosensor sensing
response. Using the linear fit shown in Fig. 5a, b as the
device calibration curve and including the resulting error
bars as being the noise of the three acquired samples, the
LOD can be determined by 3σ·root-mean-square (RMS)
noise divided by the gas response slope at low gas
concentrations.
Here, the noiseRMS is calculated as the RMS value of the

slope’s standard deviation across individual current signal
response samples at [10, 1, 0] ppb NO2 concentration.
The shaded area of Fig. 5 illustrates the standard deviation
around the average current value for all measurement
data sets [#1, #2, #3] at each gas concentration. Using the
data and their respective fits as shown in Fig. 5a, the LOD
limit values are calculated as in

LODSD ¼ 3 � noiseRMS

slope
¼ 23:4 ppb � 23 ppb ð1Þ

And from Fig. 5b where the QSS sensing regime is
explored

LODQSS ¼ 3 � noiseRMS

slope
¼ 51:9 ppb � 52 ppb ð2Þ

Operating CNT nanosensor by pulsed SH and SD,
concentrations of NO2 below 23 ppb can be resolved. It
has been highlighted that the initial slope sensing based
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on SD can dramatically decrease the response time,
offering both better linearity and dynamic range (see:
Fig. 5a). In Fig. 5b, the classical approach of SS or QSS is
explored, wherein the Langmuir isotherm flattening is
observable at higher gas concentrations due to the
complete surface coverage58. In addition, the CNT
nanosensors fabricated using the ultra-clean, dry-
transfer technique show a significant reduction in
sensitivity to humidity59. The humidity cross-sensitivity
experimental result of the CNT nanosensor is presented
in Supplementary Fig. S11.

Embedded platform power consumption
The embedded platform has been supplied by a 5 V;

2800 mAh battery, and the power consumption has been
monitored during the operational states. An IDLE state
was defined to switch off unnecessary peripherals and
execute µC power-save mode. According to the Stimuli.
CSV file, a single timer is kept operational in this state,
responsible for waking the remaining peripherals
according to the Stimuli.CSV file. Figure 6 showed the
platform’s power consumption when three current
response results in a row were acquired every second,
including the IDLE state in-between. This sampling rate
corresponds to the typical energy consumption of an
environmental monitoring station sampling at three SPS
denoted as [s#1, s#2, s#3]. A low sampling rate of three
SPS is preferred in this particular application for lowering
the power consumption but still being fast enough in
collecting sufficient samples and achieving slope-detection
within a 5-min observation window for a (3σ) LOD of ~90
ppb (as illustrated in the Supplementary Fig. S10).
In Fig. 6a, the average power consumption of 64.5 mW

can be observed when the proposed platform executes the

custom FSM states of Fig. 2a, and the BLE is paired in
advertising mode at 0 dBm TX power. The peak power
consumption of about 225mW corresponds to the CDC
acquisition and SD card data storage. In Fig. 6b, the
average power consumption drops to 60mW when
the BLE is ON but not paired with a mobile device. The
average power consumption values are determined not
considering computing power for signal evaluation. A
comparison with the theoretical power consumption for
the platform’s main components can be found in the
supplementary Table S1.
However, the energy efficiency of the proposed platform

can be further optimized by reducing, reordering, or cus-
tomizing the software-defined FSM states and states tran-
sition timing. In comparison, a commercial reference
platform, e.g., Aeroqual, which uses an SM-50 O3 mea-
surement unit11 for outdoor environments, provides highly
accurate ozone measurements within [0…150] ppb. How-
ever, it operates at a high minimum power consumption of
2.5W, excluding wireless communication11. The Telaire
6713 from Amphenol Advanced Sensors, a sensor mea-
suring indoor CO2 concentrations within [400…5000] ppb
with high accuracy, suffers from a similar shortcoming12.
While the sensor itself is suitable for wearables due to its
form factor of 30 × 15.6 mm, its average power consump-
tion of 135mW without sensor electronics is relatively
high for a long-term battery-operated system. A recently
published full system solution is the W-Air module pre-
sented in11 employs two MOX for O3 and CO2 sensors
from the shelf trying to eliminate the interference of VOC
emissions. At a sampling rate similar to the one presented
in this work, the system in13 draws an average power of
150mW, twice the value compared to the average value
presented in Fig. 6. The presented work confirms the
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preliminary results from55 by exploring sensing solutions
with repetitive experiments and portable-embedded plat-
forms at a fraction of total power consumption compared
to lab equipment. A summary of the performance of the
embedded system and the CNT nanosensor in comparison
to selected gas sensing solutions is presented in Table 1.

Conclusion
We presented the concept, realization, and performance

evaluation of a portable, customizable embedded platform
for nanosensor applications. The platform’s hardware can
adapt to the demands of the nanosensor requirements and
can measure a wide current range. In addition, our solu-
tion is fully autonomous and reconfigurable, employing a
user-defined instruction set. The FSM’s embedded func-
tions allow for setting various platform parameters,
namely: the CDC integration time and capacitor bank,
defining the FS and BW, DAC bias level/period (including
a bipolar potential beyond the supply voltage), time
intervals for SD card storage and BLE data transmission.
Moreover, an additional power-saving FSM-state deacti-
vates the µC’s internal blocks and thus reduces the
average power consumption to 60 mW. The power bank
can ensure up to nine days of continuous operation for
the measurement protocol in this configuration. An
application of the embedded platform has been

demonstrated by integrating an ultra-sensitive CNT
nanosensor. A reproducible CNT nanosensor response
to NO2 exposure was demonstrated down to 1 ppb of
NO2 in dry air with a 3σ LOD as low as 23 ppb (1σ: 7 ppb).
Our customizable, compact embedded sensor platform
demonstrates the unique capability of CNT nanosensor
readout and enables validation of the respective annual
exposure limits set by the EU. The user-defined software-
based solution allows for simple addition, replacement,
and reordering of FSM states, thus offering a high degree
of flexibility and enabling further trade-off between
functionality and energy efficiency.
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Table 1 Summary of performance comparison

Specification

This Work 11 12 13 4

System Supply [V] 5 11 5 3.6 5

Connectivity BLE/serial I2C /serial I2C/UART BLE BLE

Sensor material CNT MOS NDIR for CO2 MOX for O3 and CO2 Electrochemical for NO2

Range [ppm] 0–0.2 0-0.2 0–50,000 0–0.2 0.01–50

Response time [min.] 12 < 1 < 3 < 1 <1.2

Resolution [ppm] 0.023a/0.052b (3σ LOD) 0.001 (LDL) + /−30 ± 3%ss O3:0.004;CO2:64ss ±0.02

Temp./R.H. [°C/%] 22 °C

0% R.H

0 to 50 °C

5 to 95% R.H.

−10 to 60 °C

0 to 95% R.H.

−40 to 85 °C

10 to 95% R.H.

−30 to 60 °C

15 to 85% R.H.

Area [cm2] 9.5 × 6.5 6 × 7.5 0.3 × 1.5 – –

Power [mW] Avg. 60 @ 3 SPS 2500–6000 Avg. 125 Avg. 180 175

19 25 17 22

Sensor(s) Detector type CNT Graphene In2O3-rGO SnO2-NW Ag-S-rGO

Limit of detection [ppb] 23 (3σ)a 100 50 100 500

Detection principle Resistive Hall bar FET resistive FET

Power [µW] <0.025–0.5c – – 20 –

aFor SD mode
bFor QSS mode
cIn QSS mode @ 1 ppb and SH mode
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