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Abstract
As a crucial biophysical property, red blood cell (RBC) deformability is pathologically altered in numerous disease states, and
biochemical and structural changes occur over time in stored samples of otherwise normal RBCs. However, there is still a
gap in applying it further to point-of-care blood devices due to the large external equipment (high-resolution microscope
and microfluidic pump), associated operational difficulties, and professional analysis. Herein, we revolutionarily propose a
smart optofluidic system to provide a differential diagnosis for blood testing via precise cell biophysics property recognition
both mechanically and morphologically. Deformation of the RBC population is caused by pressing the hydrogel via an
integrated mechanical transfer device. The biophysical properties of the cell population are obtained by the designed
smartphone algorithm. Artificial intelligence-based modeling of cell biophysics properties related to blood diseases and
quality was developed for online testing. We currently achieve 100% diagnostic accuracy for five typical clinical blood
diseases (90 megaloblastic anemia, 78 myelofibrosis, 84 iron deficiency anemia, 48 thrombotic thrombocytopenic purpura,
and 48 thalassemias) via real-world prospective implementation; furthermore, personalized blood quality (for transfusion in
cardiac surgery) monitoring is achieved with an accuracy of 96.9%. This work suggests a potential basis for next-generation
blood smart health care devices.

Introduction
Label-free disease diagnosis and quality monitoring by

natural biophysics properties of cells is expected to be
significant for the future of smart health care and point-
of-care (POC) applications1–5. For example, as a typical
and practical diagnostic indicator, blood cell morphology
is widely used for blood testing6,7. However, complex
equipment, well-trained operation, and dyes are often

required to achieve high diagnostic accuracy for cell
morphology-assisted blood diagnosis8–10 because of the
inhomogeneity and inconsistency of cell morphological
transition dynamics11–13. Cell deformability serves as an
important indicator of the real-time response to cell sta-
tus. However, monitoring cell deformability has not been
applied to the field of POC blood smart health care due to
complex equipment requirements and associated opera-
tional difficulties14–22.
Optofluidics23,24 are characterized by high integra-

tion20,25–28, precise optical manipulation29–31, and port-
ability32,33, and they provide a good platform for studying
cell biophysics properties. Currently, a series of good
works have been reported for cell deformability mon-
itoring, which implies a potential clinical application for
POC blood cell analysis34,35. Here, we introduce a smart
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optofluidic engineering platform for multifunctional
blood testing via precise cell biophysics property recog-
nition both in mechanics and morphology with high
accuracy, low cost, and ease of operation. Based on the
elastic strain and stress coupling of the hydrogel, blood
cell deformation is achieved by manipulating a hydrogel
actuator using a mechanical transfer device. A tunable
imaging platform (depth of field: 10 µm) was designed for
capturing blood cell images at different focusing surfaces.
Images, morphologic (diameter, circularity, axis ratio, and
corresponding distribution width), and mechanical
(deformability and distribution width) parameters of
blood cells were obtained via a developed image algorithm
employed on a smartphone36–39. The integrated data were
then used as input for cloud computing, and they were
then transformed into vector tables and loaded into image
vectors to perform pathological diagnosis and quality
monitoring based on a trained neural network40,41. The
strong system performance was validated with clinical
samples, which provides a new strategy for future POC
blood smart health care.

Results
Cell deformation via photocurable hydrogel actuator
manipulation
The developed optofluidic chip integrated with a flexible

photocurable hydrogel actuator is shown in Fig. 1. Finger
pressure was coupled to the elastic hydrogel through a
mechanical transfer device, which deformed the hydrogel,
and it enabled precise control of the pressure applied to
the hydrogel actuator by continuous pressure for stable
deformation image acquisition. Through model develop-
ment, the strain distribution was obtained by coupling the
pressure to the top part of the hydrogel actuator. The
results indicated that the hydrogel compressed vertically
and expanded horizontally under the pressure coupling
action. The hydrogel actuator compressed in the vertical
direction, and an insignificant expansion of the con-
strained surfaces (top and bottom surfaces) was observed
in the lateral direction (Fig. 2a). Elastic and plastic defor-
mations (reversible and irreversible deformations) of the
hydrogel occurred under different pressures. The irrever-
sible hydrogel deformation leads to irregular spatial grid
shrinkage and expansion, which interferes with cell
deformation measurement. We measured the hydrogel
stress–strain curve in a microfluidic chamber. The
hydrogel precursor (10 w/v% Gelma solution, see Meth-
ods) was labeled with rhodamine 6G (Sigma), and a red
fluorescently labeled hydrogel actuator was photocured
and cross-linked in the microfluidic cavity with blue light
irradiation (405 nm, 10 s) under a Filin photomask. Dif-
ferent pressures (1–10 kPa) were applied to the hydrogel
actuator. With an increase in pressure, the hydrogel
changes from regular to irregular deformation (Fig. 2b).

Figure 2c shows a histogram of the stress–strain and the
stress recovery of the hydrogel. The results indicate that
hydrogel elastic deformation occurs when the stress is in
the range of 1–6 kPa. When the stress is greater than
6 kPa, it causes hydrogel elastic deformation. The hydrogel
actuator (d= 800 µm, h= 20 µm) deformation–relaxation
test was conducted using a confocal microscope (Nikon,
A1R). The deformation–relaxation fluorescence distribu-
tion maps of the hydrogel are recorded and analyzed in
Fig. 2d. The internal spot refers to the constrained surface
of the hydrogel (the interface between the hydrogel and
the substrate, the imaging region), while the lateral spot
refers to the lateral deformation due to the hydrogel stress.
As shown in the three-dimensional light intensity dis-
tribution plot of Fig. 2d (the upper white circle is the inner
light spot, and the lower white circle is the outer light
spot), the cylindrical shape of the three-dimensional light
intensity distribution is hydrogel residue on the surface
based on the flashlight photocuring process, which does
not interfere with the overall hydrogel actuator deforma-
tion. The results show that the inner spot remains stable
(spot size: 800 μm, gray value: 76.9) in the hydrogel elastic
strain. The outer optical spot undergoes expansion and
then reverts upon withdrawal of the stress. This is a direct
indication that the constrained surface of the hydrogel
actuator maintains excellent stability during strain. The
intensity distribution map (Fig. 2e) further verified that the
hydrogel can be recovered after elastic deformation. Next,
multiple compression measurements (Fig. 2f) were con-
ducted, and the internal speckle size remained stable
during the compression process (mean= 807, σ= 4.345
SDs, and n= 60). These results indicate a basis for cell
imaging and deformation in flexible photocurable hydro-
gel actuators. The longitudinal hydrogel (phosphate-buf-
fered solution (PBS)-filled, blood sample: hydrogel
precursor= 1: 100) grid was compressed, forcing the red
blood cells (RBCs) in the grid to deform regularly with
stress (Fig. 3a). Then, the stress deformability of RBCs was
measured, and stresses of 3 and 6 kPa were applied to the
hydrogel actuator. Figure 3b indicates that RBCs deformed
regularly with a hydrogel strain, and the uniform RBC
orientation (double concave side in Z-direction) was based
on the settling process. A total of 2362 RBCs were ran-
domly selected to measure the deformation rates of 3 and
6 kPa. Figure 3c shows that the average RBC deformation
rates between 3 and 6 kPa were 1.194 (σ= 0.045) and
1.241 (σ= 0.033), respectively, which indicates that when
the RBCs accept higher stress, the deformability is larger
and the range of variation becomes narrower. RBCs
undergo internal osmotic pressure and the cell membrane
morphology changes during the deformation process. To
study the morphological changes in the cell membrane in
the RBC process, the light intensity distribution was ana-
lyzed before and after RBC deformation. Furthermore, as
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shown in Fig. 3d, e, the RBCs changed from a biconcave
shape to spherical, and the middle concave structure
tended to flatten as the strain gradually increased and the
cell membrane expanded in the XY plane. When the stress
was released, the RBCs returned to the double concave
structure. The light intensity distribution diagram of the
two-dimensional section (y= 0) directly illustrates the
RBC deformation and recovery process in this system.

Cell biophysics properties collected and analyzed in the
smartphone
Figure 4a shows the operating interface of the smart-

phone data acquisition and analysis process and the cell
imaging before and after deformation realized by a min-
iaturized tunable optical imaging system (field of view
(H × V, mm): 1.81 × 1.02, resolution: 1 µm)39. The image
processing steps are illustrated in Fig. 4b, and the devel-
oped image algorithm was used to identify primary cells
and remove stacked cells. Furthermore, the morphologic
(diameter, circularity, axis ratio, and corresponding

distribution width) and mechanical (deformability and
distribution width) blood cell parameters were obtained
through imaging analysis (see “Methods”). We used a
double-blind approach wherein 50 healthy RBC samples
were measured based on this system, and a parallel count
was performed by a technician using a standard hemo-
cytometer (Nexcelom cellometer, America) to evaluate
the system performance in terms of counting samples
based on changes in the concentrations in the lower
range. Figure 4c indicates that the linearity of the two
methods has no obvious deviation (P= 0.07). Based on
the Passing–Bablok regression analysis (n= 50), the A
intercept value was 1.6380 with a confidence interval (CI)
of 1.0959–2.1988, and the B slope value was 0.8794 with a
CI of 0.8587–0.8977. Bland–Altman analysis (n= 50) was
used to compare this intelligent system, and the manual
RBC count showed a mean bias of −1.492 million RBCs/
mL with a standard deviation (SD) of 1.57 × 106 RBCs/mL
(Fig. 4d). The limits of agreement (LOAs) ranged between
−4.564 and 1.581 million RBCs/mL. These statistical
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analyses indicated that the difference between the
hemocytometer and the proposed system increased as the
RBC concentration increased in the samples. Receiver
operating characteristic (ROC) analysis was performed to
establish a threshold for optimized sensitivity and speci-
ficity (as shown in Fig. 4e), and the ROC analysis results
revealed that the RBC concentration threshold of 2.2 ×
106 RBCs/mL yields a sensitivity of 95.83% (CI: 78.9–99.9)
and specificity of 84.62% (CI: 65.1–95.6) for this system to
count RBC samples; furthermore, the area under the
curve (AUC) was 0.970 with CI ranging between 0.877

and 0.988. Bland–Altman analysis (n= 56) was performed
to evaluate the imaging/analysis system performance in
the diameter, axis ratio, and circularity analyses of healthy
RBC samples from the hospital compared to the expert
microscopic examination and Countstar cell counter. As
shown in Fig. 4f, the mean bias was −0.6664% with an SD
of 4.84% for the mean diameter (LOA: −0.088 to 0.102),
and the mean bias was −0.0769% with an SD of 1.25% of
the axis ratio (Fig. S6, LOA: −0.025 to 0.024). The results
showed an insignificant difference between the micro-
scopic examination and smartphone-based device for
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measuring the diameter and axis ratio. Furthermore, we
performed Bland–Altman analysis of RBC samples with
mean circularity (i.e., SD, Fig. 4g). The mean bias was
−0.14% with an SD of 0.59% of the distribution width
(LOA: −0.013 to 0.010). Collectively, the Bland–Altman
analyses showed an insignificant difference between the
Countstar cell counter and the smartphone-based device
in measuring circularity.
Figure 5a shows a scatter plot of the RBC elongation index

value (EI, mean= 0.5373, σ= 0.0082) based on the results of
a laser optical rotational red cell analyzer (Lorrca, shear
stress= 6 Pa) and RBC deformability value (Dr, mean=
1.210, σ= 0.0046)-based finger-pressing method obtained
via a mechanical transfer device (Stress= 3 kPa) for 63
healthy RBC samples. We conducted Bland–Altman analysis
and mountain plot analysis to analyze the performance and
accuracy of the finger-pressing method for cell deform-
ability. The Bland–Altman analysis (n= 63) results com-
paring the finger-pressing method and laser optical
rotational red cell analyzer indicated a mean bias of 0.6723
with an SD of 0.0059 (Fig. 5b). The LOAs ranged from
0.6607 to 0.6840. The mountain plot analysis computed a
percentile for each ranked difference between the human-
capillary-like microchannel method and the finger-pressing
method for cell deformity. To obtain a folded plot, the fol-
lowing transformation was performed for all percentiles
above 50: percentile= 100− percentile. These percentiles
are then plotted against differences between the two meth-
ods. As shown in Fig. 5c, the mountain is centered at 0.6731
with 0.6607 (5th percentile) to 0.6818 (95th percentile).
These statistical analyses showed that the finger-pressing
method corresponded well with a laser optical rotational red
cell analyzer for cell deformity monitoring.

Artificial intelligence-based modeling of cell biophysics
properties related to blood diseases
Figure 6a shows the interactive design of this optofluidic

POC (OPOC) system. The smartphone (Fig. 6a I) col-
lected the images and variables (morphological: diameter,
circularity, axis ratio, and corresponding distribution
width; mechanical: deformability and distribution width)
integrated into the cloud (Fig. 6a II) based on a trained
neural network to perform the diagnosis. The deep
learning system has two main parts: a variable number of
deep convolutional neural network modules for proces-
sing a flexible number of input images and a module for
processing multiple variables. The trained neural network
contained six convolutions and three fully connected
layers. As shown in Fig. 6a III, the 3 fully connected layers
contained 40, 64, and 20 vectors, of which the first fully
connected layer contained 32 image vectors and 8 variable
vectors (Fig. 6a IV, feature extraction of participants). The
diagnostic data are then returned to the smartphone; the
patient can share the diagnosis with the detailed

parameters with the doctor via cloud sharing to allow the
doctor to provide the next steps with regard to the
medication or further hospital treatment (Fig. 6a V).
We performed neural network training for five typical

clinical blood diseases, including megaloblastic anemia
(MA), myelofibrosis (MF), iron deficiency anemia (IDA),
thrombotic thrombocytopenic purpura (TTP), and tha-
lassemia (Thal.). Through cell imaging and analysis (Fig.
6b)36, the morphological and mechanical parameters are
shown in Fig. 6c–f. Toward that end, we collected a total
of 432 samples (Fig. S7), including 84 healthy, 90 MA, 78
MF, 84 IDA, 48 TTP, and 48 Thal. from participants.
Then, diagnostic models based on deep learning were
conducted. To develop and validate the system, we used a
random segmentation approach for blood disease cases:
90% of the cases were used for development and 10% for
validation. Multiple training and validation cycles were
executed, wherein the development and training sets were
randomly disrupted in each cycle. The reference standard
for each case was determined by the aggregated opinion of
the hematologist who independently tested the cases (see
Methods). Figure 6g shows the performance of the three
trained neural networks. The diagnostic model that
combined the image, morphological, and mechanical
parameters achieved 100% diagnostic accuracy for the 6
classifications (n= 432); furthermore, the diagnostic
accuracy was consistent with the examination conducted
by professional physicians, thereby indicating a potential
method via cell multirecognition to further improve
diagnostic accuracy.

Personalized blood-quality monitoring
RBCs undergo progressive structural and functional

changes during storage (Fig. 7a), and the development of
personalized blood transfusion quality monitoring for
complex blood transfusion needs will help improve the
blood utilization rate. Previous studies proposed a hypoth-
esis that serious complications and mortality after cardiac
surgery increased when transfused RBCs were stored for
more than 2 weeks42. Based on this system, we performed
blood-quality monitoring of 98 cryopreserved RBC (4 °C)
samples during storage. Among them, 48 RBC samples were
cryopreserved within 14 days, and 50 were cryopreserved for
more than 14 days (14–21 days). The results showed that
there was no significant statistical correlation between RBC
counts in the two intervals, and the P value was 0.1105,
whereas a significant statistical correlation was observed in
the diameter, circularity, axis ratio, and deformability. The
corresponding AUCs were 0.7594 (CL: 0.6651–0.8537),
0.7629 (CL: 0.6703–0.8556), 0.9224 (CL 0.8819–0.9769), and
0.8821 (CL: 0.8194–0.9448) (Fig. 7b–e). Then, neural net-
work training and testing of the blood-quality monitoring
model were conducted, and the results showed that the
proportion of misdiagnosed samples was as high as 17.3%
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when the neural network was trained with morphological
parameters. When the diagnostic model combined the
morphology parameters and the image, the proportion of
misdiagnosed samples decreased to 8.2%. After adding
mechanical parameters along with training, the diagnostic
accuracy of the deep learning system reached 96.9% (Fig. 7f).
Misdiagnosis samples were concentrated near the separation
points, and there were no significant differences in the
morphological and mechanical properties (Table S3). Figure
7g shows the system performance based on various
smartphone-based quality monitoring of 32 cryopreserved
RBC (4 °C) samples during storage. Among them, 18 RBC
samples were cryopreserved within 14 days, and 14 RBC
samples were cryopreserved for more than 14 days
(14–21 days). All samples were tested in parallel with both
Samsung S9+ and Redmi K30 Pro, and the results show that
the system correctly classified 100% (0 of 32) of the Samsung
S9+ data and 96.87% (1 of 32) of Redmi K30 Pro data.

Discussion
This paper introduces an innovative biophysics property

recognition platform that enables multifunctional POC
blood smart testing. The comparison of this system
diagnostic performance among experts in five clinical
blood diseases via real-world prospective implementation
(n= 432, 100% accuracy) and the personalized assessment
of the stored blood quality (n= 98, 96.9% accuracy)
demonstrated the feasibility of all key functional aspects
as well as the practical utility of this system in the smart
health care field. Furthermore, this smart optofluidic
system can be extended to disease diagnosis accompanied
by abnormal morphology and mechanics of blood cells,
etc.; it can also be used to evaluate the recovery of patients
with blood diseases after treatment. Moreover, this system
can be expanded into in vitro cultured cell quality mon-
itoring of sperm, oocytes, follicles, etc., and provides a
potential platform for further drug and target screening.

For the precise recognition of cellular morphology and
mechanics, a steady fluid-assisted imaging platform
(three-dimensional hydraulic focusing) and precise
mechanical manipulation (shear force, laser diffraction,
etc.) are required for the measurement; however, they
have portability limitations and associated operational
difficulties for untrained users. In this study, we propose
a revolutionary OPOC platform that uses hydrogel
actuator-assisted compression imaging to achieve pre-
cise cell recognition both in morphology and mechanics
with high accuracy, low cost, and ease of operation in a
miniaturized integrated system. Furthermore, this can
be combined with microneedles to achieve continuous
blood extraction and analyses in a chip. The developed
deep learning algorithms and cloud computing enable
label-free and automatic blood disease-assisted diag-
nosis/evaluation of blood quality. Furthermore, the
construction of an ecological POC engineering system
for blood (image, morphology, mechanics, and small
molecules), which can expand the number of human
participants and increase the range of types of typical
blood diseases, deep learning-based mixed-blood dis-
ease model development will be a powerful tool in
promising smart health care.

Materials and methods
Fabrication of the replaceable microfluidic chip
The replaceable microfluidic chip (1.2 cm × 0.6 cm ×

20 µm) was fabricated using the standard soft lithography
process. First, the SU8 photoresist (MicroChem, SU8-50)
was dropped on the silicon wafer and rotated by a
homogenizer (KW-4A) to obtain a 20 μm photoresist
coating layer. After prebaking, the master was exposed to
UV light under a glass/chromium mask using a mask
aligner (OAI, 506). Then, a positive relief of the photoresist
on the surface was generated, which was used as the mold
for future replications. The 20 g polydimethylsiloxane
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(PDMS) prepolymer (Dow Corning, Sylgard 184) pre-
polymer was then poured over the master (5 in.) and
stored in an oven for 1 h at 75 °C. The PDMS replica was
then peeled off and sealed against a flat PDMS slab to form
the microchannel after oxygen plasma bonding.

Formation of photocurable hydrogel actuators in
microfluidic chips
Ten milliliters of PBS was added to a brown bottle

containing lithium phenyl(2,4,6-trimethylbenzoyl) phos-
phinate (LAP, EFL) and heated at 40–50 °C in the dark
for 30 min, and it was shaken several times (>5 times)
during this period to obtain an initiator solution. Then,
10% mass Gelma material (EFL-GM-60, Suzhou, China)
was added to the initiator solution (Gelma: Initiator
solution= 1:10), heated at 40–50 °C in the dark for
30 min, and shaken several times (>5 times) during the
period. A 0.22-micron sterile syringe filter was used to
filter and sterilize the hydrogel precursor solution
immediately, storing at 4 °C afterward (storage period >
2 weeks).
For each test (Fig. S3), the blood was diluted with a

hydrogel precursor (blood sample:hydrogel precursor=
1:100), and the mixed solution was injected through the
chip inlet, which fills the microfluidic chamber. After
standing for 2 min (Fig. S4), the RBCs precipitate to the
bottom of the chip and form a hydrogel actuator (D=
800 µm, H= 20 µm) in the microfluidic chamber through
blue light (Flashlight, FENIX TK25RB) exposure under a
photomask (Filin film, Jixianguangdian). The data mea-
surements need to be completed within 10min because of
the natural changes in blood cells in vitro.

Mechanical transfer device tested by untrained users
As shown in Fig. S5, to evaluate the mechanical transfer

device performance on untrained users, we randomly
selected two untrained patients to perform compression
on the mechanical transfer device. Each experiment was
performed with three consecutive compressions for 3 s of
constant force application and real-time stress monitoring
with a planar pressure tester (DS2-XD, Zhiqu). The
results indicated that the mechanical transfer device met
the ease of operation and high stability requirements for
untrained users.

Imaging analysis
Through the tunable optical imaging system, the

smartphone collected the field of view of the RBCs
through autofocus. The RBC images were then converted
into a grayscale image (8-bit). After the light intensity and
contrast were automatically adjusted by the software, the
RBC images were converted into binary images using the
threshold operation. The threshold setting was used to
remove the stacked cells. Then, a hole-filling operation
was performed to fill the contour and improve the cal-
culation accuracy. Finally, the morphologic and mechan-
ical parameters were calculated via software pixel analysis.
The deformation index (Dr) is defined as Dr ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Sd=Sud
p

,
where Sd denotes the pixel area after deformation and Sud
denotes the pixel area before deformation. Mean diameter
is defined as diameter=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

area=π
p

; axis ratio is defined as
axis ratio=MaxFeret/MinFeret (Feret Diameter); circu-
larity is defined as circularity= 4π × area/perimeter2; cir-
cularity= 1 indicates a perfect circle.

Developed deep learning system
Input images were obtained after data augmentation

was applied to the raw images by randomly rotating,
cutting, and flipping. Then, we used AlexNet with pre-
trained weight coefficients on the ImageNet dataset for
training. The layer before the last layer was set to have 32
neurons. After training, these vectors were extracted as
feature vectors in the embedded space where the neural
network learns. All inputs were resized to 224 × 224 pixels
for images with a scale of 0.1 mm × 0.1 mm for cell ima-
ging in the hydrogel actuator, and the images were
cropped to the same scale—0.1 mm × 0.1 mm—before
being used as an input. The 32-dimensional feature vec-
tors extracted in images were combined with the
8-dimensional mechanical and morphological data
obtained from imaging analysis and the combined feature
vectors to train a neural network with two hidden fully
connected layers. The dropout method was used in the
training process to avoid overfitting and increase gen-
eralization performance.

Ethics statement
All experiments were conducted in accordance with the

Declaration of Helsinki and the International Ethical

(see figure on previous page)
Fig. 6 Artificial intelligence-based modeling of cell biophysics properties related blood diseases. a I The finger-press type microfluidic/
smartphone imaging system collects the integrated images, morphological, and mechanical parameters loaded into cloud computing. II The
pathological diagnosis is performed via cloud computing based on deep learning. III The three fully connected layers contain 40, 64, and 20 vectors,
respectively, of which the first fully connected layer contained 32 image vectors and 8 morphological and mechanical parameter vectors. IV Feature
extraction of the multiparameter training models in 432 clinical samples. V Diagnostic reports are transmitted to the physician via the cloud sharing
platform. b Identification of the primary objective for health, MA, MF, IDA, TTP, Thai. blood samples. c–f Distributions of diameter, circularity, axis ratio,
and deformability of the samples. g Confusion matrices comparing the performance on three training pathological diagnosis models between expert
diagnosis and deep learning
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Guidelines for Biomedical Research Involving Human
Subjects. Anonymized tissue samples were retrieved from
the Hematology Laboratory patient database after
obtaining approval from the Ethics Committee of
Zhongnan Hospital of Wuhan University (No. 2020153).

Hospital pathology testing after an intelligent diagnosis
via real-world prospective implementation
The hospital pathological diagnosis of the patients (432

participants with this device) after an intelligent diagnosis
was performed. Peripheral blood specimen smears, typical
bone marrow smears, and bone marrow biopsy smears are
shown in Fig. S8 for six typical cases, and Fig. S9 shows
the radar map (Table S1) with morphologic and
mechanical parameter distributions. The intelligent diag-
nostic data of 30 typical participants in 432 participants
are listed in Supplementary Table S2.

Complete blood cell test
Venous blood (2–3 mL) was placed in ethylenediami-

netetraacetic acid (EDTA) anticoagulation tube, and the
complete blood count test was performed on a Beckman
Coulter LH750 (Beckman Coulter, Miami, Florida).

Blood smear
Each patient took one drop of fingertip blood and quickly

pushed it into a peripheral blood smear. All slides were
subsequently manually stained with May-Gruenwald-Giemsa
staining by the same technician, and they were visually
examined by two independent experienced clinical techni-
cians using light microscopy.

Bone marrow smears and bone marrow biopsy
Bone marrow puncture was performed at the posterior

superior iliac spine. Bone marrow fluid (0.1–0.2 mL) was
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slowly aspirated, and the bone marrow fluid was pushed
onto the slide to quickly generate eight smears. Bone
marrow smears were stained with Wright Giemsa, and
immunohistochemical detection was carried out based on
specific conditions. The cytoplasm and quantity of the
bone marrow were observed under a microscope. The
morphological analysis was performed jointly using two
senior laboratory physicians.
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