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Dingbang Xiao1✉

Abstract
Whole-angle gyroscopes have broad prospects for development with inherent advantages of excellent scale factor,
wide bandwidth and measurement range, which are restrictions on rate gyroscopes. Previous studies on the whole-
angle mode are based mostly on the linear model of Lynch, and the essential nonlinearity of capacitive displacement
detection is always neglected, which has significant negative effects on the performance. In this paper, a novel real-
time calibration method of capacitive displacement detection is proposed to eliminate these nonlinear effects. This
novel method innovatively takes advantage of the relationship between the first and third harmonic components of
detective signals for calibration. Based on this method, the real-time calibration of capacitive displacement detection is
achieved and solves the problems of traditional methods, which are usually related to the vibration amplitude,
environmental variations and other factors. Furthermore, this novel calibration method is embedded into a whole-
angle control system to restore the linear capacitive response in real time and then combined with a microshell
resonator for the first time to exploit the enormous potential of an ultrahigh Q factor and symmetric structure. The
effectiveness is proven because the angle drift is reduced significantly to improve the scale-factor nonlinearity by 14
times to 0.79 ppm with 0.0673°/h bias instability and a 0.001°/s rate threshold, which is the best reported performance
of the MEMS whole-angle gyroscope thus far. More importantly, this novel calibration method can be applied for all
kinds of resonators with the requirement of a linear capacitive response even under a large resonant amplitude.

Introduction
High-performance micromachined vibratory gyroscopes

based on Coriolis force coupling have received increased
attention in the applications of high-end industrial, aero-
space, robotics and unmanned systems. Conventional high-
performance micromachined gyroscopes usually adopt rate
mode to measure the angular rate by driving one mode to
vibrate and detect the Coriolis-induced vibration of the
second mode1–4. Currently, the restrictions of the rate mode
are becoming increasingly obvious since the performance of
rate measurements is severely affected by nonlinearity in the
scale factor and limited measurement bandwidth5–7. In

contrast, in the whole-angle mode, the mechanical resonator
acts as a “mechanical integrator” of angular rate, producing
the output angle that follows the rotation directly. To
achieve this behavior, the vibration mode must be allowed to
process freely in response to the Coriolis force. Then, the
pattern angle of the vibration mode can be calculated as the
output angle that tracks the input rotation in real time. The
inherent advantages of the whole-angle mode are critically
essential for the application of gyros. First, the scale factor of
the whole-angle mode is related only to the structure of the
resonator and insensitive to environmental variations,
resulting in the highly stable characteristic of the scale factor.
In addition, the gyro under whole-angle mode theoretically
has unlimited bandwidth and measurement range, which
may be compromised by the bandwidth of the electronic
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control loop in practice8–10. Despite these attractive char-
acteristics of the whole-angle mode, its performance relies
heavily on the stiffness and damping symmetry and may not
be suitable for a great deal of MEMS resonators11,12. A
microshell resonator with many outstanding characteristics
is an excellent candidate for the whole-angle mode4,13–16.
Specifically, a microshell resonator fabricated from fused
silica with low thermoelastic damping has the potential to
achieve an ultrahigh Q factor of over 5 million and a ring-
down time of 295 s, as reported in the reference4. Further-
more, the inherent symmetrical structure of the microshell
resonator has excellent symmetrical characteristics, and the
stiffness asymmetry can be further reduced by mechanical
trimming to obtain a perfect resonator17,18. Above all,
combining a microshell resonator and whole-angle mode is
a perfect collaboration to realize high-performance micro-
machined gyroscopes.
The major limitation for the performance of the whole-

angle mode is the angle drift, which has major effects on
the angle-measurement accuracy and scale-factor non-
linearity19–21. Normally, the control algorithms and error
model of the whole-angle mode are based on the linear
dynamic model proposed by Lynch, which ignores some
nonlinear features of gyroscopes, such as the geometric
nonlinear effect, capacitive electrostatic actuation and
detection nonlinearity22–24. This linear model reveals the
existence of a 2θ angle-dependent harmonic component in
the angle drift resulting from stiffness and damping asym-
metry, which can be compensated by the quadrature nulling
loop and velocity feedback control, respectively8,19,25. How-
ever, related works have demonstrated the existence of a 4θ
angle-dependent harmonic in the angle drift derived from
nonlinear dynamics, and it cannot be compensated simply
via feedback control, which will have great negative effects
on the performance20,26. Some nonlinear compensation and
correction methods have been proposed to eliminate non-
linear effects27,28. However, the previous methods need to
search for a suitable parameter offline for calibration, which
is time-consuming and arduous. It is even more dis-
appointing that it cannot adapt to different control para-
meters and environmental variations.
In this paper, a novel calibration method for capacitive

displacement detection nonlinearity is proposed based on
a harmonic-component relationship to restore the linear
response in real time. This novel method is first applied to
simple closed-loop control to verify its effectiveness.
Then, the novel method is embedded into the whole-
angle control system to eliminate the nonlinear effects of
capacitive displacement detection. With this novel
method, the 4θ angle-dependent harmonic component in
the drift rate has been removed, and the scale-factor
nonlinearity of the microshell resonator gyroscope has
been improved to 0.79 ppm. Furthermore, this novel
method can also be applied to all kinds of capacitive

resonators to increase the amplitude with a linear
response.

Results
Device architecture and nonlinearity of capacitive
displacement detection
The microshell resonator, shown in Fig. 1a, is bonded to

the planar electrode substrate through the anchor. Both the
resonator and electrode substrates are made of fused silica.
This architecture of fully fused silica provides stable reso-
nance properties within the whole temperature range,
which significantly reduces errors caused by thermal
expansion. The height and diameter of this resonator are
~4mm and 12mm, respectively. As illustrated in Fig. 1b,
the n= 2 wineglass modes are selected as working modes
for the whole-angle mode. Due to the presence of in-plane
deformation and out-of-plane deformation in the vibration
of wineglass modes simultaneously, out-of-plane electrodes
are used to drive or sense the vibration of the wineglass
modes. There are 48 rectangular shape tines around the
perimeter of the resonator to collaborate with 16 separated
electrodes for capacitive transduction. The capacitive gap
d0 between the planar electrodes and the perimeter of the
resonator is ~20 μm. For the whole-angle mode, the
gyroscope will need two sets of separated electrodes for
actuation and detection of mode X and mode Y. To satisfy
this requirement with the limited electrodes of the
microshell resonator, the driving signals of mode X and
mode Y mixed with the high-frequency carrier are applied
on electrodes DX and DY. In addition, the sensing signals of
the two modes are obtained from the microshell resonator
and are distinguished by the modulation of two high-
frequency carriers, as shown in Fig. 1c. Differential actua-
tion and detection are used in this whole-angle mode, and
schematic diagrams are shown in Fig. 1d to analyze the
nonlinear behavior of capacitive responses.
The vibration signals are detected by differential capacitive

detection with carrier demodulation, and the carrier fre-
quency ωc is much larger than the resonant frequency of the
gyroscope. Hence, the variation in differential capacitance
after Fourier expansion can be expressed as

ΔC ¼ εA
d0 � x

� εA
d0 þ x

� 2εA
d2
0

1þ x
d0

� �2
" #

x ð1Þ

where x represents the vibration displacement of the
resonator. Therefore, the detected signal after carrier
demodulation can be calculated as

V1 ¼ � V0

CFB
ΔC ¼ ks 1þ x

d0

� �2
" #

x ð2Þ

where ks ¼ �2εAV0=CFBd2
0 can be regarded as the

detective gain of the capacitance. In addition, V0 is the
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amplitude of the carrier, and CFB represents the feedback
capacitance. Equation (2) shows that the detective signal
contains a nonlinear component, which represents the
nonlinear effects of capacitive displacement detection and
affects the detection accuracy.
Taking nonlinear capacitive displacement detection into

consideration a certain deviation generates in the real
detection signal of the resonator. If the displacement
of vibration is expressed as x= x0cos(ωt+ φ) and
substituted into Eq. (2), the corresponding output signal
can be written as

V1 ¼ ks 1þ 3
4

x0
d0

� �2
� �

x0 cos ωt þ φð Þ þ ks
x30
4d20

cos 3 ωt þ φð Þ
¼ ksx0þ3Π½ � cos ωt þ φð Þ þΠ cos 3 ωt þ φð Þ

ð3Þ

where Π ¼ ksx30=4d
2
0. The harmonic component of 3ω can

be eliminated after demodulation, and the effective signal
entering the control system is given by

Ve ¼ ½ksx0þ3Π� cos ωt þ φð Þ ð4Þ

Equation (4) also shows that the displacement of
vibration becomes overestimated compared with the

linear response, and 3Π is the component that needs to be
removed.

Real-time calibration of capacitive detection nonlinearity
The basic idea of this novel calibration method

of capacitive displacement detection is based on the
relationship between the first and third harmonic
components of the detection signal. According to Eq.
(4), the nonlinear element 3Π must be removed to
calibrate the nonlinearity of capacitive displacement
detection. Equation (3) also shows that the extra
amplitude 3Π of the first harmonic component is
exactly three times as large as the amplitude Π of the
third harmonic component, indicating that the super-
fluous amplitude 3Π in the first harmonic component
can be identified in real time as long as the amplitude Π
in the third harmonic component can be obtained.
Therefore, the nonlinear element of the first harmonic
component 3Π can be eliminated in real time based on
the analysis above.
The detailed implementation procedures of the signal

processor to realize nonlinear elimination are illu-
strated in Fig. 2a. Double-channel demodulation is
adopted to synchronously obtain the first and third
harmonic components. After low-pass filtering, the in-
phase and quadrature components of the first and third
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Fig. 1 Device architecture and capacitive displacement detection. a Structural view of the microshell resonator. b Wineglass modes. c Electrode
configuration of whole-angle mode. d Schematic diagram of differential capacitive displacement detection.
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harmonic componentscð1Þx ; sð1Þx ; cð3Þx sð3Þx are obtained to
calculate the linearization coefficient ηx, which can be
defined as

ηx ¼
A� 3B

A
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þx

h i2
þ sð1Þx

h i2r
� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð3Þx

h i2
þ sð3Þx

h i2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þx

h i2þ sð1Þx

h i2r � 1 ð5Þ

where A and B are the amplitudes of the first and third
harmonic components, respectively. A-3B represents the
amplitude of the linear response obtained by eliminating
the amplitude 3Π. Therefore, this linearization coefficient
is the ratio between the linear response and original
nonlinear response, and its value is less than or equal to
one. To obtain the linear response, we need only this
linearization coefficient to calibrate the original nonlinear
response. Therefore, the linearization output of the in-
phase and quadrature components are calculated as ~cx ¼
ηxc

ð1Þ
x and ~sx ¼ ηxs

ð1Þ
x in real time.

To verify this novel method, a simple experimental
platform of open-loop control is set up to study the
nonlinear behavior of capacitive detection, as shown in Fig.
2b. Differential actuation and detection are applied on the
electrodes of the microshell resonator through a lock-in
amplifier (LIA, Zurich Instruments HF2LI). In addition,

the driving amplitude is proportional to the vibration
amplitude due to the phase-locked loop (PLL). Therefore,
different driving amplitudes are applied to obtain the
corresponding vibration amplitudes. For every driving
amplitude, the first and third harmonics of the PLL are
employed to demodulate the detection signal at the same
time. Then, the amplitudes of the first and third harmonic
components can be obtained. As illustrated in Fig. 2c, the
nonlinear response A obeys the linear rule when the
driving amplitude is very small. However, the nonlinear
response A has an obvious upward trend with increasing
driving amplitude due to the nonlinear offset, as explained
in Eq. (4). The amplitude of third harmonic component B
is also observed to increase at the same time. Furthermore,
a nonlinear calibration is also carried out to restore the
linear response by calculating A-3B. The response after
nonlinear calibration shows an excellent linear trend, and
its goodness of fit R2= 0.9999. Nonlinear calibration has
been proven to be effective, and the linear response can be
restored by removing the nonlinear offset. The lineariza-
tion coefficient ηx, also calculated according to Eq. (5),
decreases gradually with increasing driving amplitude and
ranges from 1 to 0.8, representing the nonlinear degree of
capacitive displacement detection. In conclusion, the
open-loop experimental results above have proven the
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Fig. 2 Illustration of real-time calibration method for capacitive detection nonlinearity. a Schematic diagram of this novel real-time calibration
method. b Open-loop platform to study the nonlinear behavior of capacitive detection. c Experimental results to verify this novel calibration method.
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effectiveness of this novel nonlinear calibration method,
which has provided a solid foundation for its application
under the whole-angle mode in the next chapter.

Effects of capacitive detection nonlinearity under whole-
angle mode
For the microshell resonator in this study, the

mechanical nonlinearity can be neglected because the
vibration amplitude is very small compared with
the dimension of this resonator. Hence, electrostatic
nonlinearity is the major factor that may influence the
performance of the gyroscope. In rate mode, the vibration
mode works in a fixed position with a constant amplitude.
Hence, capacitive detection nonlinearity is maintained at
the same level all the time, which will not have great
effects on the performance. In the whole-angle mode, the
vibration pattern in Fig. 3a can be regarded as the com-
position of mode X and mode Y, as shown in Fig. 1b.
During rotation, the amplitudes of the two modes modify
simultaneously when the pattern angle θ processes under
the whole-angle mode. The nonlinearity of capacitive
detection will also change at the same time. This special

capacitive nonlinearity characteristic under whole-angle
mode will be explained in detail as follows.
To achieve the behavior of the whole-angle mode,

external forces are applied to maintain the length of the
semimajor axis a and suppress the semiminor axis q to
zero, as shown in Fig. 3a. Thus, the pattern angle θ of the
vibration mode can process freely responding to the input
rotation. The sensed displacements in the x- and y-axes
can be decomposed into in-phase and in-quadrature
components with ωt+ φ as follows:

x ¼ a cos θ cosðωt þ φÞ � q sin θ sinðωt þ φÞ
y ¼ a sin θ cosðωt þ φÞ þ q cos θ sinðωt þ φÞ ð6Þ

Equation (6) shows that the sensed displacements in the
x- and y-axes modify at the same time as the pattern angle θ
proceeds. Hence, the nonlinearity of electrodes in the x- and
y-axes also alters along with the modification of sensed
displacements. This is a unique feature different from other
control systems and will result in major effects on the
performance. As shown in Fig. 3b, the variation in linear-
ization coefficients is calculated by numerical analysis.
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Because the gap d0 is a constant, different vibration
amplitudes x0 can represent different degrees of capacitive
detection nonlinearity. When the vibration amplitude is
small (x0/d0= 0.001), the linearization coefficients of elec-
trodes X and Y always remain at ~1 under different pattern
angles, representing a linear response at all times. However,
the linearization coefficients of electrodes X and Y have the
opposite variation trend under large vibration amplitudes
(x0/d0= 0.1), representing large nonlinearity when the
pattern angle θ changes from 0° to 90°. Specifically, the
nonlinearity of electrode X is the largest, but electrode Y is
in a linear response status when the pattern angle θ= 0°. In
contrast, the nonlinearity of electrode Y is in the strongest
nonlinear status, while the response of electrode X is still
linear when the pattern angle θ= 90°. In particular, the
responses of electrodes X and Y have the same nonlinearity
when the pattern angle θ= 45°. The minimum linearization
coefficient decreases from 0.9925 to 0.9725 with increasing
vibration amplitude from x0/d0= 0.1 to x0/d0= 0.2. Above
all, the nonlinearity of electrodes X and Y will be modified
in a reverse way at the same time under the precession of
pattern angle θ, which will have major influences on the
performance.
The nonlinearity of capacitive detection results mainly in

angle drift on the performance, which has been derived in
detail in the Supplementary Material. As illustrated in ref. 27,
the nonlinear effects of capacitive electrostatic actuation on
the angle-drift error can be removed by quadrature nulling
and have been ignored in this paper. According to the
Supplementary Material, the angle drift rate resulting from
capacitive detection nonlinearity can be expressed as:

_θdrift ¼ _θdamp asy þ _θnonlinear
_θdamp asy ¼ 1

2Δ
1
τ

	 

sin 2 θ � θτð Þ

_θnonlinear ¼ 1
τ tan δθ � κΩ d δθð Þ

dθ � κΩ 1
Λ
∂Λ
∂θ tan δθ

ð7Þ

where 1/τ and Δ(1/τ) represent the mean damping and
damping asymmetry, respectively. In addition, δθis the
angle-estimated error of pattern angle θ resulting from
capacitive detection nonlinearity. Λcalculated from the
equation in the Supplementary Material is the solution
of the semimajor axis a and is related to the pattern
angle θ.
Equation (7) shows that the angle drift rate consists of two

parts. The former induced by damping asymmetry will
generate only a 2θ harmonic component. However, the
latter, coming from capacitive detection nonlinearity, will
produce a 4θ harmonic component due to the existence of
δθ, which can be observed clearly from the numerical
simulation in the Supplementary Material. Equation (7) also
shows that the angle drift rate _θnonlinear representing the 4θ
harmonic component is proportional to the input rate Ω.

To investigate the effects of capacitive detection non-
linearity on gyro performance, numerical simulations are
carried out. Owing to the angle-dependent characteristic of
the angle drift rate, one can fit the Fourier series
(f ðθÞ ¼ 0:5a0 þ

P1
n¼1 an cosð2nθÞ þ

P1
n¼1 bn sinð2nθÞ) to

each simulation result to determine the amplitudes of the 2θ
and 4θ harmonic components. As shown in Fig. 3c, the 2θ
harmonic component of the angle drift rate remains the
same and independent of the rotation rates. However, the 4θ
harmonic component coming from capacitive detection
nonlinearity is proportional to the rotation rate. In addition,
the growth rate of the 4θ harmonic component increases
when x0/d0 changes from 0.035 to 0.1. The angle drift rate
coming from the 4θ harmonic component has already far
outweighed the angle drift rate induced by the 2θ harmonic
component when the rotation rate is relatively large. Hence,
the removal of the 4θ harmonic component is of great
importance to improve the performance of the gyro. At the
same time, experiments are also carried out to verify the
numerical simulation results, as illustrated in Fig. 3d, under
different vibration amplitudes x0= 448mV and x0=
1228mV. The simulation and experimental results are con-
sistent with each other. In summary, the 4θ harmonic
component in the angle drift rate comes from capacitive
detection nonlinearity and is proportional to the input rate
Ω. Furthermore, it cannot be simply compensated by a
feedback control loop. Therefore, the calibration of capacitive
displacement detection is the only way to remove the effects
of the 4θ harmonic component.

Implementation of real-time calibration under whole-angle
mode
Based on the novel nonlinear calibration method in this

paper, a complete control system of the whole-angle mode
was designed, as illustrated in Fig. 4a. Apart from a
microshell resonator, this platform also consists of two
printed circuit boards (PCBs). One PCB contains analog
amplifiers for the detection and actuation of the resona-
tor’s vibration and mixed-signal electronics: digital-to-
analog converters (DACs) and analog-to-digital converters
(ADCs). The residual part is the FPGA platform for digital
signal processing and implementation of the controllers.

~E ¼ ~c2x þ~s2x þ ~c2y þ ~s2y ¼ a2 þ q2

~Q ¼ 2 ~cx~sy � ~cy~sx
	 
 ¼ 2aq

~L ¼ 2 ~cx~sx þ ~cy~sy
	 
 ¼ a2 � q2ð Þ sin 2δϕ

~R ¼ ~c2x þ~s2x � ~c2y �~s2y ¼ a2 þ q2ð Þ cos 2θ
~S ¼ 2 ~cx~cy þ~sx~sy

	 
 ¼ a2 � q2ð Þ sin 2θ
~θ ¼ 1

2 arctan
~S=~R
	 


ð8Þ

To realize the linearization of capacitive displacement
detection, only some simple modifications on the FPGA
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platform are enough. First, an extra numerically con-
trolled oscillator (NCO) for demodulation of the third
harmonic component has been added into this system to
obtain in-phase and quadrature components of detective
electrodes X and Y, namelycð3Þx ; sð3Þx ; cð3Þy ; sð3Þy . Second, a
linearization calculator according to Eq. (5) is applied to
obtain the linearization coefficients ηx and ηy for detective
electrodes X and Y, respectively. Finally, the linearization
output of the in-phase and quadrature components are
calculated as~cx ¼ ηxc

ð1Þ
x ,~sx ¼ ηxs

ð1Þ
x ,~cy ¼ ηyc

ð1Þ
y and ~sy ¼

ηys
ð1Þ
y . Then, the calibrated control variables ~E; ~Q; ~L; ~R&~S

for energy, quadrature, PLL control loops and pattern
angle~θcan be calculated as Eq. (8).
Then, experiments are carried out to investigate the

effects of capacitive detection nonlinearity under dif-
ferent amplitudes and rotation rates. In the data pro-
cessing of these experiments, the angle output is
calculated as 3.7*θ to make it close to the input rotation
Ω and the angle drift rate is obtained by the differential
operation of angle output. As shown in Fig. 4b, the 2θ
harmonic component of the drift rate under a large
vibration amplitude (x0= 1228 mV) is almost the same
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as that of a small vibration amplitude (x0= 448 mV)
under different rotation rates. The small difference in
the 2θ harmonic component results from the gain
errors of detection and actuation under different
vibration amplitudes29, indicating that the 2θ harmonic
component of the drift rate has no relationship with the
vibration amplitude and rotation rate. Furthermore, the
2θ harmonic component of the angle drift rate can be
effectively eliminated by the compensation of damping
asymmetry, and this compensation method is explained
in the Supplementary Material. After compensation for
the damping asymmetry, the 2θ harmonic component is
reduced to less than 0.003°/s. However, damping
asymmetry compensation has no effect on the 4θ har-
monic component of the drift rate, and the removal of
the 4θ harmonic component can only be realized by the
calibration of capacitive detection nonlinearity. There-
fore, the 4θ harmonic component dominates in the
angle drift rate after damping asymmetry compensa-
tion. For example, the drift-rate curve under a rotation
rate of 10°/s without damping asymmetry, and non-
linear calibration is composed of a 2θ harmonic com-
ponent of 0.021°/s and a 4θ harmonic component of

0.076°/s, as shown in Fig. 4c. However, almost only the
4θ harmonic component of 0.076°/s is left in the drift-
rate curve after damping asymmetry compensation.
Furthermore, the 4θ harmonic component is reduced to
~0.004°/s after the calibration of capacitive detection
nonlinearity, and the angle drift rates under different
pattern angles are almost the same. The effectiveness of
nonlinear calibration has also been verified under dif-
ferent rotation rates and vibration amplitudes. As illu-
strated in Fig. 4d, e, the linear growth trends under
different rotation rates were suppressed with this
nonlinear calibration method. Moreover, the 4θ har-
monic components have decreased by 90.4% and 98.7%,
respectively, and the remaining parts are only ~0.004°/s
left when x0= 448 mV and x0 = 1228 mV. Above all, the
4θ harmonic component induced by capacitive detec-
tion nonlinearity is no longer related to the vibration
amplitude and rotation rate after nonlinear calibration.
Therefore, the experimental results above prove that
this nonlinear calibration method of capacitive detec-
tion nonlinearity is effective and that most 4θ harmonic
components can be eliminated to improve the perfor-
mance of the gyro.

Micro glassblowing

Ultrafast laser ablation Metallization

Micro assembly

wt=0.16 mm

H=4 mm

a

b

c d

d=2.5 mm
D=12 mm

lt=0.5 mm

N=48

Tinitial=0.2 mm

Fig. 5 Illustration of the micro-shell resonator gyroscope. a Schematic illustration of the microshell resonator fabrication process. b Geometry
parameters include the shell diameter D, height H, anchor diameter d, initial thickness Tinitial, tine length lt, tine gap wt and tine number N. c
Photograph of the accomplished resonator. d Photograph of a complete whole-angle microshell gyroscope.
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Gyroscope performance characterization
The fabrication of a microshell resonator is of great

importance for the performance of the gyroscope. Fig-
ure 5a provides a schematic illustration of the fabrica-
tion process for microshell resonators. The substrate is
placed on a graphite mold and mounted by vacuum
pressure. Then, the forming process starts by turning
on the whirling platform and aligning the blowing torch
toward the center of the graphite mold, and the
propane-oxygen torch provides a high temperature
above 1700 °C to heat the fused silica substrate. Then,
ultrafast laser ablation is introduced to detach the
resonator from the substrate due to its unique advan-
tages in micromachining transparent materials. Finally,

the resonator is bonded to the substrate through
microassembly after metallization15. A resonator with
teeth-like tines along the perimeter has the advantages
of significantly improving the vibration mass and
capacitance area of the resonator and simplifying
mechanical trimming by minimizing the effect of mass
removal on the stiffness30. The geometric parameters of
the microshell resonator, including the shell diameter
D, height H, anchor diameter d, initial thickness Tinitial,
tine length lt, tine gap wt and tine number N, are illu-
strated in Fig. 5b. The accomplished resonator is illu-
strated in Fig. 5c, and the metallic packaging method is
adopted to maintain a stable vacuum environment by
keeping the intracavity pressure at 0.01 Pa. A complete
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whole-angle microshell gyroscope including a packaged
microshell resonator and electronic control system is
shown in Fig. 5d.
To characterize the performance of the microshell

resonator gyroscope, frequency response and ring-down
tests are carried out. As shown in Fig. 6a, b, the frequency
mismatch between the two modes is ~86mHz after
mechanical trimming, and the ring-down times of the two
modes are 44.13 s and 43.35 s, respectively, which
demonstrates the excellent symmetry of this microshell
resonator. In addition, the angle drift rate under the dif-
ferent pattern angles is measured to be less than ±0.02°/s,
as illustrated in Fig. 6c, which can be used to evaluate the
damping asymmetry of the microshell resonator. Then,
damping asymmetry compensation is applied to remove
the 2θ harmonic component from the angle drift rate, and
the residual part is shown as a 4θ harmonic component of
the drift rate. Figure 6d demonstrates the responses of the
microshell gyroscope under rotations of ±0.001°/s,
±0.002°/s and ±0.003°/s, which proves that the rate
threshold is below 0.001°/s. Furthermore, the nonlinearity
of the scale factor is tested under ±0.1°/s, ±0.2°/s, ±0.5°/s,
±1°/s, ±2°/s, ±5°/s, ±10°/s, ±20°/s, ±50°/s, ±100°/s, ±200°/s,
±500°/s and ±1000°/s. For every rotation rate, the gyro-
scope acquired output data for 30 s with a sampling rate
of 1 kHz. The performance of the microshell resonator
gyroscope under whole-angle mode is limited under slow-
speed rotation due to angle drift. However, this gyroscope
is quite suitable for high-speed rotation because the per-
iodical drift error can be averaged to zero. Hence, the
maximum scale-factor nonlinearity is distributed in the
slow-speed regions. As shown in Fig. 6e, the scale-factor
nonlinearity is ~11.05 ppm without damping asymmetry
compensation and nonlinear calibration. If the damping
asymmetry is compensated, the 2θ harmonic component
of the drift rate will be removed, and the scale-factor
nonlinearity decreases to 4.86 ppm without linearization
calibration. Especially when the 2θ and 4θ harmonic
components of the drift rate are eliminated with damping
asymmetry compensation and nonlinear calibration, the
scale-factor nonlinearity will be just 0.79 ppm, which is an
improvement of 14 times. Meanwhile, the bias instability
increases from 0.157°/h to 0.0673°/h along with the
increment of vibration amplitude, due mainly to the
improvement of signal-to-noise ratio (SNR). Without this
nonlinear calibration method, there is a compromise
between SNR and excellent scale-factor nonlinearity. For
example, the SNR will severely restrict the performance of
the gyroscope because the resonator must work under a
very small amplitude due to the micron-level gaps of the
MEMS resonator if excellent scale-factor nonlinearity is
required. Therefore, the advantages of better bias
instability and excellent scale-factor nonlinearity can be
achieved at the same time under a large vibration

amplitude with this novel nonlinear calibration method of
capacitive detection.

Conclusions
This paper presents a novel method of nonlinear cali-

bration based on the relationship between the first and
third harmonic components of detective signals. A com-
plete control loop under whole-angle mode is established
to restore the capacitive linear response in real time to
remove the effects of capacitive detection nonlinearity by
eliminating the 4θ harmonic component of the angle drift
rate. Meanwhile, experiments are also carried out to verify
the effectiveness of this novel method. Combining this
novel method with the whole-angle control system, the
first practical whole-angle microshell resonator gyroscope
is realized with excellent performance. The bias instability
is improved from 0.157°/h to 0.0673°/h due to the
enhancement of the SNR. Furthermore, the rate threshold
is tested to be lower than 0.001°/s, and the scale-factor
nonlinearity is improved ~14 times to 0.79 ppm with
damping asymmetry and nonlinear calibration. This is the
best reported performance for MEMS whole-angle gyro-
scopes thus far, and the collaboration of microshell
resonators and whole-angle modes still has great potential
to be explored in the future.
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