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Abstract
Dynamic performance has long been critical for micro-electro-mechanical system (MEMS) devices and is significantly
affected by damping. Different structural vibration conditions lead to different damping effects, including border and
amplitude effects, which represent the effect of gas flowing around a complicated boundary of a moving plate and
the effect of a large vibration amplitude, respectively. Conventional models still lack a complete understanding of
damping and cannot offer a reasonably good estimate of the damping coefficient for a case with both effects.
Expensive efforts have been undertaken to consider these two effects, yet a complete model has remained elusive.
This paper investigates the dynamic performance of vibrated structures via theoretical and numerical methods
simultaneously, establishing a complete model in consideration of both effects in which the analytical expression is
given, and demonstrates a deviation of at least threefold lower than current studies by simulation and experimental
results. This complete model is proven to successfully characterize the squeeze-film damping and dynamic
performance of oscillators under comprehensive conditions. Moreover, a series of simulation models with different
dimensions and vibration statuses are introduced to obtain a quick-calculating factor of the damping coefficient, thus
offering a previously unattainable damping design guide for MEMS devices.

Introduction
Dynamic performance, which is of paramount impor-

tance for micro-electro-mechanical system (MEMS)
devices, is bounded by the surface forces, also known as
damping1–3. For example, the bandwidth and frequency
response of a MEMS accelerometer4, the mechanical
response of a resonator5, and the contact times of a
switch6, shock-absorbent squeeze-film damper7,8 and
other nonvacuum vibration transducers9,10 are all sub-
stantially affected by damping. Therefore, understanding
the mechanism that contributes to air damping carries

great significance for the MEMS community, because it
can offer guiding rules for MEMS design and can enable
the dynamic performance tuning of various kinds of
MEMS devices11.
Air damping can be categorized as squeeze-film air

damping or slide-film air damping, which denote the air
reaction, while two parallel plates move toward each other
and in parallel, respectively. Squeeze-film air damping is
dominant in MEMS devices, and the influence becomes
significant with decreasing device dimensions. The air film
can be perceived as a combination of a spring and a damper
during squeeze-film air damping analysis12, whereas the key
figure of merit becomes the calculation of the air damping
coefficient. Tipei1 introduced the Reynolds equation half a
century ago, which is most widely used in the investigation
of squeeze-film air damping based upon Reynolds’
research13. Thereafter, a series of solutions for the damping
coefficient in different cases were proposed12,14–16, although
most of them focused on cases of small-amplitude vibration
with trivial boundary conditions.
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However, combining the border effect along with the
amplitude effect may cause a deviation of >35% compared
with cases of small-amplitude vibration with trivial boundary
conditions17. Expensive efforts have been undertaken to take
these two effects into account. For example, regarding the
border effect, Veijola et al.18,19 proposed an assumption of
air flow channels to characterize the border effect and built
an elongation model for rectangular plates, whose accuracy
was higher than that of the simplest model, while estimating
the damping coefficient of small-amplitude vibration struc-
tures. For the amplitude effect, Sadd and Stiffer20 opened a
path toward the solution of squeeze-film air damping with
amplitude effects and proposed formulas for large-amplitude
damping coefficients, but their theory only applied to the
trivial boundary condition. In addition, many studies have
focused on the impact of large amplitudes, but no border
effect consideration has been included simultaneously,
leading to a lack of accurate estimates21–23. In summary,
investigations considering both the border effect and
amplitude effect have remained elusive, which is the subject
of this paper, and essential for the MEMS community
because MEMS devices in reality can have complicated
boundary conditions, and the vibration amplitude can even
exceed 50% of the air film thickness.
In this paper, a more complete squeeze-film air damp-

ing model is proposed that considers both the border
effect and amplitude effect. We first discuss the simplest
model of squeeze-film air damping, and then modify the
model by adding the border effect for cases of rectangular
and circular plates. Thereafter, we present a complete
theoretical model, wherein the model considering
the border effect and amplitude effect together gives the
analytical expression of the damping coefficient of the
squeeze film. A series of simulation models are built to
compare the theoretical model and simulation results in
different cases, including cases with border effect only,
amplitude effect only, and both effects, which in turn
verifies the consistency and reliability of the analytical
expression. Experimental measurements based on the
free-vibration decay (FVD) method further confirm the
validity of the theoretical model and simulation. In addi-
tion, the damping model is further expanded on the basis
of the simulation results to obtain a general expression
containing a quick-calculating factor, which can be con-
sidered a quick and strong guide in the damping-related
analysis and corresponding MEMS design.

Results
Complete squeeze-film air damping model
Simplest model of squeeze-film air damping without border
effect and amplitude effect
Squeeze-film air damping represents the effect of the

opposite force of air on the movable structures, when the
air is squeezed or sucked. The theory of squeeze-film air

damping has received extensive attention over the past
decades. In this section, we first give the simplest case of
squeeze-film air damping without the border effect and
amplitude effect.
In a typical case of squeeze-film air damping, the

moving direction of a parallel plate is perpendicular to the
wall, and air between them leaves laterally. Considering
the conservation of air mass, the general Reynolds equa-
tion gives the dynamic performance of the air film
between the wall and the plate24:

∂

∂X
ρ
H3

μ

∂P
∂X

� �
þ ∂

∂Y
ρ
H3

μ

∂P
∂Y

� �
¼ 12

∂ðHρÞ
∂T

� �
;

ð1Þ
where P is the pressure distribution function of the air
film, and the variation in pressure along the moving
direction of the plate can be ignored due to the small
thickness, ρ is the density of the air film, H is the thickness
of the air film, μ is the coefficient of viscosity of the air
film, X and Y are coordinates, and T represents the time.
The general Reynolds equation is applicable to any shape
plate, including a rectangular plate and circular plate.
On the basis of Eq. (1), for an oscillating plate, H can be

defined as:

H ¼ H0 1þ ε sin ωTð Þð Þ; ð2Þ

H0 is the initial thickness of the air film, ε is the
amplitude ratio, which equals the ratio of the oscillation
amplitude of the plate to the initial thickness of the air
film, and ω is the frequency of movement. In addition, the
air density ρ can be replaced by the pressure P relying on
the assumption of consistent temperature in MEMS
devices. For further simplification, the parameters are first
normalized to obtain the simplified form of the Reynolds
equation as:

∂2p2

∂x2
þ ∂2p2

∂y2
¼ 2σ

h3
∂ðhpÞ
∂t

; ð3Þ

where p= P/P0, x= X/l, y= Y/l, h=H/H0, t= ωT, P0 is
the ambient pressure, and l is the characteristic length of
the plate (equal to half the width of the rectangular plate
W or the radius of the circular plate R). In addition, the
squeeze number σ, which is utilized in the following
analysis, has the following definition:

σ ¼ 12μωl2

H2
0P0

: ð4Þ

For the simplest case, in which the oscillation amplitude
of the plate is small (H is approximately equal to H0) and
the pressure is zero at the plate boundary, the damping
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coefficient of parallel plates can be calculated as25:

cd�sp ¼ f γð Þ μl
4

H3
0
; ð5Þ

The factor f (γ) for the rectangular plate and circular
plate can be respectively represented as:

frec γð Þ ¼ 16γ 1� 192γ
π5

P
n¼odd

1
n5 tanh

nπ
2γ

� �
fcyc γð Þ ¼ 3π

2

8><>: ; ð6Þ

where γ denotes the ratio of width and length, ranging
from 0 to 1 for a rectangular plate and 1 for a
circular plate.
The general Reynolds equation has served as a theore-

tical underpinning for damping issues over the past half-
century. Researchers took full advantage of this simplest
model to obtain the damping coefficient for different
types of squeeze-film air damping, whereas they corre-
sponded to various assumptions.
However, the simplest model is only applicable to small-

amplitude and trivial boundary conditions with com-
pressible air, which has heavy limitations when facing
complicated conditions. For example, the nonlinearity due
to a rotating or a large-amplitude movement of the plate
is a challenging problem. In addition, different boundary
conditions, in terms of different geometries, are a difficult
to establish using the basic theory. Some researchers, such

as Veijola18,19 and Sadd20, have developed simple
approaches to calculate squeeze-film air damping invol-
ving complicated boundary conditions and large-
amplitude vibrations, which are termed the border effect
and amplitude effect, respectively. Nevertheless, conven-
tional theories have not considered them together, so that
there always exists a nonnegligible deviation from reality.
In the next sections, we further develop the model,

inspired by previous scholars’ work, and propose a com-
plete model to evaluate the dynamic characteristics of air
damping by considering both the border effect and
amplitude effect for universal structures.

Modified model of squeeze-film air damping with border
effect only
The aforementioned solution is based on the trivial

boundary condition, in which the relative pressure around
the plate boundary is regarded as zero, as shown in Fig. 1a,
c. However, for a complete model of squeeze-film air
damping, as shown in Fig. 1b, e, the pressure around the
plate is nonzero, and the moving air undoubtedly has
effects on the plate.
Inspired by previous research18,19, the movement con-

dition of air sandwiched between the plate and wall in
flow channels with dimensions of 2W × 2L ×H for a rec-
tangular plate or 2R × Δw ×H for a circular plate with
border effects is considered to be equivalent to the air
flow in elongated channels without border flow, wherein
elongated channels have an elongated width ΔW and

2(l  + Δl )

Trivial
boundary

c

a

b

d

e

Trivial
boundary

Plate

Air

Wall

Trivial
boundary

Trivial
boundary

Trivial
boundary

Trivial
boundary

Trivial boundary

Plate

Plate

Air

Air

Wall

Wall

2l

Fig. 1 Schematic of boundary conditions. a simplest model (solid line) and elongation model (dashed line) with trivial boundary conditions. b
Complete model with border effects. c, d and e Cross-sectional views of these three models.
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length ΔL for a rectangular plate and an elongated radius
ΔR for a circular plate.
The modified elongation model is shown in Fig. 1a, d

with dashed lines, which have been proven to success-
fully approximate the real boundary condition for
squeeze-film air damping. The dimensional parameters
of the elongation model, which are termed Welong=W
+ ΔW, Lelong= L+ ΔL, and Relong= R+ ΔR, are calcu-
lated as26:

Welong ¼ W
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ3AW

p
1þ4ALð Þ3=8ffiffiffiffiffiffiffiffiffiffi

1þ3AL
p

1þ4AWð Þ1=8

Lelong ¼ L
ffiffiffiffiffiffiffiffiffiffi
1þ3AL

p
1þ4AWð Þ3=8ffiffiffiffiffiffiffiffiffiffiffiffi

1þ3AW
p

1þ4ALð Þ1=8

8><>: ; ð7Þ

AW ¼ 4
3π

1þ2:676K 0:659
n

1þ0:531K 0:5
n H=2Wð Þ0:238

H
W

AL ¼ 4
3π

1þ2:676K 0:659
n

1þ0:531K 0:5
n H=2Lð Þ0:238

H
L

8<: ; ð8Þ

Relong ¼ R 1þ3ARð Þ1=2
1þ4ARð Þ1=8

AR ¼ 4
3π

1þ2:676K0:659
n

1þ0:531K0:5
n ðH=2RÞ0:238

H
R

8><>: : ð9Þ

where Kn is the Knudsen number, which is close to zero
when the air film thickness is large, and Δw is set close to
zero to simplify the expression of the elongated radius of
the circular plate. Similar formulas are obtained by FEM
simulation as well17. When the dimensions of the plates
are larger than the thickness of the air film, the first-order
approximation of the elongation dimensions can be
expressed as:

Welong � W 1þ AWð Þ � W 1þ 4
3π

H
W

� �
Lelong � L 1þ ALð Þ � L 1þ 4

3π
H
L

� �
Relong � R 1þ ARð Þ � R 1þ 4

3π
H
R

� �
8><>: : ð10Þ

By introducing the characteristic length l, Eq. (10) can
be simplified to:

lelong ¼ l 1þ 4
3π

H
l

� �
: ð11Þ

Substituting the elongated dimensional parameter into
Eqs. (5) and (6), we therefore obtain the squeeze-film air
damping coefficient with the border effect of the elonga-
tion model:

cd�be ¼ f γð Þ μl
4

H3
0
´ 1þ βð Þ4; ð12Þ

where β is a factor of border effect that equals
4H0/3πl. Due to the small value of β in most
cases, γ can be considered a constant in the
elongation model.

Complete model with border effect and amplitude effect
While the oscillation amplitude of the plate is large

enough, for example, comparable to the air film thickness,
it can lead to a quite different dynamic damping effect
compared to the small-amplitude case, termed the
amplitude effect. To obtain a more applicable theoretical
expression, taking the large oscillation amplitude condi-
tion into account, we raise the presumption that the
squeeze number σ is small, which means that air is
incompressible or has enough time to leak from the gap.
In addition, the dimensions of the plate should be far
larger than the thickness of the air film. On the basis of
this assumption and Eq. (3), it is straightforward to obtain
a solution for rectangular and circular plates with trivial
boundary conditions and amplitude effects20, which
combines the amplitude effect function25 and equation of
the simplest model to successfully predict the dynamic
performance of squeeze-film air damping with a large-
amplitude oscillation and trivial boundary condition:

cd�ae ¼ f γð Þ μl
4

H3
0
´

1

1� ε2ð Þ1:5 : ð13Þ

We then combine the work of the amplitude effect and
border effect together, further developing an elongation
model in consideration of the amplitude effect, which is
termed the complete model. Regarding the elongation
dimensions mentioned in Eq. (11), we obtain the elon-
gation boundary conditions of the rectangular and cir-
cular plates:

pð± lelong; y; tÞ ¼ 0

p x; ± lelong
γ ; t

� �
¼ 0

(
ð14Þ

and

p lelong; θ; t
� � ¼ 0: ð15Þ

The modified normalized Reynolds equation is then
obtained by introducing two normalized parameters ~x ¼
X=lelong and ~y ¼ Y=lelong:

∂2p2

∂ex2 þ ∂2p2

∂ey2 ¼ 2σ
h3

1þ βhð Þ2∂ hpð Þ
∂t

: ð16Þ

The squeeze number σ is assumed to be small so that
the pressure p can be Taylor expanded:

p ¼ 1þ p1σ þ p2σ
2 þ 0ðσ3Þ: ð17Þ

Substituting Eq. (17) into Eq. (16) and combining the
boundary conditions in Eqs. (14) and (15), the time-
varying damping forces on the vibrated rectangular plate
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and circular plate are obtained, respectively:

F tð Þ ¼ 4γP0l2 1þ βhð Þ3 1þ βhð Þ � 2h0σ
h3

P
n¼odd

2
nπ

� �4
1� tanhnπ2γ

nπ
2γ

� �	
þ h00

h5 � 5h0
2h6

� �
σ2

P
n¼odd

P 2
nπ

� �6
3 1� tanhnπ2γ

nπ
2γ

� �
� tanh2 nπ

2γ

h i
 ;
ð18Þ

and

F tð Þ ¼ 4πP0l
2 1þ βhð Þ4 � 1

8
h0

h3
σ þ 1

48
h00

h5
� 5 h0ð Þ2

2h6

 !
σ2

" #
:

ð19Þ
The damping force has the following definition:

F tð Þ ¼ kH þ cH 0; ð20Þ

where k and c denote the stiffness coefficient and damping
coefficient, respectively. In addition, the damping force on
the plate can be expanded to a Fourier series, expressed as
follows:

F tð Þ ¼ A0 þ A1 cos t þ B1 sin t

þ � � � þ An cosðntÞ þ Bn sinðntÞ:
ð21Þ

From the previous two equations, the modified stiffness
coefficient and damping coefficient can be derived, and in
turn, the damping coefficient of the time-varying elon-
gation model of the rectangular plate and circular plate
are expressed as:

cd�ab ¼ f γð Þ μl
4

H3
0
´ g ε; β; γð Þ; ð22Þ

g ε; β; γð Þ ¼ 1
1�ε2ð Þ1:5 þ 3þ γð Þβ 2 1�

ffiffiffiffiffiffiffiffi
1�ε2

pð Þ
ε2
ffiffiffiffiffiffiffiffi
1�ε2

p
	
þ 3 1þ γð Þβ2 2 1�

ffiffiffiffiffiffiffiffi
1�ε2

pð Þ
ε2 þ 3γ þ 1ð Þβ3 þ γβ4



:

ð23Þ

Equation (22) can be perceived as a more trustworthy
estimation of the damping coefficient by considering both
the border effect and amplitude effect, which we believe
can be a more applicable guide in MEMS design.

Verification and development of the complete model
Simulation verification
Numerical methods have been proven to deal with the

issue of fluid dynamic performance with high accuracy,
and have effectively simulated the influence of air around
a plate boundary, but at the cost of computational over-
head and time, especially for complicated structures.

In this section, the correctness of the complete the-
oretical model is verified by using self-built simulation
models. Herein, four simulation models are introduced,
and the meshed diagrams are shown in Fig. 2, which are
the simplest models (the same as the elongation mod-
els) with trivial boundary conditions and complete
models for rectangular plates (Fig. 2a, b) and circular
plates (Fig. 2c, d), respectively. Note that the only dif-
ference between the simplest models and the elongation
models is the dimensions of the plate; thus, it can be
analyzed by the same simulation model. The detailed
parameters are listed in Table 1, and the lateral dis-
placement of the plate is set to zero in simulations,
indicated by x= y= 0. The displacement of the plate
along the z-axis is defined as:

z ¼ ε sin ωTð Þ: ð24Þ

The damping coefficients are calculated based on the
pressure distribution of the air film extracted from the
simulation results27:

cd ¼ Re

R
pdA
H 0

� �
: ð25Þ

Simulations were conducted under different conditions,
including considering only the border effect, only the
amplitude effect, and both with different structural
dimensions.
First, we utilized the simulation models of the sim-

plest model, elongation model (the same form as the
simplest model but different dimensions) and complete
model, as shown in Fig. 2, to verify the case with border
effects only, while the dimension of the elongation
model was obtained from Eq. (11). The characteristic
length of both rectangular and circular plates was
altered from 2 to 6 mm in the simulation. Figure 3a, b
shows the simulated damping coefficient with small
amplitudes and deviations of rectangular and circular
plates, respectively, in which the solid circles represent
the damping coefficient and stars represent the relative
deviation from the results of the complete model. The
deviations obviously show that the elongation model
results appear to be much closer to the complete results
compared with the simplest model. While the devia-
tions increase with the decrease in the characteristic
length due to the size effect, the deviations between the
elongation model and the complete model are always
three times smaller than those of the simplest model,
which confirms the validation of the elongation models
for cases with border effects only. We then compared
the theoretical and simulation results for the case with
the amplitude effect, but without the border effect. The
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simulation models are shown in Fig. 2a, c, and the
theoretical result is based on Eq. (13). The simulation
was performed by setting the amplitude ratio ε from 0

to 0.8 for the rectangular plate and circular plate. The
relative deviation of the damping coefficient can be
clearly found to be small, which is presented in Fig. 3c,
d. It is noted that the deviations of the damping coef-
ficient are all <5%. The comparison indicates that the
theoretical and simulation results have high accordance
in the case with the amplitude effect, but without the
border effect.
The complete models with border effects and amplitude

effects, as shown in Fig. 2b, d, were then simulated with
different amplitude ratios ε in comparison with the the-
oretical results of the complete model. Figure 4 shows the
pressure of the theoretical and simulation results with
various times. It is demonstrated that the complete model
in consideration of both effects, represented by the red
curve, better confirms the simulation results, which serve
as the baseline of the true result.
Moreover, Fig. 5 shows the results of all cases, including

the simplest model, modified theoretical model with
border effect only, model with amplitude effect only, and
the complete model. It is obvious that the deviation
relative to the simulation results decreases dramatically
from the simplest model to the complete model, from
nearly 80% for the simplest model to <9% for the com-
plete model, which is a powerful confirmation of the

Table 1 Initial parameters of the elongation models.

Geometry parameters

Half width of rectangular plate, W (μm) 1500

Half length of rectangular plate, L (μm) 1500

Radius of circular plate, R (μm) 1500

Calculated elongation width, Welong (μm) 1579

Calculated elongation length, Lelong (μm) 1579

Calculated elongation radius, Relong (μm) 1581

Thickness of air film, H0 (μm) 200

Thickness of plate, Hp (μm) 400

Thickness of complete model, Hc (μm) 800

Oscillation frequency of plate, ω (rad/s) 2π × 100

Fluid properties, air

Ambient pressure, P0 (Pa) 1.01 × 105

Temperature, T (K) 300

Viscosity coefficient of air, μ (N × s)/m2 1.7984 × 10−6

L/Lelong

L A

A

2W/ 2Welong

2R/ 2Relong 2R

2W

H0

H0

0 0.002 0.004 (m)

a b

c d

0.001 0.003

0 0.002 0.004 (m)

0.001 0.003

0 0.002 0.004 (m)

0.001 0.003

0 0.002 0.004 (m)

0.001 0.003

Hp Hc

Hp Hc

Z

YX

Z

YX

Z

YX

Z

YX

Fig. 2 Meshed diagrams overview. a simplest model or elongation model for rectangular plate. b complete model for rectangular plate. c simplest
model or elongation model for circular plate. d complete model for circular plate.
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effectiveness of our proposed model. Even when com-
pared with the up-to-date theoretical model, the complete
model shows a threefold improvement. It is likewise
interesting to observe the decrease in the relative devia-
tion of the theoretical result of models in consideration of
the amplitude effect, with the increase in the amplitude
ratio. The reason could be that the ratio of the air film
thickness to the characteristic length of the plate, indi-
cated by H0/l, decreases with increasing amplitude ratio,
which then leads to the weakening of the border effect.

Experimental verification
To experimentally verify the model, we performed a FVD

measurement to test the dynamic response characteristic of
an oscillator, obtaining the damping coefficient at different
amplitude ratios. The experimental setup and corresponding
method are described in the “Materials and methods” and
Supplementary information sections.
The FVD response curve of the moving plate is pre-

sented by the gray line in Fig. 6a. The vibration of the
plate started to decay from the point wherein the ampli-
tude equals 300 μm, and stopped at the point wherein the
amplitude is ~0. It should be noted that in different
models, the expressions of c are totally different, and

envelope curves of the FVD of these four models are
therefore expressed as:

d1 ¼ Ae�
c0
2mt

d2 ¼ Ae�
c0 ´ 1þβð Þ4

2m t

d3 ¼ Ae
� c0

2m 1�x2

h2ð Þ1:5t

d4 ¼ Ae�
c0 ´ g x

h
;β;γð Þ

2m t

8>>>>>>><>>>>>>>:
: ð26Þ

in which d is the vibration displacement of an oscillator, A
is a scale factor involving the initial vibration amplitude, c0
is the damping coefficient for the simplest model, and m is
the mass of the moving plate. Substituting the parameters
of the tested oscillator, we obtained the calculated envelope
curves of the FVD for the four models, as shown as the
solid lines in Fig. 6a. It is noted that the best agreement
between the result of the complete model and the envelope
of the experimental data, depicted by the dashed line, is
observed. The result of the model with border effect only
matches well with the experiment in the late, while the
amplitude is small; the result of the model with amplitude
effect only matches well with experiment in the early, while
the amplitude is large.
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We further calculated the damping coefficient as a
function of the amplitude of vibration. The damping
coefficient c can be obtained through the equation of the
envelope curve:

c ¼ 2m ´
d ln xð Þ
dt

: ð27Þ

Figure 6b shows the curves of the damping coefficient
versus the amplitude ratio obtained from the theoretical

models and experimental data. It is explicitly shown that
the curve of the complete model is in best agreement
with the experimental result. Similarly, the model with
border effects only and the model with amplitude
effects only show limited scope of application, whereas
they are fit for small- and large-amplitude cases,
respectively.
The experimental results, along with the aforemen-

tioned comparison, fully verify the accuracy and con-
sistency of our proposed model. The complete model is
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proven to provide a more trustworthy estimation of the
damping coefficient and dynamic response.

A quick-calculating factor
A series of simulations with different vibration condi-

tions and structures were analyzed to test the validity of
our theory, and further develop the complete model and
to give a quick-calculating factor of the damping coeffi-
cient with the border effect and amplitude effect for
various kinds of dimensions. First, simulations with dif-
ferent oscillation frequencies ω were performed. Figure
7a, c shows the damping coefficient versus the amplitude
ratio with different frequencies for rectangular and cir-
cular plates, where the amplitude ratio varies from 0 to
0.8, and the frequency varies from 10 to 1000 Hz. The
deviation between the theoretical and simulation results
versus frequency when the amplitude ratio is set to 0.8 is
depicted in Fig. 7b, d. The results show that the deviation
between the theoretical and simulation results is minimal
in the frequency range of 10–500 Hz, while it gradually
increases >1000 Hz. This is because the squeeze number
is large with large frequency so that the fourth term 0(σ3)

on the right side of Eq. (17) cannot be ignored, which
introduces the deviation to the air damping solution.
Then, different ratios of H0/2l were set, wherein the air

film thickness varied from 100 to 300 μm and the char-
acteristic length varied from 1 to 3mm. The simulation
results with an amplitude ratio of 0.8 are compared with
theoretical results, as shown in Fig. 8a–d. This indicates
that the theoretical deviation can be tolerated when H0/2l
is in the whole range from 1:10 to 1:30.
Considering different ratios of width and length γ for

the rectangular plate, more simulations were conducted
to investigate the influence of the shape of the rectangular
plate. Figure 8e depicts the results of different widths of
the rectangular plate, which shows that the rectangular
plate shape has little influence on the correctness of the
theoretical models.
In summary, all of the simulation results show high

consistency with the modified expression Eq. (22) of our
proposed complete model for the damping coefficient.
Furthermore, the damping coefficient with the border
effect, under consideration of the amplitude effect, can be
quickly calculated by multiplying the simplest expression
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Eq. (5) by a factor:

g ε; β; γð Þ ¼ 1
1�ε2ð Þ1:5 þ 3þ γð Þβ 2 1�

ffiffiffiffiffiffiffiffi
1�ε2

pð Þ
ε2
ffiffiffiffiffiffiffiffi
1�ε2

p
	
þ 3 1þ γð Þβ2 2 1�

ffiffiffiffiffiffiffiffi
1�ε2

pð Þε2
þ 3γ þ 1ð Þβ3 þ γβ4



;

ð28Þ
where ε is the amplitude ratio, γ is the ratio of the width and
length of the plate, and β is the factor of the border effect.
This factor hybridizes three characteristic values of the
border effect, amplitude effect, and shape of the plate to
account for all of their influences on squeeze-film air
damping. It is a complete theoretical model for the dynamic
performance and damping coefficient of vibrated rectangular
and circular parallel plates.

Discussion
Investigation of squeeze-film damping is critical in

MEMS design and application, whereas the border effect
and amplitude effect have not been considered simulta-
neously; therefore, large deviations persist when facing
complicated boundary conditions and large vibration
amplitude cases. This paper combines the merits of the
elongation model and amplitude effect function, putting
forward a complete model, which gives a complete
description of the analytical characterization of the
damping performance. The model is thoroughly verified
by simulations and experiments, wherein a deviation
threefold lower than that of conventional models is
obtained by benchmarking. In addition, many simulations
with different conditions and geometries of structures are
conducted to further extract a quick-calculating factor to
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modify the damping coefficient. Compared to the time-
cost simulation model and design, the complete model
and the factor pave the way for a quick and accurate
damping design of MEMS devices, which carries great
significance for the community.

Materials and methods
Numerical analysis
The theoretical calculation was based on the modified

Reynolds equation, which stems from the general Rey-
nolds equation24, combined with the assumption of an air
flow channel18,19 and the amplitude effect function20.
Numerical analysis based on the finite volume method

was used to study the hydromechanical behavior of the
oscillating plate. The analysis was performed using
ANSYS Fluent commercial software, wherein a series of
models were built to characterize different conditions,
including the trivial boundary condition and complete
boundary condition. As shown in Fig. 2, the volumes
represent the fluid, while the cutaway volumes represent
the solid volumes. The mesh size around the solid was set
to 10 μm, which was much smaller than the dimension of
the whole structure. We chose the tetrahedron method of

mesh with dynamic mesh setting in the simulation due to
the limitation of large amplitude. Ideal compressible air
was selected as the material of the fluid in these models.
Regarding the trivial boundary conditions, in Fig. 2a, c,
four side faces were set to pressure-out boundary condi-
tions, whereas the upper and lower surfaces, which served
as the wall, were fixed and controlled to move by pro-
gram, respectively, similar to Fig. 1c. For the complete
models of Fig. 2b, d, six outside surfaces and the inner six
surfaces all served as the wall. The latter comprised the
moving plate, which was also controlled by the motion
program, similar to Fig. 1e. The whole process was con-
ducted by a transient simulation, which included 200
time steps.
Regarding the simulation data analysis, we first obtained

the stress by integrating the intensity of pressure on each
surface of the moving plate at each time step. The data
were then compared with the theoretical results of Eqs.
(18) and (19), as performed in Figs. 4 and 5. The squeeze-
film air damping can be considered a spring damper, and
the load force is expressed as Eq. (20), which indicates
that the damping force is the product of the damping
coefficient and velocity. The motion of the plate was set to
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a sinusoidal movement along the designated direction;
therefore, the expression of the damping force became the
product of the damping coefficient and a cosine function.
In this case, the squeeze-film damping coefficient was
obtained through triangular Fourier expansion of the
simulated force of the moving plate, in which the first-
order coefficient was regarded as the damping coefficient

and used to compare with the theoretically calculated
damping coefficient.

Experimental analysis
The experiments were carried out in a custom-built

vibration test setup, including an oscillator, a standard
vibrator, a laser vibrometer, and the corresponding data
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acquisition system (see Supplementary Information). The
time-varying vibration of the oscillator was measured by
the vibrometer and high-speed data acquisition system,
which enabled the real-time measurement of the FVD
response.
The FVD method is based on the FVD response curve,

whose displacement with a small damping coefficient is
expressed as:

d ¼ Ae�
c
2mt sin ωt þ φð Þ; ð29Þ

in which d is the vibration displacement of an oscillator, A
is a scale factor involving the initial vibration amplitude, c
is the damping coefficient, m is the mass of the moving
plate, ω is the vibration frequency, and φ is the phase. A,
ω, and φ can be identified as constant in the case of a
small damping ratio; thus, by detecting the decay
response, it is able to extract the damping coefficient c
from the envelope in Eq. (27). Compared to the half-width
method28, the FVD method29 is demonstrated to have
higher accuracy for small damping ratios.
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