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Abstract
A difficult issue restricting the development of gas sensors is multicomponent recognition. Herein, a gas-sensing (GS)
microchip loaded with three gas-sensitive materials was fabricated via a micromachining technique. Then, a portable
gas detection system was built to collect the signals of the chip under various decomposition products of sulfur
hexafluoride (SF6). Through a stacked denoising autoencoder (SDAE), a total of five high-level features could be
extracted from the original signals. Combined with machine learning algorithms, the accurate classification of
47 simulants was realized, and 5-fold cross-validation proved the reliability. To investigate the generalization ability,
30 sets of examinations for testing unknown gases were performed. The results indicated that SDAE-based models
exhibit better generalization performance than PCA-based models, regardless of the magnitude of noise. In addition,
hypothesis testing was introduced to check the significant differences of various models, and the bagging-based back
propagation neural network with SDAE exhibits superior performance at 95% confidence.

Introduction
SF6 is a filling medium in electrical devices for insula-

tion and arc extinguishing. When gas-insulated switch-
gear (GIS) has been working for a long time, some
internal defects can still lead to partial discharge (PD).
Then, the SF6 in GIS equipment can be decomposed to
SF5, SF4, SF3, and so on1. Furthermore, these low-fluorine
sulfides react with trace moisture and oxygen, thus pro-
ducing multiple decomposition products (SO2, SO2F2,
and SOF2)

2,3. If arc discharge or partial overthermal
(POT) faults occur, the interaction of SF6 with water and
oxygen produces H2S

4,5. Some evidence suggests that
these decomposition products can reflect the running
state of electrical devices6,7. Therefore, it is of great sig-
nificance to accurately monitor these gases (H2S, SO2F2,
SOF2, and SO2) for fault diagnosis. Many techniques have
been proposed to detect SF6 decomposition, including
infrared absorption spectrometry8, photoacoustic

spectroscopy9, and gas chromatography-mass spectro-
metry10. Compared to the above three offline testing
methods, gas sensors are inexpensive, small, and easily
integrated; moreover, they have the potential to realize
online monitoring11–14.
Previous research has mainly focused on improving gas-

sensitive materials15–17. Even though incredible increases
in sensitivity are constantly being achieved, the ability to
discriminate multicomponent gases has lagged behind18.
To identify gas mixtures, many approaches based on gas
sensors have been implemented. Exploiting the tempera-
ture modulation of the sensor is a viable strategy for
quantifying gas components19–21. Thus, we utilized short-
period dynamic thermal modulation to acquire more
information from gas sensors22 and established a recog-
nition library to quantitatively detect H2S and SO2.
However, this method inevitably increases the complexity
and cost of the detection system. Recently, another
innovative method combining gas chromatography (GC)
with sensors has been promoted. Zampolli et al.23 devel-
oped a silicon micromachined packed column to measure
benzene, toluene, and m-xylene. Broek et al.24 simplified a
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Tenax TA separation column and employed it with a
sensor to quantify methanol from other interference
gases. However, the effect of gas separation was obviously
restricted by the filled material in the separation column,
whose performance was easily influenced by the ambient
temperature and flow rate. Previous research indicated
that sensor arrays were a simple, fast, and effective
approach for determining gas mixtures25–27. Zhang
et al.28 used three independent sensors to quantitatively
distinguish formaldehyde and ammonia at concentrations
from 5 to 100 ppm. Recently, scholars have focused on
reducing the size of the sensor array to facilitate inte-
gration on a circuit board. With micromachining tech-
nology, specific functional patterns can be customized
on silicon substrates. Güntner et al.29 employed a silicon-
based array with four sensing areas for formaldehyde
detection, with a small size of 14.22 mm. Additionally, Hu
et al.30 fabricated a four-area chip (1 cm2) to discriminate
gases. In the field of SF6 decomposition gas detection, a
small-volume sensor has the potential to be embedded
into equipment for online monitoring, which can greatly
improve production efficiency.
It is known that the number of sensory neurons in the

nasal cavity is limited, yet the nose has the ability to
discriminate thousands of odors. The basis for the brain
to correctly discriminate odors is that each odor activates
a different combination of sensory neurons31,32. With a
function similar to that of animals’ noses, the sensor array
is called an “electronic nose”. The differences in the sig-
nals of the array are used to discriminate samples. How-
ever, if only a small difference exists in the signals, the
recognition may fail. Thus, it is important to extract
sufficient information from the signals. In most previous
research28,33, only the response value was extracted from
the sensor signal, which actually wasted extensive pow-
erful features. Lundström et al.34 used all available tran-
sient features as descriptors to reduce the dimensionality,
which inspired us to extract more initial features from
sensor signals.
Generally, an initial data set comprising several features

requires dimensionality reduction processing to improve
the sample density and distance calculation. Additionally,
samples can be denoised to some extent. Most studies
employ principal component analysis (PCA) for dimen-
sionality reduction35,36. However, this method is a linear
mapping, which may make it unsuitable for nonlinear
tasks. An autoencoder (AE) is an artificial neural network
that can efficiently represent the input data via unsu-
pervised training37. The path from the input layer to the
efficient presentation layer is called the coding process,
and that from the efficient presentation layer to the out-
put layer is called the decoding process. When the
dimension of the efficient presentation layer is smaller
than the input layer, dimensionality reduction is realized.

Since the neural network is a nonlinear model, it is pos-
sible for the autoencoder to deal with nonlinear tasks. In
addition, the autoencoder has many variants. For exam-
ple, a stack autoencoder (SAE) and denoising autoencoder
(DAE) can jointly constitute a stack denoising auto-
encoder (SDAE)38,39. In theory, the high-level features
extracted by an SDAE have strong antinoise and gen-
eralization abilities.
In the field of gas recognition, generally, the smallest

possible device and the simplest method are used to
obtain the highest possible accuracy. This work is based
on the use of micromachining to fabricate a gas-sensing
microchip with a microthermal layer and multiple mate-
rial loading regions. Compared with traditional sensors,
this chip has a much smaller volume, while a stable
operation is ensured. Three gas-sensitive materials (ZIF8-
WO3, ZIF8-SnO2, and ZIF8-In2O3) prepared by electro-
spinning were coated on the sensitive regions of the GS
microchip. From the signal of each sensitive area, six
features were extracted, the response value, the response
time, the recovery time, the time at which the maximum
response is reached, and the times at which the change in
the resistance is the fastest during the response and
recovery stages. A total of 18 attributes from three
regions constituted the original data set. Then, six
machine learning algorithms were applied to cross-
validate 47 simulants of SF6 decomposition products
(H2S, SO2, SO2F2, and SOF2), and hypothesis testing was
used to check the significant differences. Moreover, this
work introduced noisy unknown data sets to compare
the antinoise and generalization abilities of SDAE-based
and PCA-based models.

Results and discussion
The entire GS microchip was composed of a supporting

substrate, microheater, insulating layer, and test electro-
des. An optical image of the final blank chip is shown in
Fig. 1a. The size of the chip, with four material loading
regions, is just 3.4 × 3.4 mm, which is far smaller than a
coin. On the front side, the illustration proves that the
width and spacing of the Au electrodes are both 20 μm.
On the backside, four blind square holes of 1 × 0.8 mm are
assigned for thermal isolation. Figure 1b shows AFM
images characterizing the sections of Pt and Au layers.
The AFM scanning area is approximately 3 × 27 μm. In
the upper illustration, the thickness curve is divided into
three sections. It can be concluded that the thicknesses of
the insulating layer and Pt heater are 466 and 225 nm,
respectively, which are close to our design expectations in
Supplementary Fig. S1 of the ESM. The AFM illustration
below characterizes the thickness of the Au layer on the
insulating layer, and the measured 290 nm is consistent
with the designed 30/250 nm Cr/Au electrodes. In Fig. 1c,
an electrospinning schematic and FESEM images are
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shown. The gas-sensing materials used in this paper are
zinc-based zeolite imidazole framework (ZIF8)-anchored
metal oxide nanowires. The specific synthesis is depicted
in Supplementary S1.1 of the ESM. The as-prepared ZIF8
is less than 50 nm. SEM images of various composites
indicate that they have obviously different diameters,
ranging from 100 nm to 1 μm. It is known that a differ-
ence in morphology might result in distinct response
signals that are conducive to constructing the feature
matrix. Figure 1d presents the chip loading with various
sensing materials. Herein, one loading region is reserved
as a control group (label 0). Labels 1, 2, and 3 correspond
to ZIF8-WO3, ZIF8-In2O3, and ZIF8-SnO2, respectively,
as illustrated in Table 1. Finally, the chip is fixed on the
base by wire bonding to facilitate performance testing.
Gas sensors generally need to work at a certain tem-

perature. For the device with a microheater, the tem-
perature curve needs to be calibrated first. Supplementary
Fig. S2a shows the temperature distribution over the GS
microchip as monitored by an infrared (IR) camera at
different heating voltages. To ensure the calibration
accuracy, we further employ a thermocouple in addition

to the IR camera. Supplementary Fig. S2b indicates the
temperature-dependent voltage curve of the chip. The
results prove that the temperature curves calibrated by the
two means are quite close. Considering that gas-sensing
materials should be operated at a certain temperature for
stability, we finally apply 7 V to a Pt microheater to
maintain the surface temperature at ~125 °C.
Schematic and physical diagrams of the measurement

system are shown in Fig. 2 and Supplementary Fig. S4. In
the inset of Fig. 2, a portable device for field detection
is illustrated. The GS microchip is the focus, but a gas
chamber, main circuit board, rinsing pump, and connec-
tion module are also included. This device can transmit
the signals of the GS microchip to the computer for fur-
ther analysis. The detailed assembly process is performed
experimentally. Apart from the portable detection device,
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Fig. 1 Performance of the GS microchip. a Optical image of the blank GS microchip. b AFM characteristics at various connections. c Schematic of
the electrospinning process for ZIF8-decorated metal oxide nanowires and SEM images of ZIF8, ZIF8-WO3, ZIF8-In2O3, and ZIF8-SnO2. d Three sensing
materials dispensed and mounted on the GS microchip bonded to the test base

Table 1 Gas-sensing materials loaded on the chip.

Region 0 1 2 3

Material Blank ZIF8/WO3 ZIF8/In2O3 ZIF8/SnO2
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the experimental system needs a mass-flow controller
(MFC) to control the concentrations of target gases in the
chamber. For the purpose of adjusting the relative
humidity level, an additional MFC is connected to the air
bubbler. The concentration and humidity of the target gas
can be adjusted by changing the flow rates among dry air,
wet air, and calibration gases. A humidity detector (TI,
HDC 1080) is put into the chamber to monitor the rela-
tive humidity. Herein, six MFCs are employed for dry air,
humid air, and four SF6 decomposition components.
Without consideration of the humidity, the concentra-
tions of the four target gases ranged from 0 to 50 ppm
(Supplementary Table S1). According to various gas
compositions, the 47 classification labels can be divided
into four groups (test 1 to test 4). Under various humidity
backgrounds (25%, 33%, 50%, and 75%), the concentra-
tions of the four target gases range from 0 to 30 ppm
(Supplementary Table S5). The exposure time and
flushing time are set to 100 and 300 s, respectively.
The total flow rate is set to 200 sccm.
The response value (S) can be calculated as follows:

S ¼ Ra � Rg
� �

=Ra ´ 100% ð1Þ

where Ra and Rg represent the sensor resistances in air
and the target gas, respectively. In addition, the response
time (τ_res) can be described as the time that elapses
when there is a stepwise change in the quantity to be
measured between the moment when this change starts

and the moment when the indicator reaches a value
conventionally fixed at 90% of the final change in indi-
cation. The definition of the recovery time (τ_rec) is
similar to that of the response time, except that the curve
changes in the opposite direction.
A stable signal of the device is the premise for its

long-term operation. In Fig. 3, for exposures to eight
different mixtures of SF6 decomposition components,
five cycling response–recovery curves are presented to
verify the repeatability of the output of the GS microchip.
There are obvious differences in response values and
response–recovery times for different measured gases,
which provides the basis for further gas recognition. For
instance, when exposed to 30 ppm SO2 (Fig. 3a), all three
materials’ resistances decrease, exhibiting a positive
response direction. If 30 ppm SO2F2 is injected (Fig. 3b)
into 30 ppm SO2, the resistances of the three materials
further decrease. When the target gas contains H2S
(Fig. 3c, d), the recovery characteristics of the GS
microchip are worse. This may be related to the chemical
adsorption of H2S on the surface of the material40. If SOF2
participates in the mixtures (Fig. 3e, f), the response
directions of the three modules might be negative, exhi-
biting an increase in the resistance. Figure 3g, h illustrates
the response signals when three gas components are
present. The response directions of the materials are
relevant to the content of SOF2. The higher the content of
SOF2, the more the response curve moves in the negative
response direction, and vice versa.
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After the repeatability of the experiments is confirmed,
the response–recovery curves (original signals) of the
MGC chip exposed to various mixtures are obtained. In
this process, 15 cyclic tests are conducted under each
atmosphere to construct a data set. Therefore, a final data
set containing 705 samples can be achieved for 47 mea-
sured gases. According to the signal of the GS microchip,
the concentrations of gas components can be calculated.
By extracting the signal features, we can simplify the
original signals and establish a mapping from the feature
to the gas concentration.
From each original response signal, we can extract at

least 6 descriptors. Taking ZIF8-In2O3 (region 2) as an
example, the three common descriptors of the response
value (S), response time (τ_res), and recovery time (τ_rec)
were usually employed in most previous studies41,42, as

shown in Supplementary Fig. S5a. Hierlemann summar-
ized the transient parameters that can be extracted from
sensor response curves34,43. To acquire more information
from the response curve, the first derivative curves can be
further analyzed to acquire another three descriptors
(Supplementary Fig. S5b): the time (τ_smax) at which the
maximum response is reached and the times at which the
change in the resistance is the fastest during the response
stage (τ_max) and recovery stage (τ_min). Wu et al.44

investigated the ozone-sensing properties of amorphous
indium gallium zinc oxide and found that the maximum
of the first derivative function was proportional to the
concentration of ozone. Additionally, Laminack et al.45

proved that the first derivative is linear with the gas
concentration. Thus, features can be extracted from the
first derivative curve. Many studies46,47 extracted features

60
a

e f g h

b c d

H
2S

(p
pm

)
S

O
2F

2
(p

pm
)

S
O

F
2

(p
pm

)
S

O
2

(p
pm

)
R

es
po

ns
e 

(%
)

R
es

po
ns

e 
(%

)

R
es

po
ns

e 
(%

)

R
es

po
ns

e 
(%

)

R
es

po
ns

e 
(%

)

R
es

po
ns

e 
(%

)

R
es

po
ns

e 
(%

)

R
es

po
ns

e 
(%

)

H
2S

(p
pm

)
S

O
2F

2
(p

pm
)

S
O

F
2

(p
pm

)
S

O
2

(p
pm

)

H
2S

(p
pm

)
S

O
2F

2
(p

pm
)

S
O

F
2

(p
pm

)
S

O
2

(p
pm

)

H
2S

(p
pm

)
S

O
2F

2
(p

pm
)

S
O

F
2

(p
pm

)
S

O
2

(p
pm

)

40
20

0
60
40
20

0
60
40
20

0
60
40
20

0

30 ppm SO2 ZIF8-WO3

ZIF8-In2O3

ZIF8-SnO2

ZIF8-In2O3

ZIF8-SnO2

ZIF8-In2O3

ZIF8-SnO2

ZIF8-In2O3

ZIF8-SnO2

ZIF8-In2O3

ZIF8-SnO2

ZIF8-In2O3

ZIF8-SnO2

ZIF8-In2O3

ZIF8-SnO2

ZIF8-In2O3

ZIF8-SnO2

ZIF8-WO3 ZIF8-WO3 ZIF8-WO3
30 ppm SO2F2, 30 ppm SO2 30 ppm H2S, 30 ppm SO230 ppm H2S

30 ppm SOF2 ZIF8-WO3
ZIF8-WO3

ZIF8-WO3 ZIF8-WO330 ppm SOF2, 30 ppm SO2
30 ppm SO2F2, 10 ppm SOF2, 10 ppm SO2 10 ppm SO2F2, 30 ppm SOF2, 10 ppm SO240

20

–20

–40

0

40

20

–20

–40

0

40

20

–20

–40

0

40

20

–20

–40

0

40

20

–20

–40

0

40

20

–20

–40

0

40

20

–20

–40

0

40

20

–20

–40

0

40

20

–20

–40

0

60

40

20

0

60

40

20

0

40

20

0

60

40

20

0

60

40

20

0

40

20

0

60

40

20

0

60

40

20

0

40

20

0

60

40

20

0

60

40

20

0

40

20

0

60

40

20

0

60

40

20

0

40

20

0

0 400

Time (s)

800 1200 1600 2000 0 400

Time (s)

800 1200 1600 2000 0 400

Time (s)

800 1200 1600 2000 0 400

Time (s)

800 1200 1600 2000

0 400

Time (s)

800 1200 1600 2000 0 400

Time (s)

800 1200 1600 2000 0 400

Time (s)

800 1200 1600 2000 0 400

Time (s)

800 1200 1600 2000

0 400

Rinsing

Injecting Injecting Injecting Injecting Injecting Injecting Injecting Injecting Injecting Injecting Injecting Injecting Injecting Injecting Injecting Injecting Injecting Injecting Injecting Injecting

Injecting Injecting Injecting Injecting InjectingInjecting Injecting Injecting Injecting InjectingInjecting Injecting Injecting Injecting InjectingInjecting Injecting Injecting Injecting Injecting

Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing

Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing Rinsing

Rinsing Rinsing Rinsing Rinsing Rinsing

Rinsing Rinsing Rinsing Rinsing Rinsing

Time (s)

800 1200 1600 2000 0 400

Time (s)

800 1200 1600 2000 0 400

Time (s)

800 1200 1600 2000 0 400

Time (s)

800 1200 1600 2000

0 400
Time (s)

800 1200 1600 2000 0 400
Time (s)

800 1200 1600 2000 0 400
Time (s)

800 1200 1600 2000 0 400
Time (s)

800 1200 1600 2000

60
40
20

0
60
40
20

0
60
40
20

0
60
40
20

0

60
40
20

0
60
40
20

0
60
40
20

0
60
40
20

0

60
40
20

0
60
40
20

0
60
40
20

0
60
40
20

0

60

H
2S

(p
pm

)
S

O
2F

2
(p

pm
)

S
O

F
2

(p
pm

)
S

O
2

(p
pm

)

H
2S

(p
pm

)
S

O
2F

2
(p

pm
)

S
O

F
2

(p
pm

)
S

O
2

(p
pm

)

H
2S

(p
pm

)
S

O
2F

2
(p

pm
)

S
O

F
2

(p
pm

)
S

O
2

(p
pm

)

H
2S

(p
pm

)
S

O
2F

2
(p

pm
)

S
O

F
2

(p
pm

)
S

O
2

(p
pm

)

40
20

0
60
40
20

0
60
40
20

0
60
40
20

0

60
40
20

0
60
40
20

0
60
40
20

0
60
40
20

0

60
40
20
0

60
40
20
0

60
40
20
0

60
40
20
0

60
40
20

0
60
40
20

0
60
40
20

0
60
40
20

0

Fig. 3 Five cycling response-recovery curves to verify the repeatability. The original signals of the GS microchip under exposure to a 30 ppm
SO2, b 30 ppm SO2F2 and 30 ppm SO2, c 30 ppm H2S, d 30 ppm H2S and 30 ppm SO2, e 30 ppm SOF2, f 30 ppm SOF2 and 30 ppm SO2, g 30 ppm
SO2F2, 10 ppm SOF2 and 10 ppm SO2, and h 10 ppm SO2F2, 30 ppm SOF2 and 10 ppm SO2

Chu et al. Microsystems & Nanoengineering            (2021) 7:18 Page 5 of 16



from the derivative curve, such as the maximum deriva-
tive, to improve the identification accuracy of algorithms.
Each response signal from the chip can export 6

descriptors, and the formed feature matrix can be
expressed as:

F ¼ S; τ res;τ rec;τ smax;τ max;τ min½ � ð2Þ

Therefore, three gas-sensitive materials, providing 18
attributes in total, construct the original data set
(705 samples). Considering that high dimensionality is not
conducive to observing the relationship between samples,
it is necessary to first reduce the dimensionality of the data
set. t-distribution random neighborhood embedding
(t-SNE) is a nonlinear dimensionality reduction method
that can solve the congestion problem of high-dimensional
data in a low-dimensional state48,49. For our original data
set with 705 samples, the t-SNE method is utilized for
clustering analysis, as shown in Fig. 4. Samples with 18
dimensions can be mapped to two-dimensional space to
visualize the original data set. There are few overlapping
samples, which means that local features can efficiently
express the original samples. However, the problem is that
t-SNE does not provide a unique optimal solution, which
means it does not directly reduce the dimensionality in the
test set. Moreover, t-SNE obtains the sample distance by
calculating the probability distribution, and the distance
is meaningless. Therefore, most researchers mainly use
t-SNE for visualization, and it is difficult to use for other
purposes, such as the dimensionality reduction of the test
set. Therefore, we further utilize the PCA method to

process the samples and observe their aggregation under
different target gases.
The PCA-based visualization results for the original

data set are shown in Supplementary Fig. S6, where the
samples show regular clustering for different target gases.
Lighter color indicates a higher concentration, and a dif-
ferent shape indicates different test groups (Supplemen-
tary Table S1). Samples represented by triangles are a
mixture of SO2F2, SOF2, and SO2, and their clustering
region expresses a high correlation with the concentration
of SOF2. When the SOF2 concentration is increased to 30
ppm, the clustering region is closer to the group of test 3.
When the SOF2 concentration is 10 ppm, the clustering
area is closer to the group of test 1, which suggests that
the effect of SO2F2 and SO2 is dominant.
The overall approach to gas recognition is shown in

Fig. 5. Considering the limited size of the data set, cross-
validation must be introduced to assess the method’s
reliability. With stratified sampling, the original data set is
equally divided into 5 sub-data sets, and the split ratio
between the training and test sets is 4:1. The original
dimension of the data set is high at 18. To avoid dimen-
sional disaster, it is necessary to reduce the dimensionality
of the original data set. Compared to the conventional
PCA linear method, SDAE dimensionality reduction can
extract the features that efficiently represent the original
sample. Moreover, drift is one of the inherent defects of
gas sensors and may cause the signal to be noisy. Owing
to its stronger antinoise potential, SDAE provides a good
strategy for improving the accuracy of recognition.
Combining 6 kinds of machine learning algorithms, we
use various data sets from 5-fold cross-validation to train
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the gas recognition models. To further compare the
generalization abilities of the SDAE-based and PCA-based
models, the “unknown new samples” obtained in another
test period are introduced. Then, the as-trained identifi-
cation models are applied to infer the components of the
unknown gas. To increase the persuasiveness of the test,
noise with various amplitudes is artificially added to the
unknown samples, followed by a comparison of the
accuracy of the models. To evaluate whether the overall
differences across the 12 recognition learners are statis-
tically significant, the learner only has the difference in
SDAE and PCA. Hypothesis tests, including the corrected
Friedman test and the post hoc Nemenyi test, are
employed.
Figure 6a, b shows schematic diagrams of the denoising

autoencoder (DAE) and stack denoising autoencoder
(SDAE). The output layer of the DAE is the original data
set (x_i), and its input layer is the damaged data set (x_d).
One approach to damaging the original data set is the
addition of Gaussian noise to each attribute of the sample.
For the distribution of the Gaussian noise, the mean is set
to zero, and the standard deviation is 10% that of the
original data. During the training process, the neural
network can automatically extract deep-level features
that can withstand noise to some extent and achieve
dimensionality reduction at the same time. Comparing

the difference (L) between the reconstructed result of
DAE and the original sample, we can acquire the recon-
struction error, which determines the DAE performance.
Actually, a single-layer autoencoder only has limited

dimensionality reduction capabilities, and excessive pro-
cessing might lose key information of the sample. A
stacked denoising autoencoder (SDAE) can solve this
issue, as shown in Fig. 6b. It can be regarded as a stack of
several DAEs that preserve the key features as much as
possible. The layer-by-layer greedy method is used to
train each DAE in turn and then pretrain the entire SDAE.
Each DAE can export a set of weights and thresholds
(w, b). After the pretraining is complete, the parameters of
all the layers are substituted into the SDAE for final
training. This step is called “fine-tuning”.
Herein, a two-layer SDAE is constructed to reduce the

dimensionality of the original data and extract deep-level
features. The first autoencoder (DAE_1) has 18 input
neurons. After encoding and dimensionality reduction, a
reduced data set containing 10 attributes is obtained.
Continuously, the first reduced data set is used as the
input of the second autoencoder (DAE_2), and then a
second reduced data set with 5 features is obtained.
Finally, the parameters of these two DAEs are substituted
into the SDAE for fine-tuning. Supplementary Fig. S7
gives the SDAE training curve and the error regression
curve of the first neuron in the output layer. It can be
easily found that the model is continuously optimized as
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Fig. 5 The overall flow chart of gas recognition. The original
dataset is equally divided into 5 sub datasets with stratified sampling.
Then, SDAE extracts the features and 6 machine learning algorithms
are used to train gas recognition models. Finally, the as-trained
models are applied to infer the components of the unknown gas
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the iteration progresses. Observing the error regression
curve, we find that the fitting level (R2) of the fine-tuning
is much closer to 1 than those of DAE_1 and DAE_2,
which verifies the effectiveness of fine-tuning regarding
improving the SDAE performance.
After SDAE processing, the dimensionality of the ori-

ginal data set is reduced from 18 to 5, which realizes
sample embedding from high to low dimensions and
decreases the impact of dimension disaster. In theory, due
to the use of SDAE, the extracted features have better
antinoise abilities. Figure 6c shows the distribution of the
original and reconstructed samples in PCA space. Even
under the influence of slight noise, the reconstruction
results are quite close to those of the raw samples. This
proves that the deep-level features extracted by SDAE can
efficiently represent the original sample.
After the reduced samples are acquired, gas recognition

models are trained with different sub-data sets from
5-fold cross-validation, as shown in Fig. 8a. To avoid
misleading conclusions derived from a single algorithm
and to screen more suitable methods for gas recognition,
this paper compares 6 machine learning algorithms. In
addition, their principles are presented in Supplementary
Figs. S8–S13. KNN, AdaBoost decision tree, and SVM are
skilled in solving classification tasks, but BPNN can
handle regression tasks. Combining the heuristic genetic
algorithm (GA), the GA-BPNN can search for more rea-
sonable solutions to avoid falling into local optima. The
bagging-BPNN needs a bootstrapping process to sample
the training set and achieves multiple sub-learners with
the out-of-bag estimate. Usually, the integration of mul-
tiple sub-learners performs better than single learners,
especially in generalization.
Table 2 expresses the parameter settings of different

machine learning algorithms. The accuracy of KNN is
mainly related to the value of neighbors (k). Considering
that each label uses 12 samples (80%) as the training set, k
is set to 12. The AdaBoost decision tree needs to expand
binary classification to 1-versus-1 multiple classification.
For a data set with 47 labels, a total of 1081 sub-classifiers
(47C2) are required. The libsvm package is used to build
the SVM model, and the kernel function is the most
commonly used RBF. The input and output neurons of
the BPNN are determined by the dimension of the input
sample (5) and the component of the target gas (4),
respectively. Therefore, the performance of the BPNN is
mainly related to the hidden layers and neurons, which
are decided by the recognition errors (Supplementary Fig.
S14). A darker color indicates better performance.
According to the cross-validated results of the five data
sets, five recognition errors rapidly decrease as the num-
ber of neurons in the first hidden layer gradually increa-
ses. However, increasing the number of neurons in the
second hidden layer does not significantly improve the

performance of the network. To acquire a relatively
superior model, the neuron numbers in the first and
second layers are set to 12 and 8, respectively. For the
GA-BPNN, the parameters of the GA, such as the itera-
tions, size of a generation, cross probability, and mutation
probability, need to be set. The bagging-BPNN uses the
bootstrapping method to integrate 10 sub-learners for
comprehensively calculating the gas mixtures.
The test results of the different gas recognition models

for the third data set of the 5-fold cross-validation are
shown in Fig. 7a–f. Among the models, the Adaboost
decision tree achieves the highest classification accuracy
(95.04%). For BPNN, the gas concentrations are predicted
by regression, and then the distance formula is used to
assign the predicted classification. However, when the
regression model is used to deal with the classification
task, the accuracy of the BPNN is relatively low, at 86.52%.
With GA processing, the accuracy slightly worse (85.82%).
This can be ascribed to the fact that the heuristic method
(the GA) cannot ensure a better model but might fall into
a worse local optimum. The bagging method takes full
advantage of integration and performs significantly
better than a single BPNN. The final classification accu-
racy increases to 93.62%. Furthermore, we present the
regression results of three models based on BPNN in
Fig. 7g–i. The colors represent different gases, the light
line is the predicted result, and the dark line is the actual
value. A higher overlap between the predicted and actual
values means that the algorithm is more accurate. From
the point of view of the mean square error (MSE), the
bagging-BPNN (6.25) performs better than the BPNN
(6.60) and GA-BPNN (7.04).

Table 2 Parameter settings of different machine learning
algorithms.

Algorithm Parameters

KNN Neighbors (k) equal to 12

AdaBoost

decision tree

Multiclassification,

1081 sub-classifiers

SVM Multiclassification,

RBF kernel

BPNN 4 Layers ([5,12,8,4]), MSE

GA-BPNN GA including generation (20), population

size (30),

crossover probability (0.4),

mutation probability (0.1),

4 layers ([5,12,8,4]), MSE

Bagging-BPNN Bootstrapping,

4 layers ([5,12,8,4]), MSE,

10 sub-classifiers
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In fact, the quantitative identification of gas compo-
nents should be a regression task; thus, a neural network
is more suitable. One of the reasons for using classifica-
tion accuracy is to facilitate a comparison of classification
and regression algorithms. The other reason is that the
confusion matrix can intuitively show the recognition
results. For the other four cross-validation data sets, the
matrices expressing the classification accuracy are shown
in Supplementary Figs. S15–S18. Other regression results
of the three models based on BPNN are given in Sup-
plementary Fig. S19.
For various 5-fold cross-validation data sets, Fig. 8b, c

shows the classification accuracies of the SDAE-based and
PCA-based models, respectively. The bagging-BPNN
exhibits relatively good performance regardless of which
dimensionality reduction method is chosen. For the third
cross-validation data set, Supplementary Table S2 gives
the regression prediction results by the bagging-BPNN
based on SDAE dimensionality reduction. The predicted
concentrations are almost consistent with the actual

values. For the SDAE-based models, the AdaBoost deci-
sion tree achieves the highest classification accuracy.
For the PCA-based models, SVM exhibits the best
performance.
The cross-validation results show that the classifica-

tion accuracy of PCA-based models is slightly higher
than that of SDAE-based models. This can be attributed
to the discrepancies in the 15 original signals being too
small upon exposure to the same detected gas. This also
proves the stability of the sensitive materials used.
When using SDAE, the introduced antinoise algorithm
increases the dispersion in the data set, leading to a
decrease in accuracy. However, the PCA-based models
may yield better performance on the cross-validation
data set, but their antinoise and generalization abilities
cannot be guaranteed.
For the cross-validation data sets, the recognition

results based on two-dimensionality reduction methods
do not show much difference. Then, a statistical hypoth-
esis test can be used for the comparison of algorithm
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decision tree, c SVM, d BPNN, e GA-BPNN, f bagging-BPNN. The regressions predicting the concentrations of gas mixtures via g BPNN, h GA-BPNN,
and i bagging-BPNN

Chu et al. Microsystems & Nanoengineering            (2021) 7:18 Page 9 of 16



performance. The Friedman test and Nemenyi post hoc
test can simultaneously compare multiple algorithms
based on performance ranking, and the flow chart is
shown in Supplementary Fig. S20.
Based on ranking rather than actual specific perfor-

mance, the Friedman test is a useful method that is less
susceptible to outliers. First, it is necessary to sort the
algorithms according to their performance. The best
algorithm obtains the rank of 1, the second-best obtains
the rank of 2, and so on. In the case of ties, the average
rank is assigned. Finally, the Friedman test calculates the
average rank (ri) of each model on all data sets, which is
presented as follows50:

ri ¼ 1
N

XN
j¼1

Ri
j ð3Þ

where Ri
j stands for the rank of model i on data set j. N is

the number of data sets.
The Friedman test assumes that “all approaches exhibit

the same performance”. We calculate the variables fol-
lowing the chi-square distribution (Eq. (4)) and F dis-
tribution (Eq. (5)) and then compare the variables with
critical values to judge whether the Friedman hypothesis
is true or not.

The variable following the chi-square distribution is
calculated as follows:

Γχ2 ¼ 12N
k k þ 1ð Þ

Xk
i¼1

r2i �
k k þ 1ð Þ2

4

 !
ð4Þ

where k is the number of models. Γχ2 follows the chi-
square distribution with (k− 1) degrees of freedom. Fur-
thermore, Iman and Davenport51 reported that the initial
Friedman statistic (Γχ2) was undesirably conservative, and
they derived a corrected F distribution with (k− 1) and
(k− 1)·(N− 1) degrees of freedom. The corrected statistic
(ΓF ) can be defined as52:

ΓF ¼ N � 1ð ÞΓχ2
N k � 1ð Þ � Γχ2

ð5Þ

For the five cross-validation data sets, the ranks of the
12 models are presented in Table 3. Then, the corrected
Friedman statistic is employed to verify the hypothesis of
whether all models exhibit the same performance.
According to Eq. (4) and Eq. (5), ΓF can be calculated to
be 13.665, which is larger than the critical value of 2.014 at
the significance level (α) of 0.05. Thus, there is a 95%
confidence that the Friedman hypothesis is not true, and
the Friedman hypothesis can be overturned. Furthermore,
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with the Nemenyi post hoc test, we can distinguish the
obvious differences among the algorithms. The Nemenyi
post hoc test assumes that “the algorithms involved in the
comparison are same”. If the difference between the
average ranks of two algorithms exceeds the critical dis-
tance (CD), the Nemenyi hypothesis should be rejected.
In the procedure of the Nemenyi test, the critical dis-

tance (CD), in contrast to the distances of average ranks
among various classifiers, is calculated. This can be
represented as53:

CD ¼ qα;1;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k k þ 1ð Þ
12N

r
ð6Þ

where the critical value (qα;1;k ) is based on the
studentized-range statistic that is tabulated in standard
statistical textbooks50. It is obvious that the critical
distance is determined by the number of models (k), the
number of data sets (D), and the significance level (α).
In Fig. 8d, we present the critical diagram of all classi-

fiers for 5-fold cross-validation data sets using Nemenyi’s
post hoc test at the significance level of 0.1. The average
ranks of the models are drawn on the horizontal axis;
thus, the best ranking method is on the left-most side of
the diagram. The specific rank of the 12 approaches is
recorded in Table 3. The critical distance (CD) is repre-
sented by a series of lines traversing the average ranks in
Fig. 8d and is calculated to be 6.9094.
The various algorithms are distinguished by color, the

average rank of each algorithm is represented by points,
and the critical distance is represented by horizontal lines.
Drawing a dashed auxiliary line from the end of the better
ranking algorithm to the horizontal axis, we can judge
whether there is overlap among the algorithms. The
intersecting lines mean that the models cannot be clearly
distinguished. In this paper, more attention is focused on
the performance differences of the algorithms combined
with PCA and SDAE.
As shown in Fig. 8d, only the distance of the AdaBoost

decision tree exceeds the critical distance (marked with a

black tick). This means that SDAE dimension reduction is
more useful for improving the performance of the Ada-
Boost decision tree model than PCA. However, for other
approaches, the critical distances are not exceeded.
Therefore, we cannot conclude that there is a significant
difference between the algorithms with various dimension
reduction methods.
For the as-trained model, noise disturbance in new data

sets may cause it to produce completely incorrect pre-
dictions30. To further assess the generalization ability of
various models, a series of additional experiments marked
as the unknown data set are carried out, as presented in
Supplementary Table S3. Then, the as-trained recognition
models are applied to infer the components of an
unknown gas. Since the experiment for an unknown data
set is obtained in another period, the signal drift might
result in a deviation from the original data set. The signals
of the GS microchip upon exposure to 30 unknown target
gases are shown in Fig. 9a. Taking the third cross-
validation data set as an example, the dimensionality
of the unknown initial sample can be reduced from 18 to
5 via SDAE. Then, the unknown reduced samples are
mapped to the PCA space with black marks. In Fig. 9b,
different shapes represent different test groups, the same
as those in Supplementary Table S1. It can be observed
that the unknown samples’ clustering regions in PCA
space have a correlation with the test group.
To further explore the antinoise abilities of the SDAE-

based and PCA-based models, Gaussian noise with dif-
ferent amplitudes is artificially added to the unknown
data set:

noise � N μ; σ2
� � ð7Þ

where the mean μ is set to 0. The standard deviation σ is a
ratio of the unknown data set and determines the noise
amplitude. For the unknown data set with noise impact,
Fig. 9c–g presents a comparison of the classification
accuracies of the various as-trained models from the 5
cross-validation data sets; additionally, the antinoise ability

Table 3 The ranks of all the models for the five cross-validation data sets.

Data set SDAE-KNN SDAE-Ada SDAE-SVM SDAE-BPNN SDAE-GA SDAE-Bag PCA-

KNN

PCA-

Ada

PCA-

SVM

PCA-

BPNN

PCA-

GA

PCA-

Bag

1 5.5 2 5.5 9.5 9.5 7.5 4 12 1 11 7.5 3

2 11 2 10 9 7.5 6 3.5 12 1 7.5 5 3.5

3 6 2.5 7 10 11 4.5 9 12 1 4.5 8 2.5

4 8 3 6.5 9 11.5 6.5 4 10 1 5 11.5 2

5 9 5.5 7.5 10 12 7.5 4 11 1 5.5 3 2

Aver. 7.9 3.0 7.3 9.5 10.3 6.4 4.9 11.4 1.0 6.7 7.0 2.6
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of each model can be observed (the noise amplitude
gradually increases from left to right). The average results
are summarized in Table 4, where the recognition accuracy
of each model gradually decreases with increasing noise.
This proves that noise has an impact on the recognition
accuracy of the model. Note that regardless of the
magnitude of the noise, the recognition accuracy of the
SDAE-based models is higher than that of the PCA-based
models. The accuracy of some models is nearly twice as
high. This means that the deep-level features extracted by
SDAE can more efficiently represent the original sample,
and the as-trained model also has a stronger antinoise level

and generalization ability than PCA. Additionally, for the
bagging-BPNN, the improvement in the accuracy due to
integrating several sub-learners is verified again.
With the specific classification accuracies for

unknown data sets with varying amounts of noise in
Table 4, we continue to employ the Friedman and
Nemenyi tests to evaluate whether the overall perfor-
mance of these 12 recognition learners is statistically
significant. First, 12 algorithms for various data sets are
ranked in Supplementary Table S4. Then, the corrected
Friedman statistic is used to verify the hypothesis of
whether all algorithms exhibit the same performance.
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According to Eqs. (4) and (5), ΓF can be calculated to be
69.072, which is larger than the critical value of the F
distribution (1.968) at the significance level of 0.05.
Therefore, the hypothesis that all algorithms exhibit the
same performance is false.
To further assess the performance of 12 classifiers for

unknown data sets with various noise, the Nemenyi test is
applied. At the significance levels of 0.1 and 0.05, the
critical distances are calculated to be 6.3073 and 6.8034,
respectively. The mean ranks of the 12 approaches are
summarized in Supplementary Table S4. For the sig-
nificance level of 0.1 (Fig. 10a), the models (the AdaBoost
decision tree, BPNN, and bagging-BPNN) using SDAE for
dimensionality reduction exhibit better performance than
those using PCA (marked with a black tick) because the
distances between each SDAE-based and PCA-based
model exceed the critical distance. However, for other
algorithms with various dimension reductions, their cri-
tical distances exhibit overlap, so significant differences
cannot be assumed. Furthermore, in Fig. 10b, even if we
decrease the significance to 0.05, the remaining bagging-
BPNN still shows that SDAE exhibits better performance
than PCA in statistics.
In Supplementary S3, the influence of humidity on the

GS microchip is investigated. A series of experiments on
binary mixtures of SO2F2 and SO2 under different
humidities are also performed. The results show that the
bagging-BPNN based on SDAE achieves the highest
classification accuracy.
Moreover, to verify the broad application of the proposed

method, we perform additional experiments to investigate

whether the GS sensor can quantify gas mixtures with large
differences in concentrations, as illustrated in Supple-
mentary S4. Four less toxic gases (CH4, H2, C2H2, and CO)
in very different concentrations are chosen as the measured
gases, with calibration concentrations of 500, 10, 250, and
25 ppm, respectively. Apart from the gas sources, the
test system and recognition algorithms are the same as
those in previous discussions. The results show that
even when four gases are mixed, the GS microchip still
has the ability to recognize them. Experiments with
orders of magnitude differences in gas concentration
also show that the GS microchip can quantify gas mix-
tures with very different concentrations.

Conclusions
We fabricated a GS microchip loaded with three gas-

sensitive materials. A portable gas detection system was
built around the GS microchip to identify multicomponent
SF6 decomposition products. Using SDAE dimensionality
reduction, the original data sets with 18 dimensions could
be reduced to 5 high-level features. Six machine learning
algorithms were employed to successfully identify 47 gas
mixtures. To evaluate the generalization ability, 30 groups
of unknown gases with various artificial noise were
assigned. Regardless of the magnitude of the added noise,
the SDAE-based models exhibited better performances
than the PCA-based models. Finally, hypothesis testing
indicated at 95% confidence that the bagging-BPNN with
the SDAE method exhibits superior performance. To verify
the broad application of the proposed procedure, we chose
another four gases (CH4, H2, C2H2, and CO) at calibration

Table 4 The average accuracies of the different algorithms under SDAE and PCA dimension reduction on unknown data
sets with varying amounts of noise.

Algorithm Average accuracy (%)

No noise 1% noise 3% noise 5% noise 7% noise 10% noise

SDAE-KNN 72.00 73.33 66.00 53.33 49.33 37.33

PCA-KNN 62.00 54.67 61.33 51.33 44.67 34.00

SDAE-AdaBoost tree 84.00 84.67 66.67 50.00 51.33 36.00

PCA-AdaBoost tree 44.00 40.67 32.67 23.33 18.00 25.33

SDAE-SVM 88.00 87.33 78.67 66.67 56.67 48.00

PCA-SVM 88.00 76.67 72.00 64.00 48.67 42.00

SDAE-BPNN 82.67 82.00 68.00 56.67 47.33 41.33

PCA-BPNN 43.33 39.33 43.33 32.67 24.00 15.33

SDAE-GA-BPNN 78.67 75.33 64.00 52.67 46.67 36.67

PCA-GA-BPNN 50.00 45.33 33.33 31.33 32.67 28.00

SDAE-Bagging-BPNN 85.33 85.33 72.67 58.67 51.33 45.33

PCA-Bagging-BPNN 58.67 54.00 46.67 40.00 41.33 26.67
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concentrations of 500, 10, 250, and 25 ppm, respectively.
The experimental results showed that the GS sensor could
quantify gas mixtures with very different concentrations.

Material and methods
Materials and gases
All reagents used in this experiment were analytically

pure without further purification and purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
Calibration gases (H2S, SO2F2, SOF2, and SO2) of ~100
ppm were stored in steel cylinders purchased from the
National Institute of Metrology, China.

Fabrication process of GS microchip
The GS microchip was fabricated on a one-side polished

p-type silicon wafer (4 inches in diameter, 525 μm in
thickness). All processing of metal patterns was achieved by
photolithography. A specific schematic of the micro-
machining process is depicted in Supplementary Fig. S1. (1)
A 200-nm-thick Si3N4 layer was deposited on the silicon
wafer by low-pressure chemical vapor deposition (LPCVD).
(2) Using a photolithography technique to customize pat-
terns, a 30/200 nm Cr/Pt layer was deposited on the Si3N4

layer by an E-beam evaporator to serve as a microheater.
According to the area and square resistance of the Pt
electrodes, the designed resistance of the heater was ~47Ω.
(3) A 30/400/30 nm Al2O3/Si3N4/Al2O3 thin film was used
as an electrical insulating layer between the microheater
and test electrodes. The insulating layer was deposited
through plasma-enhanced chemical vapor deposition
(PECVD). To expose the Pt pad for wire bonding, a reactive
ion etching (RIE) method was utilized to etch the upper
insulating layer. (4) The test electrodes for loading gas-
sensing materials had a width of 20 μm with a gap size of
20 μm. Through the lift-off technique, a 30/250 nm Cr/Au
thin film was patterned to make the pair of electrodes and
wire bonding pads. (5) Square windows were opened on
the silicon wafer backside by deep inductive coupled

plasma (ICP) etching to achieve thermal isolation of the
chip and reduced heat loss.

Production of MOF-based metal oxide sensing materials
Metal-organic frameworks (MOFs) have received

extensive attention due to their high surface area, ultra-
high porosity, and tunable structures. Zinc-based zeolite
imidazole framework (ZIF8) is a widely reported MOF
catalyst. Electrospinning can effectively synthesize 1D
nanowires. With this method, ZIF8 was tightly anchored
to nanowires by electrospinning. Following fast calcina-
tion, ZIF8 can be transformed into ZnO. Heterojunctions
generated between ZnO catalysts and metal oxide nano-
tubes can improve gas-sensing properties by modulating
the depletion layers. The specific synthesis process of
ZIF8 and three gas-sensing composites are described in
the Electronic Supplementary Material (ESM).

Assembly of the portable device
All modules were encapsulated in a box sized 22 × 14 ×

13 cm. A gas chamber <150mL was made of nylon 12,
which has superior corrosion resistance. The GS microchip
could be placed in this chamber, where an electrical feed-
through and a gas inlet and outlet were also designed.
Supplementary Fig. S3 shows the main circuit board.
STM32F103C8T6 was chosen as the MCU of this board.
This was enough to undertake the task of data acquisition
and transmission. LCDs and serial ports were used in the
communication methods with the users. Using a serial
interface, the data could be transmitted to the computer.
The response signals of the GS microchip could also be
recorded for further analysis. After testing was finished, the
rinsing pump was turned on, and the gas chamber was
flushed with ambient air through a one-way valve.

Characterization
The structure of the as-fabricated chip was documented

using atomic force microscopy (AFM, NX10), with a
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medium and stiffer middle silicon probe (OMCL-
AC160TS) with a nominal radius of 10 nm. The dis-
tribution of the surface temperature of the device was
monitored by an IR camera (Fluke Ti95). The morphology
and nanostructure of the gas-sensitive materials were
examined by field emission scanning electron microscopy
(FESEM, Zeiss Gemini SEM 500).
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