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Abstract
Chaotic systems, presenting complex and nonreproducible dynamics, may be found in nature, from the interaction
between planets to the evolution of weather, but can also be tailored using current technologies for advanced signal
processing. However, the realization of chaotic signal generators remains challenging due to the involved dynamics of
the underlying physics. In this paper, we experimentally and numerically present a disruptive approach to generate a
chaotic signal from a micromechanical resonator. This technique overcomes the long-established complexity of
controlling the buckling in micro/nanomechanical structures by modulating either the amplitude or the frequency of
the driving force applied to the resonator in the nonlinear regime. The experimental characteristic parameters of the
chaotic regime, namely, the Poincaré sections and Lyapunov exponents, are directly comparable to simulations for
different configurations. These results confirm that this dynamical approach is transposable to any kind of micro/
nanomechanical resonator, from accelerometers to microphones. We demonstrate a direct application exploiting the
mixing properties of the chaotic regime by transforming an off-the-shelf microdiaphragm into a true random number
generator conforming to the National Institute of Standards and Technology specifications. The versatility of this
original method opens new paths to combine the unique properties of chaos with the exceptional sensitivity of
microstructures, leading to emergent microsystems.

Introduction
Micro- and nanoelectromechanical systems (M/

NEMSs) have become essential building blocks for the
development of modern technologies due to their small
size, low cost, and compatibility with microelectronics,
with various applications such as sensors1, actuators2, or
clocks3. In addition to their exceptional properties, opti-
mized for high-end products, these mechanical structures
are also remarkable tools for fundamental physics, both
for classical4 and quantum5 investigations. This duality
has triggered studies aiming to exploit the singular
properties of nonlinear dynamics for direct applications in
micro/nanostructures by taking advantage of the syn-
chronization phenomenon to enhance MEMS accel-
erometers6, using internal resonances to reduce frequency

drifts for timing purposes7 or operating microcantilevers
in the nonlinear regime for mass sensing applications8.
Among these various nonlinear phenomena that

improve M/NEMS performance, the chaotic regime fea-
tures some of the most singular properties, addressing the
complex needs of true random number generators9,
secured communications10, or sensing applications11,12,
but has yet to be implemented with a convenient, generic
approach. Chaotic behaviors describe a large variety of
involved interactions, from characterizing the evolution of
cosmic entities13 to interpreting the unpredictability of
weather14. Inherently complex, chaotic signals share some
properties with noise, having a broad frequency spectrum
and an apparent irreproducibility due to their exponential
sensitivity to the initial conditions. This unique property
yielded various works in electrical circuits, which were
among the first physical chaotic systems tailored15, and
on the generation of chaos in lasers for optical tele-
communications applications16.
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Due to their versatility and their large, tunable non-
linearity17, M/NEMSs are prime candidates for chaos
studies and applications. The Duffing nonlinearity,
defined as a cubic stiffness, is the most common source of
chaos in M/NEMSs, which is achieved by buckling the
mechanical structure using specific geometries18, materi-
als19, or configurations20. The system enters a bistable
configuration between the buckled up and down states,
defined by a double-well potential. By driving this device
with a sufficiently large force, the structure may switch
between the two states, and using the appropriate driving
frequency, the system experiences a chaotic regime.
However, buckling micro/nanostructures at will is
demanding, and while some buckled MEMS devices
have experimentally demonstrated a chaotic regime21–24,
research on the topic is mostly performed only analyti-
cally or numerically25–27. Among the experimental issues,

the realization of the buckling states usually requires high
voltages of tens to hundreds of volts21,22,28, and the large
amplitudes involved outrange the linear regime of the
commonly used transduction schemes25. In addition, the
buckling property of the structure itself greatly reduces
the range of applications of the generated chaos, and only
a few works suggest nonbuckling alternatives24,29, which
remain difficult to accomplish or investigate.
In this paper, we experimentally demonstrate the rea-

lization of a chaotic system based on the modulation of
the driving signal30 and present a direct application. The
only two requirements are to (1) obtain the Duffing
regime, present in most micro/nanoresonators for a suf-
ficiently large drive, and (2) perform either amplitude
modulation (AM) or frequency modulation (FM) on the
driving force. This technique is readily applicable in most
current devices, as neither the fabrication process nor
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Fig. 1 Dynamic bistability for the generation of a chaotic regime in a nonlinear resonator. a Comparison between static and dynamic
bistability for chaos generation in a nonlinear resonator, here represented by a doubly clamped beam. In the static case, a resonator reaches
bistability through buckling by applying a static force FDC, while in the dynamic case, the alternative driving force FAC is increased to enter the
Duffing regime. By modulating the driving signal, the system evolves between the different states available, which results in a chaotic regime for an
appropriate set of parameters. b Experimental setup. The MEMS (top view photography) is driven by a voltage source that provides the AM or FM
configurations. The LIA demodulates the displacement x of the MEMS at the frequency of the source output to retrieve the amplitude R. c Amplitude
response of the MEMS in the linear and Duffing regimes (dark cyan and dark red at 10 mV and 100 mV drive, respectively). The schematics
qualitatively illustrate the evolution of the potentials involved for both the amplitude and frequency modulations (AM and FM) as a guide for the
reader and are not meant for quantitative comparisons. In particular, the driving amplitudes and frequencies are far from the set of parameters used
in the rest of the paper
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specific geometries are required. Considering the latest
micro/nanotechnological advances, for which each appli-
cation results in optimized designs, this implementation
of chaos opens a path toward combining the intrinsic
sensitivity of micro/nanodevices with the various prop-
erties of chaos, leading to new, emergent systems.
In the following paragraphs, we present the working

principle of this chaotic regime. We characterize its proper-
ties through bifurcation diagrams, Poincaré sections and
Lyapunov exponents, mapping the range of the chaotic
regime in the AM and FM configurations. We compare these
results with simulations involving no adjusting parameters.
Finally, we demonstrate that this system may be used as a
true random number generator conforming to the National
Institute of Standards and Technology (NIST) specifications.

Results
Working principle and device
The generation of a chaotic regime is performed mostly

with multistable systems. In the mechanical domain, this
property is found in buckled structures, which are built by
applying a constraint to the device, leading to static
bistability (top panel of Fig. 1a). These states are defined
by a static double-well potential, each well describing the
buckled up and down states21. A chaotic regime emerges
from the complex evolution between the buckled states
due to an additional driving force.
However, most of these structures may instead be driven

close to the resonance with a strong enough force to reveal
their nonlinear behavior within the Duffing regime. In this
regime, the resonator vibrates either with a large or a low
amplitude17 (bottom panel of Fig. 1a), leading to a dynamic
bistability described by a dynamic double-well potential. For
the buckled structure, the Duffing regime may be used as
the starting point to generate chaos by modulating the
driving signal to commute between the different available
states30. However, in contrast with the static case, this
dynamic bistability relies only on the intrinsic properties
present in most M/NEMSs, making this chaotic regime
achievable for off-the-shelf devices. In this paper, we present
the case of a typical circular diaphragm.
The proof-of-concept structure was fabricated using a

standard multiuser MEMS process provided by Memscap
under the brand name PiezoMUMPs. This process is
CMOS compatible and allows multilayered structures of
dimensions complying with our specifications31. The
MEMS is a silicon-on-insulator-based circular diaphragm
with a radius of 750 µm and a thickness of 10 µm (Fig. 1b
and Supplementary Information (SI), Fig. S1) placed
under vacuum at room temperature. The first flexural
mode of the structure is actuated with a voltage source
and detected with a lock-in amplifier (LIA) assisted by a
current amplifier using the outer and inner electrodes
coupled to the resonator, comprised of a piezoelectric

500 nm thick AlN layer. At the first order, this resonator
is described by a 1D model for which its dynamics cor-
responds to the canonical equation:

x
:: þΔω _xþ ω2

0xþ
8 ω0

3
α x3 ¼ F

m
cos ω tð Þ ð1Þ

where Δω ¼ 2πΔf , ω0 ¼ 2πf0, α and m are the band-
width, angular natural resonance frequency, Duffing
nonlinear coefficient and mass of the resonator, respec-
tively, with Q ¼ f

Δf being the quality factor. With the
present device, we fit a natural resonance frequency f0=
71.2 kHz, a bandwidth Δf= 50 Hz leading to a quality
factor Q= 1420, and a nonlinear coefficient α= 2π ×
54 kHz/V2 (see SI, Fig. S2). The structure is driven at an
angular frequency ω= 2πf by a force F. In our case, this
force results from a voltage difference applied to the
piezoelectric layers of the diaphragm. Note that the
chaotic regime presented in this paper does not depend
on the transduction mechanism and remains compatible
with capacitive or optical techniques. To characterize the
vibrating signal of the mechanical structure, we perform a
rotating frame approximation at the driving frequency
(see SI, note 1), giving the following first order:

_R ¼ �Δω

2
R� F

2 m ω
sinφ ð2:aÞ

_φ ¼ ω0 � ωþ α R2 � F
2 m ω R

cosφ ð2:bÞ

where R is the demodulated amplitude—the envelope of
the signal, and φ is its phase delay with respect to the
driving force. The nonlinear term α R2 shifts the
resonance frequency, which results in a hysteresis, at the
essence of the Duffing nonlinearity (Fig. 1c), where the
MEMS evolves either with a large or a low amplitude for
the same driving frequency. The state of the resonator in
the hysteresis depends on the history of the system, and
the amplitude of vibration may switch between the high
and the low level in the presence of a perturbation32,33. At
this point, (2) describes only a bistable potential: an
additional parameter is necessary to create an evolution of
this dynamical system and possibly generate chaos.
The first configuration we describe performs an

amplitude modulation on the driving force, namely,
F ! F 1þcos δω t

2 , with δω ¼ 2πδf being the angular mod-
ulation frequency of the signal, which is directly trans-
posable to (2) (see SI, note 1). With a modulation depth of
100%, the force experienced by the system oscillates from
0 to F at the rate δω. If F is large enough to open the
hysteresis of the Duffing resonator, the system oscillates
between a linear regime with a single-well potential and a
nonlinear regime with a double-well potential (Fig. 1c,
blue areas).
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The second configuration consists of a frequency
modulation where the driving phase becomes
ω t ! ω t þ sin δω tð Þ, which has a modulation index of 1.
In (2), it follows that ω ! ωþ δω cos δω tð Þ (see SI, note
1). This essentially corresponds to back and forth sweeps
through the resonance such that the system may switch
between the high-amplitude and low-amplitude states in
the Duffing regime (Fig. 1c, orange areas).
For slow modulations (δω � Δω), the system may

switch between its two states but with no additional exotic
behavior. However, when the modulation rate becomes
comparable to the inverse of the system’s time response,
the resonator’s dynamics becomes more complex, and
new physics may emerge. In the following section, we
consider a modulation rate of three times the resonator
bandwidth.

Bifurcation diagram and Poincaré sections
To characterize the evolution of a system from the

periodic to the chaotic regime, a common approach is to

generate a bifurcation diagram34. It consists of a strobo-
scopic view of the amplitude of a signal, sliced at the
modulation frequency δf, as a given parameter is swept (in
our case, the driving frequency f). These bifurcation dia-
grams enable us to characterize the route to chaos of the
system, which usually consists of an increasing number of
harmonics in the signal, until reaching the chaotic regime
with a broad frequency spectrum.
We generate a bifurcation diagram as a function of the

driving frequency close to the natural resonance fre-
quency (Fig. 2). First, the modulation of the driving signal
is accurately reproduced by the structure, with low dis-
tortion (Fig. 2a). However, as the driving frequency pro-
gresses through the hysteresis, the Duffing nonlinearity
alters the mechanical response to the modulated driving
signal, leading to a more complex yet periodic amplitude
of vibration with higher harmonics (Fig. 2b–c) until
reaching a chaotic regime (Fig. 2d). A closer look at the
bifurcation diagram before entering the chaotic regime
(Fig. 2f) reveals a period-doubling route to chaos, where
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the subharmonics present in the signal increase by a
factor of two at each bifurcation point. In the AM con-
figuration, we measured period-doubling bifurcations up
to δf

8 . This route to chaos displays universal properties
such as the constants of Feigenbaum35, ultimately
enabling us to predict the threshold value after which the
chaotic regime appears.
This stroboscopic view is also at the basis of the Poin-

caré sections, which extract order from the apparent noisy
structure of a chaotic signal36. Similar to bifurcation
diagrams, a sufficiently long dataset is sliced at the
modulation frequency with an arbitrary initial time. The
sliced data are gathered on a graph presenting the phase
space of the system, commonly shown as the displace-
ment versus velocity. In the present scenario, the variables
are the in-phase (X= R cos φ) and the out-of-phase (Y=
R sin φ) components of (2). For a given combination of
fixed parameters, the global shape of a Poincaré section
has a specific, reproducible signature. For a periodic sig-
nal, the signature represents a finite set of overlapping
points, depending on the periodicity. For a chaotic signal,
it forms a pattern of nonoverlapping points (Fig. 3). The
longer the dataset is, the more precise the pattern of the
chaotic Poincaré section becomes. Exploiting (2) with
either amplitude or frequency modulation, the Poincaré
sections of the chaotic signals are directly simulated with
the measured experimental parameters of the system,
quantitatively reproducing the experimental data.

While raw chaotic signals appear random, the specific
signatures of the Poincaré section analysis leave clues,
partially revealing the nature of the chaotic system. Being
able to numerically reproduce their shapes gives a lever to
build more complex chaos with potential applications in
cryptography.

Lyapunov exponents and TRNG
One of the main aspects of a chaotic signal is its

unpredictability and irreproducibility. These properties
are related to the system’s sensitivity to the initial con-
ditions, often categorized within three scenarios. In a
damped oscillator, any initial mismatch between two
similar measurements progressively shrinks over time. In
a driven resonator, an initial phase delay mismatch
remains constant over time. In a chaotic resonator, any
mismatch increases over time. This property is char-
acterized by the Lyapunov exponent λ, following
δz tð Þ ¼ δz0 eλ t , with δz being the distance between two
initially close trajectories37, resulting in (1) converging
trajectories (λ < 0), (2) conservative trajectories (λ= 0),
and (3) diverging trajectories (λ > 0). The measurement of
this exponent is based on finding the neighbor states in an
acquired signal. In a periodic signal, any arbitrarily picked
state is reproduced after one period. Hence, there is one
new neighbor state after each period. For a chaotic signal,
a sufficiently long acquisition ensures the eventual iden-
tification of close states, giving access to the local
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maximum Lyapunov exponent (SI, Fig. S3). After an even
longer measurement, enough pairs of different initial
states are gathered, enabling computation of the global
Lyapunov exponent38.
By changing the driving force and frequency for a fixed

modulation rate, we mapped the regions where the
MEMS has a chaotic response through the measurement
of this Lyapunov exponent both experimentally and
numerically (Fig. 4). We chose three modulation rates
corresponding to one, two and three times the bandwidth
of the linear resonator, for which the associated maps
present different trends depending on the modulation
configuration. In the AM case, the chaotic region appears
to be bondless, and while the presented results stop for an
equivalent force of 2 V, we kept measuring chaotic signals
with the same modulation rates up to 3.5 V. In the FM
configuration, the chaotic regime requires a lower force
for a similar modulation rate. The chaotic region also
broadens with the modulation rate but is confined in
terms of the force, and we could not measure any chaos
above the voltages presented. In both cases, the chaotic
regime follows a similar behavior as a function of the
three physical parameters. The minimal driving amplitude
is always above the onset of the Duffing regime, which is
essential to obtain bistability. A modulation rate of one
bandwidth is barely enough to measure chaos, which can
be interpreted as the system being at the onset of the out-
of-equilibrium state. Finally, the frequency shift necessary
to obtain chaos is close to the left edge of the hysteresis
(left dashed line in Fig. 4). It seems counterintuitive
to observe chaos occurring outside the bistable region,
in particular in the AM configuration. However, it is
important to remember that the system is not just driven
at these voltages and frequencies but is also modulated.
The system will experience bistability as long as the
modulation (in amplitude or frequency) crosses the bis-
table region, which is the case for all of the chaotic
regimes probed in Fig. 4. Note that this explanation goes
beyond the simplified schematics in Fig. 1c, which were
meant to give only a first intuition of the phenomenon.
The difference in the force range between AM and FM

can then be understood as follows. In the AM configura-
tion, for each driving force, there will always be a detuning
frequency for which the modulation will enable access to
both wells. In the FM configuration, we restricted our study
to the case of a modulation index of 1. Therefore, the fre-
quency span of the modulation is fixed at a given mod-
ulation rate, while the size of the hysteresis increases with
the driving force. The distance between the two wells of the
hysteresis then becomes out of reach.
In both cases, the averaged Lyapunov exponent grows

with the modulation rate, which indicates a smaller
memory time. The experimental chaotic regions defined
by λ are quantitatively reproduced numerically,

demonstrating that simple system (2) is precise enough to
encompass the behavior of the chaotic resonator despite
the large variation between each modulation rate. The
higher the driving amplitude and modulation rate are, the
larger the frequency range of the chaotic regime becomes,
enabling them to remain in the chaotic regime even in the
presence of frequency drifts. Since no assumptions were
made regarding the geometry or nature of the resonator,
system (2) is readily applicable to any Duffing resonator—
the right and top axes of Fig. 4 were normalized to ease its
application (see SI, note 2). The modulation rate needed
to obtain chaos is not limited to the presented results; this
regime is also achievable for larger drives with a mod-
ulation rate of up to at least 30 times the bandwidth (see
SI, Fig. S4).
The Lyapunov exponent describes the memory of the

system. As such, the prediction of the evolution of a
chaotic signal is limited by the measurement precision.
This feature is well suited for true random number gen-
eration, and physical chaotic systems have already proven
to pass standard randomness tests9,39–41 such as NIST SP
800-2242. By itself, chaos provides only a complex way to
mix an initial state, which is deterministic and predictable
and is the source of some numerical pseudorandom
number generators43 (PRNGs). However, if the initial
state is noisy, the predictability exponentially vanishes in
the chaotic regime. Therefore, the combination of a sto-
chastic seed (e.g., intrinsic thermomechanical noise or
frequency fluctuations44) with the exponential sensitivity
of chaos may turn the system into true random number
generators (TRNGs). To demonstrate this application, we
performed NIST tests on the output signal of our MEMS
in the chaotic regime, which is converted into a binary
form through a numerical analog-to-digital convertor
(ADC). To add up the mixing properties of the chaos, we
used a common process consisting of selecting the least
significant bits (LSBs) of an 8-bit ADC digitizing the
analog chaotic signal39,40 (Fig. 5a). The sampling rate can
then be much faster than λ. In our case, we sampled both
X and Y components of the signal at 5 kHz (Fig. 5b).
Keeping solely the 3 LSBs of each measurement, we then
performed an XOR function between the X and Y
sequences, known to improve the randomness of a bit
stream (Fig. 5c).
We finally obtained a sequence of 75Mb divided into

75 sequences of 1MB, processed through the NIST tests,
showing that the chaotic system passes all the tests (see SI,
Table 1) and delivers a random bit stream at a rate of
15 kb/s. As the chaotic system seed is noisy, a stochastic
model of the entropy extraction can be obtained to prove
the true system randomness. The performance of this
TRNG can be tuned according to the specific needs, such
as the bit rate or power consumption. Due to the very
nature of this chaos (imprinted as a modulation of the
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amplitude of the resonator), the bit rate of this TRNG is
arguably smaller than that of traditional buckled-based
chaos (imprinted directly on the displacement of the
resonator). In addition, the strong nonlinearity of buckled
devices increases their complexity and possibly their
potential for TRNG applications, at the cost of a sub-
stantially larger driving power. In contrast, the dynamical
method to generate chaos is noninvasive, such that most
current M/NEMS devices initially designed for specific
goals such as accelerometers or gyroscopes could addi-
tionally be used for true random number generation,
provided a modulation scheme and a demodulation
scheme are available.
We stress that the MEMS structure used in this paper

was not designed nor optimized for this chaotic regime.
An improvement in chaos complexity, rate and power
consumption may easily be performed through a higher
Duffing nonlinearity, a higher resonance frequency and a

lower bandwidth while maintaining a qualitative under-
standing of the system. Note that most of these systems
can be obtained by moving to lower dimensions with
NEMS technology.
In parallel to our work, recent studies also highlighted

the potential of dynamic bistability for chaos generation
through two drive tones45 and amplitude modulation46.
However, in the first case, the interpretation of the chaos
generation is drastically different, as the second tone is
seen as a perturbation creating a libration orbit45, and the
second approach focuses on a very specific working
regime of the amplitude modulation, preventing a broad
understanding of the generated chaos46. In contrast, our
study allows us to draw a comprehensive overview of the
phenomena at stake by illuminating the role of the
different parameters of the system. In particular, our
results point toward new opportunities and implementa-
tions impacting future technologies, which we illustrate

(see figure on previous page)
Fig. 4 Mapping of the Lyapunov exponents in both the AM and FM configurations. A positive global Lyapunov exponent is characteristic of a
chaotic regime, and we use its value to determine the chaotic range as a function of the driving frequency and the driving force for modulation rates
of one, two and three times the bandwidth of the system in both the AM (a) and FM (b) configurations. Note that the Lyapunov exponents are
normalized to the modulation rate and that the right/top axis are normalized to the bandwidth of the system for a more comprehensive view of the
phenomenon. The experimental Lyapunov maps are compared with numerical simulations carried out using the measured experimental parameters.
The black dashed lines represent the two edges of the hysteresis in the Duffing regime and therefore the bistable and monostable regions
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with the generation of true random numbers, pillars of
modern security and data protection.

Discussion
Chaotic systems are known to present unique properties

for cryptographic applications, which we illustrate in this
paper with an experimental demonstration of an original
chaotic MEMS-based TRNG. While being far from the
figures of merit of optical or electronic chaotic TRNGs,
having unequal bit rates and footprints to date, MEMS
devices enable an in situ fine adjustment of their relevant
parameters. In addition to the rate, size or power, the
quality of a TRNG also lies in its capability to face mal-
icious attacks. Adjusting directly the physical parameters
of a system with feedback control could offer a lever to
counteract disruptive attacks.
This affinity between chaos and secured communication

reaches a capstone with chaos synchronization16, at the core
of most research on chaotic lasers for telecommunication
applications and recently also for mechanical systems46,47.
While the optical domain benefits from a large bandwidth
for unequaled data rates, micro/nanomechanical resonators
are tunable over orders of magnitude with a resolution
below ppm, providing a large number of cryptographic keys,
essential for secured transmissions. In addition to crypto-
graphy, the capacity to build a chaotic system from current
mechanical structures opens up new perspectives to study
experimentally unchallenged chaos properties, especially in
the field of noise filtering.
Remarkably, chaos is weakly sensitive to noise48,49,

implying that a stochastic process will have a negligible effect
on the chaotic regime of a system. Conversely, a determi-
nistic signal coupled to a chaotic system could trigger a
bifurcation from the chaotic to the periodic regime, thereby
amplifying the detection of the deterministic signal. Com-
bining both properties, a chaotic system becomes a noise-
free sensor, and numerical simulations have demonstrated
the detection of signals buried within more than 60 dB of
noise11. This unmatched property lacks experimental
demonstration, and M/NEMSs are prime tools for this
study, being at the frontier between fundamental and
applied research.
Through the chaotic regime presented in this paper,

combining the noise-free property of chaos with the high
sensitivity of M/NEMSs is at hand, which will not only
result in emergent sensors but also help unravel the many
complex features of this singular chaotic property.
In conclusion, we presented experimentally and

numerically a disruptive method to generate a chaotic
signal from a nonlinear MEMS structure. The only
requirement for the system is to present a Duffing non-
linearity and to be able to perform either amplitude or
frequency modulation on the driving signal30. We
obtained a quantitative comparison between the

experimental and numerical results, describing the chao-
tic complexity through the Poincaré sections and the
chaotic range through the Lyapunov exponents. As a
model system, a M/NEMS enables us to experimentally
explore the properties of chaotic systems, for instance,
making use of the control on the Lyapunov exponent by
tuning the modulation rate. In addition, unlike most M/
NEMS-based chaotic systems, this method does not have
any geometrical or material requirements leading to
buckling. This freedom enables the implementation of the
chaotic regime in most resonant M/NEMSs, and we
foresee that this could be the first step toward the com-
bination of the high-precision features of M/NEMSs with
the high sensitivity of chaos for sensing applications.

Methods
Setup
The voltage source we used is a 33500B Agilent gen-

erator, enabling both the AM and FM configurations. The
measurement of the MEMS device is performed through
an HF2TA Zurich Instrument current amplifier with a
10 kΩ load resistance, the output of which is then probed
by an HF2LI Zurich Instrument Lock-In Amplifier. All
measured voltages are in root mean square values
throughout the paper. Since the bandwidth of the reso-
nator is 50 Hz, the modulation rates of one, two and three
times the bandwidth are purposely shifted by 1 Hz to
avoid 50 Hz noise from the electrical lines.

FM configuration
As suggested by the SI, note 1, the FM configuration

requires demodulating the signal at the modulated fre-
quency of the source. This is easily performed when the
generator and the demodulator belong to the same instru-
ment. Otherwise, as in our case, the demodulation frequency
has to be synchronized to that of the generator. Without this
procedure, both bifurcation diagrams and Poincaré sections
would appear extremely noisy, even if the demodulator has a
bandwidth much higher than the modulation rate.
Note that the FM is mathematically equivalent to a

direct modulation of the resonance frequency f0 instead of
the driving frequency f, which may be easier to perform
depending on the device.

Numerical simulations
The simulations were performed starting from Eq. (2)

with either the AM or FM configuration using the PyD-
STool Python library.

Bifurcation diagrams and Poincaré sections
The datasets processed for the bifurcation diagrams and

the Poincaré sections have to be recorded with a very high
sampling rate, orders of magnitude higher than the
modulation rate. A postprocessing analysis over
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undersampled data (even if the sampling rate is above the
spectral bandwidth) results in a poor observation of the δf

n
bifurcation points and noisy Poincaré sections. In Figs. 2
and 3, we used a sampling rate more than two orders of
magnitude higher than the modulation rate.
The bifurcation diagrams are obtained by slicing the

data at the modulation rate, with any initial phase delay.
However, depending on the variable of interest (in our
case, the amplitude R), some phase delay places more
emphasis on the spreading after each bifurcation point. In
Fig. 2, we used a convenient initial phase delay between
the modulation of the voltage source and the measured
signal of 180° and recorded over 50 cycles of modulation.
This initial phase delay also changes the associated

Poincaré sections, displaying more or less complexity. We
used a phase delay of 180° in Fig. 3 to stay in line with Fig. 2.
However, Poincaré sections require large datasets to
reveal their specific signatures, and we recorded 1500
cycles in this case.

Lyapunov exponents
Each Lyapunov map of Fig. 4 consists of 40 × 50 pixels,

each of them representing a measurement of 200 periods of
modulation. The sampling rate was between 30 and 100
times higher than the modulation rate. The Lyapunov
exponent is extracted from the dataset using a Wolf algo-
rithm38 with a relative initial minimal neighbor distance of
3e−3 and a relative final maximal distance of 3e−1.

Standard method for chaos generation
A typical experimental process to generate chaos starts

by selecting a modulation rate of a few bandwidths of the
linear resonator. Then, we apply a driving amplitude of
more than an order of magnitude higher than the onset of
the Duffing regime in the AM configuration (less in the
FM case). Finally, we sweep in frequency close to the edge
of the hysteresis (the left one for a positive Duffing
coefficient, the right one for a negative Duffing coeffi-
cient) over a range equivalent to a few bandwidths of the
linear resonator. The authors recommend using the
normalized parameter used in Fig. 4 as a starting point by
looking at the top and right axis and Supplementary
Note 2.
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