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Dasol Lee1, Myeongcheol Go 2, Minkyung Kim1, Junho Jang2, Chungryong Choi2, Jin Kon Kim 2,3 and
Junsuk Rho 1,2,3

Abstract
Broadband perfect absorbers have been intensively researched for decades because of their near-perfect absorption
optical property that can be applied to diverse applications. Unfortunately, achieving large-scale and heat-tolerant
absorbers has been remained challenging work because of costly and time-consuming lithography methods and
thermolability of materials, respectively. Here, we demonstrate a thermally robust titanium nitride broadband absorber
with >95% absorption efficiency in the visible and near-infrared region (400–900 nm). A relatively large-scale (2.5 cm ×
2.5 cm) absorber device is fabricated by using a fabrication technique of multiple-patterning colloidal lithography. The
optical properties of the absorber are still maintained even after heating at the temperatures >600 ∘C. Such a large-
scale, heat-tolerant, and broadband near-perfect absorber will provide further useful applications in solar
thermophotovoltaics, stealth, and absorption controlling in high-temperature conditions.

Introduction
Broadband perfect absorbers1–8 have many possible

uses, such as thermophotovoltaics9–11 and thermal emit-
ters12–14, but practical applications have been limited by
the lack of scalable fabrication method and by their poor
thermal durability. Broadband perfect absorbers are
typically realized by plasmonic nanostructures bonded to
metallic reflective layer separated by a dielectric spacer in
which noble metals are commonly used1,15, but these
materials are costly. Therefore, refractory materials have
been introduced as candidates for broadband absorbers

due to their high-temperature tolerance, chemical stabi-
lity, mechanical durability, and low cost16–20.
Titanium nitride (TiN) has comparable plasmonic

properties to gold (Au) in the visible and near-infrared
(NIR) region, and has therefore been used in solar heat
generators and photodetectors21–24. However, most pre-
vious studies have used electron beam lithography to
pattern the nanostructures, and this method limits a scale
to a few hundred micrometers. To be implemented in
practical applications, a method to fabricate TiN nanos-
tructure in a large scale is in high demand.
Colloidal lithography is widely used to create periodic 2D

nano-sized patterns on a variety of substrates. It can fabri-
cate templates or masks for use in creation of various
nanostructures, such as nanohole, nanodisk, nanopillar, and
nanocone, which have been applied to various photonic
devices25–28. A consecutive use of the colloidal lithography,
which is referred to as multiple-patterning colloidal litho-
graphy (MPCL), enables fabrication of hierarchical
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nanostructures, such as hollow nanocone, nanotower, and
nanoring29–34. However, these methods have only been used
to etch silicon or polymers, while not being extended to etch
other materials.
Here, we use MPCL to fabricate a large-scale (2.5 cm ×

2.5 cm) near-perfect absorber that is composed of ring-
shaped TiN structures. To best of our knowledge, it is the
first demonstration of applying MPCL to etch a refractory
metal, which is focused on the fabrication approach to
overcome the limitations of practical use as a large-scale
absorber. The device has polarization-independent absorp-
tion of 95.4% under normal incidence and high absorption at
incident angles up to θ= 40∘ at visible and NIR wavelength
(400 < λ < 900 nm). The near-perfect absorption of our
device remains even after heating at temperature up to
600 ∘C. We expect that our cost-effective and scalable
absorber is a promising candidate for large-scale applica-
tions, such as photothermal devices and thermal emitters
that require polarization-independent, angle-insensitive,
heat-tolerant, and broadband absorption.

Results and discussion
Device optimization and fabrication
The proposed broadband ring-shaped TiN absorber has

a metal–insulator–metal (MIM) structure that uses a

perfectly-reflective TiN layer, silicon dioxide (SiO2)
dielectric layer, and a top composed of ring-shaped TiN
nanostructures in a hexagonal array. The ring-shaped
nanostructure has advantages in absorption due to its
better impedance matching with air compared to disk-
shaped structures16,19, and can be fabricated in large scale
using MPCL.
Particle swarm optimization (PSO)35 is used to optimize

the structural parameters of the TiN absorber to have the
highest absorption in the visible and NIR region. For this
purpose, we develop a lab-built PSO by linking com-
mercial software (COMSOL Multiphysics 5.5, Livelink for
MATLAB, MATLAB 2019; Fig. 1a). First, finite-element
method simulation is performed to calculate the absorp-
tion from randomly selected initial parameters. The
objective function indicates the function to be optimized,
and is defined by subtracting the square of the average
absorption in 400–900 nm region from unity. Then the
optimization proceeds to minimize the fitness value of
this objective function. At each iteration, minimum fitness
value is set as the local best. If the new local best is smaller
than the minimum fitness value in history (global best),
the local best is set as the new global best. The cycle is
repeated until fitness converges or until the maximum
number of iterations is applied.
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Fig. 1 Optimization and schematic of a ring-shaped TiN absorber. a Flow chart of the particle swarm optimization (PSO) algorithm to optimize
the broadband titanium nitride (TiN) ring-shaped perfect absorber. b Fitness curve of PSO algorithm. The fitness value converges to 0.026 after 100
iterations. c Schematic and parameters of a ring-shaped TiN absorber. The optimized dimensions are P= 300 nm, D= 181.09 nm, W= 79.27 nm, and
Hring= 60 nm, Hlayer= 150 nm, and Hdielectric= 58.09 nm
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The outer diameter (D) and width (W) of the ring
structure of the top ring-shaped nanostructure, and the
thickness (Hdielectric) of the SiO2 dielectric layer are con-
sidered as parameters for optimization, and other para-
meters such as period (P) and thickness of ring structure
(Hring) are fixed due to the feasible fabrication for a TiN
absorber. The initial ranges of parameters are set to 0 <D
< 300 nm and 10 <W < 150 nm to prevent them from
exceeding the outer diameter. One hundred iterations are
repeated until the optimal value is found. Each iteration
considers 30 particles, so a total of 3000 particles are
evaluated to identify the final parameters for optimal ring-
shaped absorber. After 100 iterations, the fitness con-
verges to <0.026 (Fig. 1b).
The optimal dimensions of the proposed ring-shaped

TiN absorber (Fig. 1c) are P= 300 nm in a hexagonal
array, D= 181.09 nm, W= 79.27 nm, and Hring= 60 nm
on the layers deposited by TiN (Hlayer= 150 nm) and SiO2

(Hdielectric= 58.09 nm) in sequence. As such, optimization
techniques can help in designing optical structures and
can be further advanced using machine learning or deep
learning36–40.
Schematic illustration to fabricate the TiN ring-shaped

absorber is described (Fig. 2a). TiN–SiO2–TiN MIM
structure is prepared on silicon substrate, then MPCL is
used to prepare highly ordered TiN ring-shaped

structures; the period and diameters are determined by
controlling the size of the polystyrene (PS) nanosphere
and the oxygen plasma etching time. A PS monolayer is
firstly prepared on the top layer of the prepared MIM
structure (Fig. 2b). PS nanospheres with a diameter of
300 nm are chosen to match the period between nanoring
structures. The hexagonally arranged PS monolayer is
etched using oxygen plasma to reduce the PS diameter to
the optimized D. A top TiN layer is etched using reactive
ion etching (RIE) with Cl2 and BCl3 gas by using the PS
beads as a mask. The RIE yields a nanodisk structure, then
a second PS etching is performed to achieve the optimized
W (Fig. 2c). A 8-nm thick nickel (Ni) layer is deposited as
a hard mask under Cl2 gas using electron beam (e-beam)
evaporator; then all remaining PS nanospheres are
removed by sonication in toluene for an hour. The second
TiN etching is performed (Fig. 2d). The Ni mask is
removed by 1mol/L HCl solution to complete the final
TiN nanoring structure. These processes yields ring-
shaped nanostructure array that is consistent with the
optimized parameters (Fig. 2e). In order to fabricate ela-
borate nanostructure, there are several issues to be con-
sidered. First, the etching conditions must be precisely
controlled41 because the intrinsic property of dry etching
process can make the ring-shaped structure slightly
tapered. Second, the uniformity of the structure can be
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Fig. 2 Fabrication of a ring-shaped TiN absorber. Hexagonally patterned TiN absorber with multiple-patterning colloidal lithography (MPCL).
a Schematic illustration of the process. Highly ordered TiN ring-shaped structures are fabricated using MPCL. Scanning electron microscopy images
b of hexagonally packed PS nanospheres monolayer, c after second PS size reduction, d after PS removal, e of final ring-shaped TiN absorber. Inset
shows the tilted view of final ring-shaped TiN absorber
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improved by using nanospheres with lower size distribu-
tion. Third, random tilting of the etched PS nanospheres
during the RIE etching can be prevented by enhanging the
adhesion between PS nanospheres and TiN layer by
heating31.

Optical properties
For numerical demonstration, we calculate absorption of

the ring-shaped TiN absorber; refractive indices of TiN and
SiO2 are taken from the literature42–44. The result shows
95.9% average absorption at 400–900 nm and the highest
absorption at 650 nm (Fig. 3a). High absorption of the
proposed design is experimentally demonstrated using
spectroscopy. Unpolarized light is illuminated at normal
incidence onto the sample. The measured spectra of ring-
shaped absorber and MIM structure (Fig. 3a) show an
average absorption of 95.4%. Compared to the MIM layer
without ring-shaped structure, it absorbs >31% light in the
visible–NIR region. The slight difference between mea-
surement and simulation is attributed to fabrication
imperfections of placement and size distributions of the
nanostructure. Photographs (Fig. 3a, inset) of ring-shaped
absorber and MIM structure show obvious darkness
obtained by the absorption characteristic.
To understand the mechanism of the high absorption,

we examine the total power dissipation density

Qabs ¼ <J � E> ¼ ρ Ej j2 ¼ 1
2
ϵ0ϵ

00
rω Ej j2 ð1Þ

where ρ is the electrical conductivity, ϵ0 is the permittivity
of a vacuum, ϵ00r is the imaginary part of the relative
permittivity of the material, ω is angular frequency, and
Ej j is the amplitude of the total electric field inside the
material. Qabs is extracted from each TiN layer. Qabs can
be a criterion to evaluate the contribution of the absorbed
electromagnetic power from each TiN layer.

Absorption can be explained as a field localization by
localized surface plasmons (LSPs) and by intrinsic loss of
the material. The absorption contributions of each TiN
layer verify the specific mechanisms (Fig. 3b). The LSPs
occur at the surface near the nanostructures, so the
absorption by the LSP should be caused by the ring-
shaped nanostructure. In the region of λ > 600 nm, TiN
exhibits metallic properties, which lead to plasmonic
resonance. Thus, the absorption is dominated by the ring
structure. However, compared to noble metals, such as
Au, TiN has weak metallic properties, so it has localized
fields inside the ring structure. In addition, unlocalized
waves can pass through the top layer and arrive at the
underlying TiN bulk layer due to its large skin depth. The
broad high absorption is attributed to two absorptions in
the ring structure and bulk TiN layers simultaneously. In
the range of λ < 600 nm, the bottom TiN layer contributes
more absorption than the ring structure does. This dif-
ference means that the intrinsic loss at the bulk TiN layer
is dominant. TiN can be a lossy dielectric material in this
region, so the bottom TiN layer absorbs a large portion of
incident light at high frequencies.
For further investigation, the impedance-matching con-

dition of the proposed absorber is analyzed. Under the
assumptions that the absorber structures are homogeneous,
the effective impedance (Fig. 4a) of the proposed structure is
retrieved using the S-parameter retrieval method as45

z ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ S11Þ2 � S221
ð1� S11Þ2 � S221

s

ð2Þ

The effective impedance is calculated under the condi-
tion of plane wave from air. The effective impedance
shows the real part of the calculated effective impedance
is close to 1, and the imaginary part is close to 0, so the
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impedance matches that of free space in the visible and
NIR regions. Thus, reflection is weak and absorption is
dominant over the desired wavelength region.
Normalized plots of electric and magnetic field dis-

tribution on the xy- and xz-planes are plotted in Fig. 4b,
c. We analyzes the fields at λ= 900 nm and λ= 450 nm,
which are the resonance peaks in TiN ring and layer,
respectively (Fig. 3b). At λ= 900 nm, the electric field
distribution shows an electric dipole resonance at the
top ring antenna, whereas the magnetic field distribu-
tion is relatively weak. This result demonstrates that the
absorption is mainly caused by the ring-shaped nanos-
tructure. In contrast, at λ= 450 nm, the magnetic field
distribution shows a magnetic dipole resonance as a
result of coupling between the TiN layers. The anti-
parallel current density Jd leads a loop bringing an
artificial magnetic dipole moment. Thus, the ring-
shaped TiN absorber excites electric and magnetic
resonances, which increase the localized electro-
magnetic field at the corresponding wavelength.

The ring-shaped absorber is radially symmetrical, so its
absorption is not greatly affected by polarization or inci-
dent angle of light at θ < 40∘ (Fig. 5a, b). However, at θ >
40∘, absorption decreases because the confinement of the
EM field weakens. This degradation occurs because the
resonances are sensitive to polarization and incident
angle. Nevertheless, our observation confirms that
absorption >90% is maintained at an angle of 40∘ in both
p- and s-polarizations. This characteristic means that the
proposed absorber can be widely used in practical fields,
such as photothermal applications.

Heat tolerance
The proposed absorber is expected to have a great heat

tolerance as a result of TiN’s high melting point of
2930 ∘C. To confirm the heat tolerance of the ring-shaped
TiN absorber, it is heated in a vacuum chamber at 600 ∘C
for 6 h and cooled down to room temperature. We con-
firm that the TiN absorber maintains its shape and optical
properties even after heating at high temperature (Fig. 6a).
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Even at a high temperature near 600 ∘C, TiN and SiO2

show only slight changes in their permittivities, but each
retains its original optical properties quite well46,47. If the
TiN absorber is protected by an atomic layer deposited
coating or sealing, it may tolerate even much higher
temperatures16.
For practical applications such as solar and photovoltaic

fields, we test the photothermal stability of the TiN
absorber under natural-like condition in an open envir-
onment. White light from a high-power xenon lamp is
collimated and illuminated at fabricated samples that are
fixed on slide glass. The sample is far enough from the
source to avoid a direct thermal effect by the high tem-
perature of the lamp. MIM structure is measured and
compared to the TiN absorber for the photothermal
activity. After being illuminated for same duration
(5 min), the temperature of each sample is captured using
an infrared camera (Testo 885, Testo; Fig. 6b). The tem-
perature of the TiN absorber increases to >80 ∘C, which is
25.5 ∘C higher than that of MIM structure. The high
absorption in our devices, combined with the ring-shaped
nanostructure opens a gateway for efficient energy
extraction in photothermal applications, due to advan-
tages of low-cost and compatibility with large-scale
fabrication.

Conclusion
We have reported a large-scale heat-tolerant TiN

broadband absorber that shows >95% of unpolarized light
absorption in the visible–NIR range of 400 < λ < 900 nm.
We propose the implementation of cost-effective MPCL
with refractory metal for fabrication of a centimeter scale
ring-shaped absorber. Because of the heat-tolerant char-
acteristic, the TiN absorber retains high absorption after
heating up to 600 ∘C. This absorber will find
wide applications in solar thermophotovoltaics, stealth,

and further absorption controlling in high-temperature
conditions.

Materials and methods
Materials
Suspensions of PS nanospheres with 0.3-μm diameter

were used (Thermo Fisher Scientific). Absolute ethanol
and toluene were used (Sigma Aldrich). Deionized water
was obtained from a water purification system (Ultima
Duo 300, Azzota Scientific). Hydrochloric acid (1 mol/L)
was used (Samchun Chemical).

Fabrication
TiN and SiO2 layers of MIM were deposited using DC

Sputtering and e-beam evaporator. The PS colloidal
monolayer were self-assembled into hexagonally closed-
packed arrays on the TiN layer by using an air interface
method. The diameters of the PS nanospheres were
reduced by oxygen RIE (VITA, Femto Science) at 80W
with 30 sccm O2. The top TiN layer was first etched at
100W with 25 sccm Cl2 and 100 sccm BCl3. Then a sec-
ond PS etching was performed in the same conditions.
Then an 8-nm thick Ni layer was deposited by e-beam
evaporator at a deposition rate of 0.3Å/s. Then, the PS
nanospheres were removed by sonication in toluene. A
second TiN etching was performed in the same condition
as the first etching. Finally, the Ni mask was easily
removed by immersion in 1mol/L hydrochloric acid for
10min, followed by rinsing with DI water.

Characterization
A UV–VIS–NIR spectrometer (Cary 5000, Varian Co.)

with diffuse reflectance accessory (Internal DRA-2055,
Varian Co.) was used to characterize the absorption of the
large-area sample in the wavelength range 400–900 nm,
using white reflectance standards (Ocean optics) as a
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reference. The wavelength-sampling step was 1 nm. We
defined absorption as 1-reflectance.
Fabricated TiN absorber structures were observed using

a scanning electron microscope (Hitachi S4800) at 3 kV.
The thermal images were taken by an infrared camera

(Testo 885, Testo), and the temperature was determined
using Testo IRsoft software. The emissivity of 0.34 and
room temperature of 21 ∘C were used for calibration. For
calibration, we used an approach to directly measure the
emissivity value of the infrared camera using a contact
thermometer.
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