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Abstract
Exploiting nonlinear characteristics in micro/nanosystems has been a subject of increasing interest in the last decade.
Among others, vigorous intermodal coupling through internal resonance (IR) has drawn much attention because it
can suggest new strategies to steer energy within a micro/nanomechanical resonator. However, a challenge in
utilizing IR in practical applications is imposing the required frequency commensurability between vibrational modes
of a nonlinear micro/nanoresonator. Here, we experimentally and analytically investigate the 1:2 and 2:1 IR in a
clamped–clamped beam resonator to provide insights into the detailed mechanism of IR. It is demonstrated that the
intermodal coupling between the second and third flexural modes in an asymmetric structure (e.g., nonprismatic
beam) provides an optimal condition to easily implement a strong IR with high energy transfer to the internally
resonated mode. In this case, the quadratic coupling between these flexural modes, originating from the stretching
effect, is the dominant nonlinear mechanism over other types of geometric nonlinearity. The design strategies
proposed in this paper can be integrated into a typical micro/nanoelectromechanical system (M/NEMS) via a simple
modification of the geometric parameters of resonators, and thus, we expect this study to stimulate further research
and boost paradigm-shifting applications exploring the various benefits of IR in micro/nanosystems.

Introduction
The performance of resonator-based micro/nanoelec-

tromechanical systems (M/NEMSs) strongly relies on the
dynamic characteristics of their mechanical element, the
micro/nanoresonator1. The advancement of micro/nano-
technology indispensably leads to size reduction and Q
factor enhancement in resonators, making their dynamic
responses transit easily from the linear to nonlinear
regime2,3. Even though it is more difficult to predict and
design nonlinear behaviors in micro/nanosystems, non-
linearity can introduce intriguing features that are not
attainable in a linear setting. These features include hys-
teresis phenomena, multivalued responses, amplitude
bifurcations, amplitude-frequency dependencies, and
various types of nonlinear resonances4–7. Along with the

evolution in micro/nanotechnology, researchers have
devoted vigorous efforts to exploring these nonlinear
characteristics in various applications, such as mass sen-
sing8,9, bio/chemical detection10,11, inertial sensors12–15,
radio frequency communication circuits16–18, logic
gates19–22, and optical resonators23–26.
Among the various nonlinear characteristics, one

remarkable category belongs to intermodal coupling and
nonlinear energy transfer, where two or more vibrational
modes interact with each other5,27. The intermodal cou-
pling strength can be significantly enhanced when the
following conditions for the so-called internal resonance
(IR) are satisfied in a nonlinear system: (i) the resonant
frequencies of distinct vibrational modes are commen-
surate or nearly commensurate with each other; (ii) a
proper type of nonlinearity in accordance with frequency
commensurability exists5. When the condition of fre-
quency commensurability is satisfied in a nonlinear sys-
tem, the superharmonic or subharmonic term of an
externally resonated mode coincides with another mode

© The Author(s) 2021
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Hanna Cho (cho.867@osu.edu)
1Department of Mechanical and Aerospace Engineering, The Ohio State
University, Columbus, OH 43210, USA
2Department of Mechanical Engineering, Michigan State University, East
Lansing, MI 48824, USA

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

www.nature.com/micronano
http://orcid.org/0000-0001-6298-0997
http://orcid.org/0000-0001-6298-0997
http://orcid.org/0000-0001-6298-0997
http://orcid.org/0000-0001-6298-0997
http://orcid.org/0000-0001-6298-0997
http://creativecommons.org/licenses/by/4.0/
mailto:cho.867@osu.edu


(s) of the system and thus can internally resonate with the
associated undriven mode(s). When the IR is triggered,
strong internal coupling results in an effective and fast
energy flow between internal modes, and the resonance
behaviors and characteristics are drastically altered. Thus,
the IR provides a unique pathway to steering vibrational
energy within a single unit mechanical system, serving as
the basis for various applications and fundamental studies.
For instance, the transfer of excessive energy through
strong intermodal coupling can stabilize the frequency
fluctuations in a micro/nanomechanical oscillator28–31

and enable the detection of angular rate signals in Coriolis
vibratory gyroscopes32,33. The IR mode can also be
employed as an additional sensing channel to measure
two different physical quantities simultaneously34–36. In
addition, the faster energy exchange between the internal
modes than that caused by the environmental source can
provide an efficient route to engineering the intrinsic
dissipation of an oscillator37–39.
The remaining challenge in taking advantage of the

benefits of IR in practical applications is to robustly
generate and tailor strong IR in the resulting dynamics.
Indeed, the experimental realization of IR in micro/
nanoresonators was not achieved until the early 2010s,
while theoretical investigations have been extensively
reported in the literature40–48. This delay emanates from
the fact that resonator designs of simple uniform geo-
metries (e.g., prismatic beams) do not typically satisfy the
commensurability condition. Most of the previous reso-
nators intentionally designed to implement IR were based
on atypical structural shapes and modes for M/NEMSs.
For example, T-shaped beams49,50 and H-shaped
plates41,51 were considered to enforce 1:2 IR; the flexural
and extensional modes were internally coupled in a two-
beam system30; and the flexural and torsional modes were
internally coupled in a clamped-clamped beam sys-
tem28,39. The success of these examples comes at the price
of unconventional structures and modes imposing addi-
tional complications in the design of actuation and
transduction electrodes. Thus, this paper aims to provide
a strategy that can integrate a strong IR in a relatively
simple nonprismatic beam resonator by coupling two
flexural modes. We provide a detailed experimental and
theoretical analysis of 1:2 and 2:1 IR systems and discuss
effective design parameters that qualitatively alter reso-
nance behaviors.

Results
Experimental characterization of internal resonance
A scanning electron microscopy (SEM) image of the

microresonator designed to implement IR is shown in Fig. 1a.
The system consists of a silicon microbeam spanned to a
firm substrate by a small polymer component. In this
design, the axial stiffness of the attached polymer

component is ~40 times lower than that of the Si
microbeam. Hence, when the system oscillates, the free-
standing polymer component is axially stretched, resulting
in geometric nonlinearity52. The dimensions of the struc-
tural components were deliberately chosen to produce the
desired 1:2 ratio between the second and third mode fre-
quencies: the length (L), width (b), and thickness (h) of the
silicon microbeam (subscript 1) and polymer coupling
(subscript 2) are L1 ¼ 500 μm; b1 ¼ 100 μm; h1 ¼ 2μm
and L2 ¼ 40 μm; b2 ¼ 12 μm; h2 ¼ 3 μm, respectively.
The thermomechanical response measured by a laser
Doppler vibrometer (LDV) showed that the first three lin-
earized mode frequencies were f1 ffi 42 kHz; f2 ffi 107 kHz,
and f3 ffi 214 kHz and that the second and third mode
frequency values satisfied the 1:2 relation of commensur-
ability. The strong geometric nonlinearity in the hetero-
geneous nonprismatic design52, combined with the 1:2 ratio
between the mode frequencies, triggers the IR in the
dynamic response. This outcome implies that the second
and third modal responses can be internally coupled if the
system is driven hard enough into the nonlinear regime.
Thus, in this work, the responses in the second and third
modes were monitored when one of these modes was
externally driven by applying a single-frequency excitation
around one of these two mode frequencies. For the sake of
simplicity and clarity, the abbreviations LM and HM are
used to denote the lower-frequency (i.e., second) mode and
higher-frequency (i.e., third) mode, and ERM and IRM are
used to denote the externally resonated (i.e., directly driven)
mode and internally resonated mode. We also use LME
(LM excitation) and HME (HM excitation) to denote which
mode is externally excited.
While the existence of subharmonics and/or super-

harmonics in a nonlinear dynamic response is not an
uncommon phenomenon, the IR substantially amplifies
those harmonics due to a strong intermodal energy
transfer between the engaged modes. From the fast
Fourier transformed (FFT) responses shown in Fig. 1b, c,
the amplitudes of these harmonics are compared between
the cases in which the IR is triggered (right column) and is
not triggered (left column). Because the IR is activated
only if the input energy is higher than a threshold value
(see Fig. 2c), the drive voltage amplitude was tuned to
either enter or escape the range of the IR. For LME, at the
excitation frequency fdrive ¼ 106:04 kHz, the amplitude at
the second harmonic was increased from 1.34 to 36.35 nm
(see Fig. 1b) when the IR was triggered, while the ERM
amplitude was increased from 30.17 to 242.50 nm under
the two different drive amplitudes. The amplification in
the IRM is more noticeable in the HME at the drive fre-
quency fdrive ¼ 205:28 kHz. The comparison of the
amplitudes at the subharmonic of order 1/2 in Fig. 1c
shows that activation of the 2:1 IR amplified the sub-
harmonic term from 1.35 to 825.8 nm. The IRM
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amplitude in this 2:1 IR response was even higher than
that of the directly driven ERM amplitude, which corro-
borates the vigorous energy transfer between the intern-
ally coupled modes. Note that the smaller peaks in the
frequency spectrum in Fig. 1b, c are around the sub-
harmonics and ultraharmonics generated by various types
of small nonlinear effects.
Figure 2 shows an experimental characterization of the

nonlinear IR frequency responses when the LM (left
column) or HM (right column) was externally driven. In
Fig. 2a, the frequency responses of the ERM are depicted
during the upward (in circles) and downward (in aster-
isks) frequency sweeps at three different levels of excita-
tion. The results yielded typical M-shaped 1:2 IR response
curves. The higher energy input to the system drove the

system further into the nonlinear regime and expanded
the IR activation range. Eventually, hysteresis phenomena
manifested because multiple stable branches coexisted.
Figure 2b shows the amplitude of the ERM and IRM with
respect to the driving frequency at the highest excitation
voltage. As the driving frequency approached the mode
frequency from a lower frequency, the ERM amplitude
gradually increased. When the energy level of the ERM
surpassed a critical value, the IR mechanism was activated
in the system, and both the ERM and IRM were amplified.
This intermodal nonlinear interaction resulted in vigorous
energy exchange between the engaged modes until the
drop-jump phenomenon occurred. These IR activation
ranges were different depending on the sweeping direc-
tion, which demonstrated hysteresis in both the 1:2 and
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Fig. 1 SEM image of the resonator and its FFT responses. a Scanning electron micrograph of a nonlinear microresonator whose 2nd and 3rd
flexural modes are close to a 1:2 ratio (f1 ffi 42 kHz; f2 ffi 107 kHz, and f3 ffi 214 kHz). The scale bar is 100 μm. b, c Comparison of the harmonic
content in FFT-based spectral responses between the cases without (left column) and with (right column) IR, which shows that IR acts as a
mechanism that amplifies the undriven IRM by tunneling the energy from the ERM. For the LME with fdrive ¼ 106:04 kHz in (b), the IRM amplitude is
increased from 1.34 to 36.35 nm as the IR is triggered, while the ERM amplitude increases from 30.17 to 242.5 nm. For the HME with fdrive ¼
205:28 kHz in (c), the IRM amplitude is increased from 1.35 to 825.8 nm, while the ERM amplitude increases from 7.1 to 99.78 nm. Note that the
undriven IRM has a higher oscillation amplitude than that of the directly driven ERM for HME
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2:1 IR responses. The hysteresis range was wider in the 2:1
IR, and one extra transition to an upper branch was found
before the drop-down transition. Figure 2c shows the

ERM and IRM amplitudes with respect to the excitation
level at a fixed driving frequency (fdrive= 107.5 kHz in the
LME and fdrive= 214.2 kHz in the HME). When the LM
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Fig. 2 Experimental characterization of 1:2 and 2:1 IR when the LM (in the left column) or HM (in the right column) is driven. a ERM
amplitudes as a function of the driving frequency show the signature M-shaped IR curves at three different excitation amplitudes. The amplitudes
during the upward and downward frequency sweeps are shown as circles and asterisks, respectively. As the excitation amplitude increases, the IR
activation range expands, and the hysteresis manifests. b Amplitudes of the ERM (at fdrive) and IRM (fIRM ¼ 2fdrive or fIRM ¼ 1=2 fdrive) showing the
coexistence of the two modes in the system when IR is activated. The IR activation range is different depending on the sweeping direction, which
results in the hysteresis and jump phenomena marked by the black arrows. c Steady-state amplitudes of the ERM and IRM as a function of the driving
voltages, which show that there is a threshold energy for the onset of IR. It is clearly shown that the external energy pumped to the ERM is
transferred to the IRM once the IR is activated. The energy transfer from the ERM to the IRM leads to the amplitude saturation phenomenon in 2:1 IR
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was driven at voltages lower than 10 V, the ERM ampli-
tude increased linearly with the forcing level, and the IRM
amplitude was nearly zero. Due to the intrinsic geometric
nonlinearity of the system, a higher (2nd) harmonic
existed even when the IR was not triggered. Once IR was
activated at a driving voltage of ~10 V, a sudden jump in
the IRM amplitude occurred while energy continuously
transferred from the directly driven ERM to the undriven
IRM. On the other hand, when the HM was externally
driven, the so-called amplitude saturation phenomenon
was observed beyond a threshold forcing level of ~5 V,
where the extra energy applied to the ERM was channeled
directly into the undriven IRM and the ERM amplitude
remained constant. Comparing the 1:2 IR and 2:1 IR
responses, we conclude that the intermodal energy
transfer from the ERM to the IRM is more vigorous and
effective for the 2:1 IR case, as the amplitude of the IRM
exceeds that of the ERM by an order of magnitude.

Analytical modeling
We developed an analytical model based on the energy

method to further understand the underlying dynamics in
the nonlinear 1:2 and 2:1 IR systems. The analytical
results provide more detailed knowledge of the complex
IR dynamics and the modal energy transfer. The patterns
of the nonlinear resonances in IR systems drastically
change depending on the type of nonlinear coupling (i.e.,
quadratic or cubic), coupling strength, internal frequency
mismatch from the exact commensurability condition,
and forcing level. Thus, studying the effective parameters
responsible for the unique resonance behaviors is essen-
tial to exploit IR in practical systems with the desired
resonance features.
To obtain the analytical model, we first defined the

transverse displacement of a beam in which both the LM
and HM are excited by a base excitation (see Eq. (1) in the
“Materials and methods” section). When the base exci-
tation frequency (Ω) is close to the LM frequency (i.e.,
Ω ¼ ω1 þ ησ2, where η is a small-scale parameter and σ2
is an external frequency detuning parameter), the LM is
harmonically driven at an excitation frequency of Ω, and
the HM is internally resonated at a frequency of 2Ω.
Similarly, for the case of HME, the HM is externally
excited at Ω, while the LM is internally resonated at Ω/2.
We also imposed an internal frequency mismatch from
the exact 1:2 ratio between the LM and HM frequencies
to account for any potential deviation from the intended
design in the wake of fabrication errors and parameter
randomness. In this regard, the relationship between the
mode frequencies is expressed with the equation
ω2 ¼ 2ω1 þ ησ1, where σ1 is an internal frequency
detuning parameter. Using the transverse displacement of
a beam based upon these settings, the averaged Lagran-
gian (see Eq. 6) and Lagrange’s equation were obtained to

eventually deduce a set of leading-order nonlinear equa-
tions governing the modal amplitudes (see Eq. 7). The
leading-order governing equations show that each LM or
HM itself is modeled as a linear harmonic oscillator with
quadratic nonlinear coupling originating from the axial
strain (∈xx). The axial stretching brings about the cubic
coupling terms between the modal amplitudes of A1 and
A2 (e.g., A3

1;A
3
2;A

2
1A2; A1A2

2) in the strain energy, but only
the term of A2

1A2 remains as the only effective nonlinear
term in the time-averaged Lagrangian equation. Solving
these equations under the steady-state condition, the
resulting dynamic behaviors are analytically characterized
under various sets of system parameters to suggest stra-
tegies to tailor the complex IR dynamics. The detailed
analytical process is outlined in the “Materials and
methods” section and in the Supplementary Information.

IR design parameter
The nonlinear coupling terms, obtained analytically in

Eq. (8) and Eq. (S6), are generated by the pure geometric
(stretching) effect and determined by the geometric
parameters and linear mode shapes of the engaged modes.
Therefore, one can design 1:2 IR systems with the targeted
resonance behaviors by tailoring the geometric para-
meters in Eq. (8). To suggest the design parameters that
can effectively incorporate IR into micro/nanomechanical
resonators, the effect of the mode shapes is investigated by
considering two sets of symmetric and asymmetric mode
shapes, expressed by families of the trial functions
wn xð Þ ¼ sin nπ

L x
� �

and wn xð Þ ¼ sin nπ
L x2

� �
, respectively, for

n= 1, 2, 3, as depicted in Fig. 3. Note that these functions,
satisfying the zero displacement boundary conditions, are
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just two simple examples of symmetric and asymmetric
mode shapes that are not specifically applied to the
resonator in this paper. We perform a similar analysis on
more examples of modes, including higher modes and
modes of a doubly clamped beam, in Section 2 of the
Supplementary Information. The coupling coefficients for
these mode shapes calculated using Eq. (8) are shown in
Table 1, with the other system parameters set to the same
values. The results summarized in Table 1 suggest two
notable facts. First, the asymmetric mode shapes provide a
stronger intermodal coupling between any of the three
modes than that offered by the symmetric mode shapes.
Second, the strongest coupling occurs between the second
and third modes among the lowest three flexural modes
that are relatively readily achievable in practice. These two
attributes confirm the validity of the mechanical resonator
design in the experimental study, where a 1:2 ratio was
implemented between the second and third modes in a
heterogeneous nonprismatic beam. Altering the design of
a beam resonator from a prismatic (symmetric) to non-
prismatic (asymmetric) shape not only offers more free-
dom to tune the frequency ratio into the required integer
but also renders stronger coupling between modes. Even
though the current system is rather atypical due to the
polymer component, a homogeneous beam (e.g., silicon
beam) can also be designed to obtain asymmetric second
and third mode shapes with a 1:2 frequency ratio simply
by varying the dimension along the beam (e.g., a stepped
beam or a tapered beam).

Analytical results
The analytical nonlinear amplitudes of the ERM and

IRM in 1:2 IR are shown in Fig. 4a as a function of the
external frequency detuning parameter, along with their
stability (solid lines for stable solutions and dashed lines
for unstable solutions). When the IR is not activated in
the system, the resonance plot consists of single solution
branches. Within the IR activation range
�0:01< σ2 < 0:012ð Þ, there are two intervals with two
stable and one unstable solution (�0:01< σ2 < � 0:005
and 0:007< σ2 < 0:012) and one interval with a single
solution branch �0:005< σ2 < 0:007ð Þ. Near the valley of

the M-shaped curve, there is also an interval with one
unstable solution in which a continuous energy exchange
between the two modes leads to quasi-periodic time
responses (see Fig. S3 in the Supplemental Information).
The multiple stable solutions result in the signature hys-
teresis phenomenon. Note that the nonzero internal
detuning parameter σ1 ¼ 0:01ð Þ in Fig. 4a makes the ERM
and IRM line shapes tilt into asymmetric M-shaped
curves (see Fig. S6 for results corresponding to various
internal detuning parameters). Figure 4b shows that the
activation of IR depends on the energy level applied to the
system. When increasing the driving amplitude from zero,
there is a nearly linear increase in the ERM and IRM
amplitudes until the driving amplitude reaches a critical
value of 3.1 × 10−3. Beyond this value, the IR is activated
and leads to a sudden jump in the amplitudes of both
modes. Following that, the ERM and IRM amplitudes
steadily grow as a consequence of the continuous inter-
modal energy exchange. There also exists a hysteresis
depending on the force direction due to the multiple
values of the stable branches.
Figure 4c shows the analytical nonlinear amplitude

responses of the ERM and IRM in 2:1 IR with respect to
the external frequency detuning parameter (σ2) when
σ1 ¼ 0:01 (see Fig. S6 for results corresponding to various
internal detuning parameters). When the IRM has no real
solution, the ERM follows the solution of the corre-
sponding linear problem. When the IRM is triggered and
has two real solutions, the ERM follows the solution of the
first equation in Eq. (14). Figure 4d presents the saturation
phenomenon in 2:1 IR, where the ERM amplitude does
not depend on the forcing level. Increasing the driving
amplitude from zero in Fig. 4d makes the ERM amplitude
grow linearly, whereas the IRM amplitude remains zero.
When the driving amplitude reaches 3 × 10−4, the IRM
amplitude sharply rises to a stable branch due to the
activation of IR in the dynamic response. A further
increase in the driving energy does not affect the ERM
amplitude (see the 1st equation of Eq. S8, which does not
include a forcing term in a2) but is purely used to increase
the IRM amplitude. The comparison of the responses in
the 1:2 and 2:1 IR scenarios again confirms that the

Table 1 Nonlinear coefficients in 1:2 IR systems with symmetrical and asymmetrical flexural modes.

Beam with symmetrical mode shapes Beam with asymmetrical mode shapes

Flexural mode numbers Flexural mode numbers

1st–2nd 1st–3rd 2nd–3rd 1st–2nd 1st–3rd 2nd–3rd

α1j j 0 2.23 3.19 5.65 10.95 18.84

α2j j 0 0.56 0.80 1.29 2.42 4.54

Geometric parameters other than the mode shapes are set to constant values as follows: ρ ¼ 1; υμ
1�2υ þ μ
� � ¼ 1; L ¼ 1; b ¼ 0:1; and h ¼ 0:01 (see Eq. (8)).
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internal energy transfer is more vigorous in the 2:1 IR.
The analytical results shown in Fig. 4 are in good agree-
ment with the experimentally obtained results shown in
Fig. 2. Note that the blunt jump shown in Fig. 2c, com-
pared to the case in Fig. 4b, is speculated to be the result
of insufficient experimental data points around the
threshold voltage.
It is of significance to study how different parameters

can qualitatively change the resonance behavior in IR
systems. We conducted a parametric study to examine the
effect of the driving amplitude (wF), internal frequency
detuning (σ1), and nonlinear coefficients (αi) on the IR
when they are varied over the ranges 0 � wF �
0:001; �0:06 � σ1 � 0:06; and 0 � j α1j; α1j j � 2. Figures
5 and 6 show the results for the 1:2 and 2:1 IR cases,
respectively, in which the ERM amplitudes are shown in
the left column and the corresponding IRM amplitudes
are shown in the right column (see Figs. S4–S6 for closer
views of the ERM and IRM amplitudes in the 2-D

amplitude-frequency planes). The variation in the driving
amplitude wF in both the 1:2 and 2:1 IR cases indicates
that a larger forcing level elevates the oscillation ampli-
tude and expands the IR bandwidth (see Figs. 5a and 6a).
The variation in the internal frequency mismatch σ1 alters
the overall line shape of the amplitude responses, as
shown in Figs. 5b and 6b. For both 1:2 and 2:1 IR, when
there is no internal frequency mismatch (σ1= 0), the
response exhibits the signature M-shaped resonance
curve, which is tilted into an asymmetric curve for σ1 6¼ 0.
For the 1:2 IR, the large negative (σ1=−0.06) and positive
(σ1= 0.06) values for the internal frequency mismatch
generate hardening- and softening-type resonance line
shapes, respectively, in both the ERM and IRM. The
tilting direction depends on the sign of the internal fre-
quency mistuning and is reversed in the 2:1 IR. Finally, the
influence of the nonlinear coupling coefficients αi is
examined in Figs. 5c and 6c. Larger coupling coefficients
in the system enhance the intermodal coupling between
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the 1:2 IR response with ω1 ¼ 1; ω2 ¼ 2; ζ1 ¼ ζ2 ¼ 0:001; α1j j ¼ 0:87; α2j j ¼ 0:25; λ ¼ 0:1, and σ1 ¼ 0:01. The amplitudes of the ERM (red) and
IRM (blue) as a function of the external frequency detuning parameter are shown in (a) when wF ¼ 5 ´ 10�4. The solid and dashed lines represent the
stable and unstable branches, respectively, and the arrows show the direction of the jump phenomena. The ERM and IRM amplitudes with respect to
the drive amplitude are shown in (b) at a fixed driving frequency σ2 ¼ �0:015. c, d Analytical results of the 2:1 IR response with ω1 ¼ 1;

ω2 ¼ 2; ζ1 ¼ ζ2 ¼ 0:001; α1j j ¼ 1:74; α2j j ¼ 0:5; λ ¼ 0:2, and σ1 ¼ 0:01. The ERM and IRM amplitudes as a function of the external frequency
detuning parameter are shown in (c) when wF ¼ 5 ´ 10�4. The ERM and IRM amplitudes with respect to the driving amplitude are shown in (d) at a
fixed driving frequency σ2 ¼ �0:02
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the IRM and ERM, mainly affecting the bandwidth of the
IR activation range rather than the IRM amplitude (see
Fig. S5).
We also investigate the effects of the internal detuning

parameter σ1 and nonlinear coefficients αi on how much
energy is transferred to the IRM. Figure 7 plots the ratio

of the IRM energy to the total system energy as a function
of the driving amplitude wF. As one can easily expect,
perfect commensurability (i.e., σ1= 0) provides the best
condition to transfer energy effectively to the IRM, in that
the IR is activated at a lower driving force and the energy
portion of the IRM is the largest. Comparing Fig. 7a with
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in (b) for ω1 ¼ 1; ω2 ¼ 2; ζ1 ¼ ζ2 ¼ 0:001; α1j j ¼ 0:87; α2j j ¼ 1:75; λ ¼ 0:1; andwF ¼ 5´ 10�4, alters the overall resonance line shape from a
symmetric M-shape to asymmetric ones. The effect of nonlinear coupling constants is shown in (c) for ω1 ¼ 1; ω2 ¼ 2; ζ1 ¼ ζ2 ¼ 0:001; λ ¼
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decreases and the IRM amplitude increases. The same sets of data plotted in the 2-D graphs can be found in the Supplementary Information
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7c, one can infer that the modal energy transfer in the 2:1
IR is more sensitively affected by the internal frequency
mismatch (σ1) from the exact 1:2 ratio, while the 1:2 IR
shows better robustness regarding the variation in σ1.
Figure 7b, d shows that a larger coupling coefficient αi is

directly related to the threshold driving force for the onset
of IR and the amount of energy transferred to the IRM.
Contrary to the case of σ1, α1 has a more significant
impact on the 1:2 IR at its minimum energy level, trig-
gering the IR.
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the excitation level is shown in (a) for ω1 ¼ 1; ω2 ¼ 2; ζ1 ¼ ζ2 ¼ 0:001; α1j j ¼ 0:85; α2j j ¼ 1:75; λ ¼ 0:2; and σ1 ¼ 0. When the driving force
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amplitude increases. The same sets of data plotted in the 2-D graphs can be found in the Supplementary Information
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Discussion
In this paper, we designed and fabricated a geome-

trically nonlinear, nonprismatic IR system consisting of a
silicon microbeam and polymer coupling that incorpo-
rates a 1:2 ratio between its second and third mode fre-
quencies. The commensurate relationship between the
modes combined with midplane stretching in the non-
linear system realized IR dynamics with strong modal
coupling. We successfully characterized the IR experi-
mentally when either the lower or higher mode was dri-
ven. We also developed an analytical model for quadratic
IR systems based on the energy method for both scenarios
when the LM or HM was externally driven. Using this
model, we studied the characteristic behaviors of the IR
responses while the effective parameters were varied over
a range. Finally, we investigated the mechanism of modal
energy transfer at different values of the internal fre-
quency mismatch and nonlinear coupling coefficients.
Most notably, the analytical model was able to provide
valuable insight into the IR mechanism and suggest design
strategies to implement IR in a clamped–clamped beam

structure: (i) a mid-plane stretching due to the constrained
boundary conditions provides the nonlinear (quadratic)
coupling mechanism between two flexural modes, which is
more dominant than the cubic geometric nonlinearity due
to stretching of its own mode, (ii) a higher coupling ren-
ders a wider IR dynamic range with a lower activation
threshold, (iii) the mode shapes of engaged modes deter-
mine the coupling strength, and (iv) coupling the 2nd and
3rd flexural modes in an asymmetric structure is a prac-
tically effective method for escalating the IR.
Targeting the desired IR response strongly relies on the

accurate allocation of system parameters such that small
perturbations in the parameters can drastically alter the
activation of IR, nonlinear resonances, and bifurcation
points. The current work opens up a new window in
which to design quadratic IR systems and understand
their complex underlying dynamics. One of the significant
findings in this research is that IR can be easily integrated
into a simple clamped–clamped beam structure by
modifying the geometric parameters to satisfy the IR
conditions. Even though the experimental demonstration
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Other parameters used in this analysis areω1 ¼ 1; ω2 ¼ 2; ζ1 ¼ ζ2 ¼ 0:001; α1j j ¼ 0:87; α2j j ¼ 1:75; λ ¼ 0:1; α1j j ¼ 0:87; α2j j ¼ 1:75; λ ¼ 0:2;
and σ2 ¼ 0:005
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in this study was performed in a rather complex nonpris-
matic beam with two dissimilar materials (silicon and poly-
mer), a silicon beam with varying dimensions (e.g., a stepped
beam or a tapered beam) can also be employed. Most pre-
vious theoretical and experimental studies on IR were based
on unconventional structural shapes and modes for M/
NEMS applications, which impose more complicated designs
for actuation and transduction electrodes. In this regard, a
clamped–clamped beam structure that is most commonly
used in M/NEMS applications provides a practical platform
to derive benefits from the unique dynamic characteristics
originating from IR. The strategies suggested in this study
can be extended to 2-dimensional plate structures as well. It
is also worth mentioning that fixed–fixed strings or mem-
branes with zero flexural rigidity might be alternative can-
didates to achieve 1:n IR, as their mode frequencies
inherently entail the commensurability condition53,54.
M/NEMSs are great platforms to practically implement

IR dynamics due to their flexibility in design and fabrica-
tion. In addition, any fabrication randomness can be fairly
easily overcome with the frequency tunability of micro/
nanoresonators (e.g., applying tension through a gate DC
voltage43,55,56 or changing the temperature57,58). We expect
that the feasible implementation of IR in M/NEMSs based
on the knowledge obtained in this study can stimulate
further research exploiting IR in various applications.

Materials and methods
Fabrication
The proposed fabrication sequence started with a silicon-

on-insulator (SOI) wafer (Ultrasil Inc.) in which MEMS
resonators are commonly fabricated due to the ease of
suspending the resonating structures. A 2 μm-thick device
layer was patterned using conventional photolithography to
delineate an array of silicon microcantilevers. Then, a
modified soft lithographic technique, namely, blanket
transfer (BT)59, was used to transfer a 3 μm-thick photo-
patternable polyimide (HD4100, HD Microsystem) to the
device layer surface from a viscoelastic stamp made of cured
polydimethylsiloxane (PDMS). The transferred polyimide
film was freestanding over the etched trenches and directly
patterned to delineate the polymer microstructures sus-
pended over the gap. The patterned polyimide film was
annealed at 350 °C for 3 h under a N2 atmosphere. The
backside of the SOI wafer was patterned with tight (<5 μm)
double-side alignment to open etch windows and etched
using deep reactive ion etching (DRIE) until the buried oxide
layer was fully exposed. Finally, both the microbeam struc-
ture and the polymer freestanding structures were released
by hydrofluoric acid etching of the buried oxide layer.

Experimental process
The experimental setup consisted of device actuation,

response measurement, and data acquisition/processing.

The experimental setup was carefully designed to elim-
inate any sources of nonlinearity induced from the
actuation and measurement processes, and the observed
nonlinearity was deduced to be merely structural. As
shown in Fig. 8, the device was driven with a piezoelectric
shaker by feeding an AC voltage through a function
generator (Tektronix AFG3022c). Laser Doppler vibro-
metry (Polytec OFV-534 sensor and OFV-5000 con-
troller) was used to measure the dynamic response, and
the obtained signals were sent to a signal processing
program through a digital oscilloscope (Tektronix
DSOX4034A). To capture both the second and third
modes simultaneously, the location of the laser was
carefully adjusted away from the nodes of these two
modes, as shown in Fig. 1a. Because the measurement
point does not correspond to a location having a max-
imum displacement of either mode, only the relative
comparison between modal amplitudes is valid. A FFT
was performed on the time-domain signals collected at
each single-frequency excitation to produce the frequency
content of the dynamic response. The FFT-based spectral
response revealed all significant peaks that were generated
from the nonlinear response, as shown in Fig. 1b, c. The
amplitudes and frequencies of these peaks per driving
frequency were recorded during the frequency sweep
process to obtain the final amplitude responses, as shown
in Fig. 2. The experiments were carried out under an
absolute vacuum pressure of 3 mTorr to eliminate energy
dissipation from air damping.

Analytical formulation
We employ the energy method to derive the governing

equations of the modal amplitude by applying the

Sensor head
controller

Control
computer

Data
acquisition

Function
generator

Vacuum
chamber

Polymer

Piezo stack

XY� stage

Si beam

Laser
vibrometer

Fig. 8 The experimental setup consists of the device actuation,
response measurement, and data acquisition/processing
sections. The device was driven with a piezoelectric shaker feeding
by an AC voltage through a function generator inside a vacuum
chamber. Laser Doppler Vibrometry was used to measure the
vibratory response, and the obtained signals were sent to a signal
processing program through a digital oscilloscope
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Euler–Lagrange equation to the Lagrangian of the system.
To obtain the energy terms, we start by defining the
expression for the transverse displacements of a beam
under base excitation. Because both the LM and HM are
involved in the IR dynamic responses, two-mode expan-
sion is implemented to describe the transverse displace-
ments (w) in the form of:

w x; tð Þ ¼ η A1 tð Þw1 xð Þ þ A2 tð Þw2 xð Þ½ � þ wb tð Þ ð1Þ

where x is the coordinate of the beam along its length; t is
time; A1 and A2 are the modal amplitudes of the LM and
HM, respectively; w1 and w2 are the mode shapes of the
LM and HM, respectively; and wb ¼ �η2wFcos Ωtð Þ is the
base excitation driving the system at frequency Ω and
amplitude wF.
When the system is driven harmonically at a driving

frequency of Ω near the LM, the second harmonic motion
at 2Ω is internally excited due to the 1:2 IR. Thus, the
modal amplitudes A1 and A2 are described by:

A1 tð Þ ¼ p1 ηtð Þ cos Ωtð Þ þ q1 ηtð Þ sin Ωtð Þ
A2 tð Þ ¼ p2 ηtð Þ cos 2Ωtð Þ þ q2 ηtð Þ sin 2Ωtð Þ ð2Þ

where pi; qi i ¼ 1; 2ð Þ are the amplitude components of
the modal amplitudes on the slowly varying time scale
τ ¼ ηt. Considering the flexural oscillations in the beam
(i.e., with no longitudinal displacement), the nonlinear
axial strain-displacement relation is expressed by:

ϵxx ¼ �z
∂2w
∂x2

þ 1
2

∂w
∂x

� �2

ð3Þ

where z is the coordinate along the beam thickness from the
neutral plane. Equation (3) includes the strain induced by
the linear bending displacement and nonlinear axial
stretching during transverse oscillations. Assuming that the
only effective strain field in the structure is the axial strain,
the strain energy (U) for an isotropic material is given by

dU ¼ υμ

1� 2υ
þ μ

� �
ϵ2xx ð4Þ

where μ ¼ E=2 1þ υð Þ, in which υ; E are Poisson’s ratio
and Young’s modulus, respectively. The strain energy can
be calculated by integrating Eq. (4) over the volume of the
structure. The kinetic energy is derived by:

T ¼
Zb

0

Zh

0

ZL

0

ρ

2
_w2dV ð5Þ

where ρ is the density. Then, the Lagrangian is time-
averaged over a period of the forcing cycle (from 0 to 2π

Ω ).

The terms up to O η3ð Þare retained in the averaged
Lagrangian.

hLi ¼
Z 2π

Ω

0
T � Uð Þdt ð6Þ

When the LM is externally driven, the excitation fre-
quency (Ω) is expressed as Ω ¼ ω1 þ ησ2, where σ2 is the
external frequency detuning parameter. Substituting Ω
into Eq. (6) and using Lagrange’s equation, the following
differential equations of the modal amplitudes with
respect to the slower time scale are obtained:

p01 þ ζ1p1 þ σ2q1 þ α1 p1q2 � p2q1ð Þ ¼ 0

q01 þ ζ1q1 � σ2p1 � α1 p1p2 þ q2q1ð Þ þ λwF ¼ 0

p02 þ ζ2p2 þ ω2
ω1

σ2 � σ1
2

� �
q2 � 2α2 p1q1ð Þ ¼ 0

q02 þ ζ2q2 � ω2
ω1

σ2 � σ1
2

� �
p2 þ α2 p21 � q21

� � ¼ 0

ð7Þ

where the prime denotes the derivative of variables with
respect to τ. Here, the modal damping ratios ζ1; ζ2ð Þ are
added to the first and second modes. It is worth noting
that the nonlinear mode coupling in Eq. (7) originates
from the axial strain (∈xx). The axial stretching brings
about the cubic coupling terms between the modal
amplitudes of A1 and A2 (e.g., A3

1;A
3
2;A

2
1A2; A1A2

2) in the
strain energy, but only the term A2

1A2 remains as the only
effective nonlinear term in the time-averaged Lagrangian
equation. After algebraic simplifications, the coefficients
of the nonlinear coupling (α1, α2) and forcing (λ) are given
by:

α1 ¼
R b

0

R h

0

R L

0

υμ
1�2υþμð Þ 2 w01w02 �zw00

1ð Þð Þþ w021 �zw00
2ð Þð Þ½ �dV

4ω1

R b

0

R h

0

R L

0

ρ
2w

2
1dV

α2 ¼
R b

0

R h

0

R L

0

υμ
1�2υþμð Þ 2 w01w0

2 �zw00
1ð Þð Þþ w021 �zw00

2ð Þð Þ½ �dV
16ω1

R b

0

R h

0

R L

0

ρ
2w

2
2dV

λ ¼ �
R b

0

R h

0

R L

0
w1dV

2
R b

0

R h

0

R L

0

ρ
2w

2
1dV

ð8Þ

The nonlinear coupling coefficients in the first two
fractions of Eq. (8) are generated by the pure geometric
effect and, thus, determined by the geometric parameters
and linear mode shapes of the engaged LM and HM. The
numerator of both fractions originates from the identical
term A2

1A2 in the strain energy, and the denominators are
derived from the terms in the kinetic energy. Thus, the
nonlinear coefficients of α1 and α2 are not independent of
each other but vary together. The last fraction in Eq. (8)
expresses the forcing coefficient, of which the numerator
stems from the forcing function and the denominator
from the kinetic energy. Equation (8) indicates that the
nonlinear and forcing coefficients depend entirely on the
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mode shapes of the structure. Therefore, one can design
1:2 IR systems with targeted resonance behaviors by tai-
loring the geometric parameters in Eq. (8).
To obtain the amplitude modulation equation from Eq.

(7), the polar transformation is introduced as:

p1 ¼ a1 cos β1ð Þ; q1 ¼ a1 cos β1ð Þ
p2 ¼ a2 cos β2ð Þ; q2 ¼ a2sin β2ð Þ ð9Þ

Then, the equations describing the amplitude and phase
modulation are obtained as:

a01 ¼ �ζ1a1 þ α1a1a2 sin 2β1 � β2ð Þ � Λ sin β1ð Þ
a1β01 ¼ σ2a1 þ α1a1a2 cos 2β1 � β2ð Þ � Λ cos β1ð Þ
a02 ¼ �ζ2a2 þ α2a21 sin 2β1 � β2ð Þ2β02

¼ ω2
ω1

σ2 � σ1
2

� �
a2 � α2a21 cos 2β1 � β2ð Þ

ð10Þ

where Λ ¼ λwF . With a01 ¼ a02 ¼ β01 ¼ β02 ¼ 0, the cou-
pled algebraic equations for the analytical steady-state
amplitudes (a1, a2) and phases (β1, β2) can be obtained as:

ζ22 þ ω2
ω1

σ2 � 0:5σ1ð Þ
� �2

� �
a22 ¼ α22a

4
1

α21α
2
2

ζ22þ ω2
ω1

σ2�0:5σ1ð Þ
� �2 a61 þ

2α1α2 �ζ1ζ2þω2
ω1
σ2 σ2�0:5σ1ð Þ

� �

ζ22þ ω2
ω1
ðσ2�0:5σ1Þ

� �2 a41 þ ζ21 þ σ22
� �

a21 � Λ2 ¼ 0

tan β1 ¼
ω1 �ζ1α2a21þα1ζ2a22ð Þ

ω1σ2α2a21þα1ω2 σ2�0:5σ1ð Þa22
tan β2 ¼ �ζ2ω1 1�tan2 β1ð Þþ2ω2tanβ1 σ2�0:5σ1ð Þ

ω2 σ2�0:5σ1ð Þ 1�tan2 β1ð Þþ2ζ2 tan β1ω1

ð11Þ

The solutions to Eq. (11) define the steady-state
amplitudes and phases of the system. From Eq. (11), one
can see that there exist one or three real solutions for a1,
and for each solution of a1, a corresponding a2 always
exists (the two being a pair). The stability of a fixed point
obtained by Eq. (11) is evaluated by calculating the
eigenvalues of the Jacobian linearization matrix of Eq.
(10), which is given by

If all of the eigenvalues at the equilibrium point have
negative real parts, the point is asymptotically stable.
Otherwise, the solution is unstable.

When the HM is externally driven, the excitation fre-
quency (Ω) is expressed as Ω ¼ ω2 þ ησ2, and the 2:1 IR
excites the LM at the frequency Ω/2. Thus, the expres-
sions for the modal amplitudes change from Eq. (2) to

A1 tð Þ ¼ p1 ηtð Þ cos Ω
2 t

� �þ q1 ηtð Þ sin Ω
2 t

� �
2 tð Þ

¼ p2 ηtð Þ cos Ωtð Þ þ q2 ηtð Þ sin Ωtð Þ ð13Þ

Then, we follow the same procedure to investigate the
2:1 IR. The detailed derivation is provided in the Sup-
plementary Information. The analytical expressions for
the steady-state amplitudes and phases are given by:

a22 ¼
ζ21þ σ1þσ2

2ð Þ2
α1

2

α1α2ð Þ2a41 þ �2α1α2 ζ1ζ2 � σ2
σ1þσ2

2

� �� �� �
a21

þ ζ22 þ σ22
� �

ζ21 þ σ1þσ2
2

� �2� �
� α12Λ

2
� �

¼ 0

tan β2 ¼ α1ζ2a22þα2ζ1a21
α2

σ1þσ2
2ð Þa21�σ2α1a22

2ζ1
ðσ1þσ2Þ þ tan β2

� �
tan2 β1 þ 2� 4ζ1 tan β2

σ1þσ2

� �

tan β1 � 2ζ1
ðσ1þσ2Þ þ tan β2

� �
¼ 0

ð14Þ

The solutions to Eq. (14) define the steady-state
amplitudes and phases of the 2:1 IR response when the
HM is externally driven. From the amplitude equations,
we can see that there always exists one real solution for
the ERM (i.e., HM) amplitude of a2, while no or two real
solutions exist for the IRM (i.e., LM) amplitude of a1.
It is worth noting that the model we developed for a

quadratic IR system does not include all the nonlinear
terms associated with the quadratic modal coupling terms
in Eq. (10) and Eq. (S7). The general form of the equations
of motion for a nonlinear system with quadratic coupling
terms is expressed by:

€u1 þ ω2
1u1 þ η 2ζ1 _u1 þ γ1u

2
1 þ γ2u1u2 þ γ3u

2
2 � f1cos Ωtð Þ� 	 ¼ 0

€u2 þ ω2
2u2 þ η 2ζ2 _u1 þ γ4u

2
1 þ γ5u1u2 þ γ6u

2
2 � f2cosðΩtÞ� 	 ¼ 0

ð15Þ

When we impose the condition of commensurability by
introducing equation ω2 ¼ 2ω1 þ ησ1 and drive the sys-
tem around its lower mode Ω ¼ ω1 þ ησ2, Eq. (15) can be

J ¼

�ζ1 þ α1a2sin 2β1 � β2ð Þ 2α1a1a2 cos 2β1 � β2ð Þ � Λcos β1ð Þ α!a1sin 2β1 � β2ð Þ �α1a1a2cos 2β1 � β2ð Þ
Λ
a21
cos β1ð Þ �2α1a2 sin 2β1 � β2ð Þ þ Λ

a1
sin β1ð Þ α1 cos 2β1 � β2ð Þ α1a2 sin 2β1 � β2ð Þ

2α2a1 sin 2β1 � β2ð Þ 2β1 � β2ð Þ 2α2a21 cos 2β1 � β2ð Þ �ζ2 �α2a21 cos 2β1 � β2ð Þ
� 2α2a1

a2
cos 2β1 � β2ð Þ 2α2a21

a2
sin 2β1 � β2ð Þ α2a21

a2
cos 2β1 � β2ð Þ � α2a21

a2
sin 2β1 � β2ð Þ

0
BBB@

1
CCCA ð12Þ
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reduced to obtain the amplitude-modulated equations
using the method of multiple scales:

a01 ¼ �ζ1a1 þ γ2a1a2 sin β2 þ Λ sin β1
a1β

0
1 ¼ ω1σ2a1 � γ2a1a2 cos β2 þ Λ cos β1

a02 ¼ �ζ2a2 � γ4a
2
1 sin β2

a2β
0
2 ¼ ω2ðσ2 � σ1

2
Þa2 � γ4a

2
1 cos β2 ð16Þ

Equation (16) reveals that the only effective coupling
coefficients in the system are γ2 and γ4, with none of the
remaining nonlinear coefficients appearing in the final
leading-order solution. These equations, which are con-
sistent with the ones provided by Nayfeh5,60, corroborate that
our energy-based model is general for a quadratic IR system
and is not limited to specific nonlinear coupling terms.
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