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layered graphene film for high-sensitivity detection
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Abstract
The thickness of the sensitive layer has an important influence on the sensitivity of a shear horizontal surface acoustic
wave (SH-SAW) biosensor with a delay-line structure and lower layer numbers of graphene produce better sensitivity
for biological detection. Therefore, a label-free and highly sensitive SH-SAW biosensor with chemical vapor deposition
(CVD-)-grown single-layered graphene (SLG) for endotoxin detection was developed in this study. With this
methodology, SH-SAW biosensors were fabricated on a 36° Y-90° X quartz substrate with a base frequency of
246.2 MHz, and an effective detection cell was fabricated using acrylic material. To increase the surface hydrophilicity,
chitosan was applied to the surface of the SLG film. Additionally, the aptamer was immobilized on the surface of the
SLG film by cross-linking with glutaraldehyde. Finally, the sensitivity was verified by endotoxin detection with a linear
detection ranging from 0 to 100 ng/mL, and the detection limit (LOD) was as low as 3.53 ng/mL. In addition, the
stability of this type of SH-SAW biosensor from the air phase to the liquid phase proved to be excellent and the
specificity was tested and verified by detecting the endotoxin obtained from Escherichia coli (E. coli), the endotoxin
obtained from Pseudomonas aeruginosa (P. aeruginosa), and aflatoxin. Therefore, this type of SH-SAW biosensor with a
CVD-grown SLG film may offer a promising approach to endotoxin detection, and it may have great potential in
clinical applications.

Introduction
Endotoxins are complex lipopolysaccharides (LPS) that

form the cell walls of various gram-negative bacteria.
Structurally, LPS consists of lipid A, core polysaccharide,
and O-polysaccharide side chains. Among them, lipid A is
the main component of the bacterial endotoxin, which
determines its toxicity, the O-polysaccharide side chain is
highly variable among different bacteria, and the

specificity determines the serotype of bacteria. Endotoxins
are responsible for the toxic effects that cause fevers,1

septic shock,2 and sepsis.3,4 Biosensor based endotoxin
detection has been widely investigated recently,5,6 and
many methods have been investigated to identify endo-
toxins: hydrophobic interactions,7 localized surface plas-
mon resonance (LSPR),8 mass spectrometry,9 optical
methods,10 the electronic tongue,11 the voltammetric
method,12 and electrochemistry.13–17 However, these
methods have some disadvantages, such as high costs, a
long processing time and the requirement of labeled
markers. Thus, the demand for rapid, simple operations
and low costs is increasing.
Shear horizontal surface acoustic wave (SH-SAW) bio-

sensors have been widely reported owing to aspects such

© The Author(s) 2020
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Ning Xue (xuening23xn@163.com) or Yi Xu (xuyibbd@cqu.
edu.cn) or Xiaojing Mu (mxjacj@cqu.edu.cn)
1Key Laboratory of Optoelectronic Technology & Systems, Ministry of
Education, International R & D Center of Micro-nano Systems and New
Materials Technology, Chongqing University, 400044 Chongqing, China
2School of Chemistry and Chemical Engineering, Chongqing University,
400030 Chongqing, China
Full list of author information is available at the end of the article.

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

www.nature.com/micronano
http://creativecommons.org/licenses/by/4.0/
mailto:xuening23xn@163.com
mailto:xuyibbd@cqu.edu.cn
mailto:xuyibbd@cqu.edu.cn
mailto:mxjacj@cqu.edu.cn


as their high selectivity and/or sensitive detection of
deoxyribonucleic acid (DNA),18 proteins,19 and cells.20–23

SH-SAW biosensors have the advantages of low cost,
operational simplicity, and high sensitivity, and these
biosensors can be used in label-free and real-time mon-
itoring. Additionally, SH-SAW biosensors are especially
suitable for biological detection in a liquid phase, as the
particle displacement is parallel to the SAW propagation
direction. Nanogold film have traditionally been used as
sensitive layers for these biosensors. In contrast to these
materials, the thickness of nanogold films is usually in the
range of tens of nanometers, which would undoubtedly
affect the performance of a biosensor.
Compared to noble (Au)-based electrode materials,

carbon-based materials show some advantages. That is,
the presence of the sp2 hybridized carbon atom center in
their structural backbone provides a route for surface
modification. Sensing devices produced with bare-carbon-
based materials were able to determine analytes down to
trace levels. Additionally, its use as the sensing material
could enhance the signal in biosensors. Moreover, gra-
phene is exceptionally biocompatible if used as a sensitive
layer for the immobilization of biomolecules.24 Therefore,
graphene-related materials have recently attracted great
interest from researchers in the biosensor field.25 Among
them, graphene oxide (GO) is widely applied as the sen-
sitive layer of the biosensor.26–31 However, in the case of
GO, the sensitivity strongly depends on the lateral size,
the layer number, and the number of oxygen-containing
groups.32

The rapid development of the chemical vapor deposi-
tion (CVD) technique in recent years has enabled the
production of large-area, high-quality graphene films with
good structural controllability, which is particularly ben-
eficial for the fabrication of sensing devices.33 Biosensors
fabricated with graphene have been widely investigated
for the detection of viruses,34 bacteria,35 proteins,36 and
nucleic acids.37 In addition, SLG-based biosensors have
demonstrated excellent biocompatibility, conductivity and
high sensitivity.38,39 Recently, researchers have used a
finite element analysis (FET) DNA biosensor with SLG to
reach a detection limit of 10 fM for target DNA with a
dynamic range of 10 fM to 100 pM,40 indicating that lower
layer numbers of graphene produce better sensitivity for
the biosensor. A Hall effect biosensor with ultraclean
gold-transferred SLG for the detection of DNA hybridi-
zation could increase the concentrations of target or one-
base mismatched DNA from 1 pM to 100 nM.41 Thus far,
SAW-based biosensors for the detection of an endotoxin
with SLG have not yet been reported.
In this work, we present a highly sensitive and specific

SH-SAW biosensor with SLG film in the sensitive area;
the SLG was transferred onto a 36° Y-90° X quartz sub-
strate using polymethyl methacrylate (PMMA) after CVD

growth. In addition, the aptamer was immobilized on the
sensitive area by glutaraldehyde (GA) cross-linked chit-
osan (CS).42–44 The LPS applied in this study was
obtained from E. coli 055:B5 (L4524), which was extracted
by benzene. Finally, the performance of the biosensor was
proven to linearly detect an endotoxin in a wide range
from 0 to 100 ng/mL, and the biosensor exhibited a
detection limit of 3.53 ng/mL. In contrast, a recent
report45 on a fluorescent aptamer-based probe for the
determination of the LPS of Gram-negative bacteria
exhibited a detection limit of 8.7 ng/mL. In addition, the
selectivity was verified by distinguishing the endotoxin
from endotoxin obtained from P. aeruginosa and afla-
toxin, and the stability proved to be excellent. Overall, this
type of detection strategy may have great potential in
future applications.

Materials and methods
Materials and reagents
The copper foils (purity: 99.8%) were purchased from

Shenzhen Changda Sheng Electronics Co., Ltd. The
PMMA was obtained from Wenzhou Yuanteng Plastic
Co., Ltd. The 36° Y-90° X quartz substrates with Au
(purity: 99.9999%) were obtained from Wuxi Haoda
Electronics Co., Ltd. The hydrochloric acid, acetone, CS,
GA and etching solution (FeCl3/HCl) were purchased
from Chongqing Xingguanghuabo Company. The apta-
mer (NH2-5′-CTT CTG CCC GCC TCC TTC C- TAG
CCG GAT CGC GCT GGC CAG ATG ATA TAA AGG
GTC AGC CCC CCA -GGA GAC GAG ATA GGC GGA
CAC T-3′) was synthesized by Bioengineering (Shanghai)
Co., Ltd.

Fabrication of the SH-SAW biosensor
The SH-SAW biosensor with a delay-line structure was

fabricated with a typical MEMS process,46 including
lithography development, vacuum magnetron sputtering,
and lift-off on a 36° Y-90° X quartz substrate with a
thickness of 0.5mm and a diameter of four inches. A Cr/Au
film (40/100 nm) was sputtered over the entire wafer
surface by magnetron sputtering, and then the IDTs and
electrodes were formed by immersing the wafer into
acetone to lift off the excess metal. To increase the
adhesion of Au, Cr was used as an adhesion layer.

The growth and transfer of high-quality single-layered
graphene
The SLG film was synthesized with CVD on copper foil.

Prior to growth, the copper foil was thoroughly cleaned
with hydrochloric acid and cut into a size of 6 mm ×
3mm. The copper foil was placed in a tube furnace and
the gas path was kept sealed. The quartz tube was
vacuumed and then hydrogen gas was passed into the
tube to keep it at atmospheric pressure. The air in the
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airway was exhausted three times to keep the vacuum
pump working continuously with constant pressure
(100 Pa). The system was heated to 1050 °C in 100 min
with a flow of H2 (20 sccm), and then kept under those
conditions for 10min. Next, a flow of CH4 (35 sccm) was
introduced into the system, which was kept under this
condition for 20 min, and graphene was grown on the
surface of the copper foil. Finally, the chamber was
naturally cooled down to room temperature under an H2/Ar
atmosphere, and then the gas was closed off.

Transfer of high-quality single-layered graphene using
PMMA
As shown in Fig. 1, prior to the transfer of graphene on

the quartz substrate, one side of the copper foil was
treated with plasma to clean up the graphene. This action
was performed to increase the ease of corrupting the
copper foil in the later stage. Next, a layer of polymethyl
methacrylate (PMMA) was spin-coated on the other side
of the copper foil. After the PMMA layer was baked, the
copper foil was placed on the surface of the FeCl3/HCl
etching solution. Half an hour later, the graphene/PMMA
was transferred to distilled water for two hours to clean
the surface impurities when the copper foil was corroded.
After rinsing with deionized water, a clean glass plate was
used to support the PMMA/graphene layer (6 mm ×
3mm in area). After baking at 60 °C for 2 h, the sample
was immersed in hot acetone (60 °C) for 10min to dis-
solve the PMMA followed by annealing in the CVD fur-
nace under a H2/Ar (20/80 sccm) atmosphere at 450 °C
for 2 h to remove the rest of the PMMA. High-quality

single-layered graphene was then obtained. Finally, for the
sensitive layer, the single-layered graphene was trans-
ferred onto the sensitive area of the 36° X-90° Y quartz
substrate to characterize the performance of the
biosensor.

Related theory
In this study, a delay line structure with a single channel

was designed, which generally consists of input and out-
put IDTs that were mounted on the 36° Y-90° X quartz
substrate. The SH-SAW is simulated by the input IDTs,
and then propagates along the surface of the sensitive area
through the delay line which lies between the input IDTs
and the output IDTs. The SH-SAW resonant frequency
can be calculated by the following equation:

f0 ¼ Vs=2ðaþ bÞ; ð1Þ

where f0 is the resonant frequency of the device (MHz), Vs

is the SH-SAW propagating velocity on the piezoelectric
substrate (m/s), a is the width of the IDT fingers and b is
the gap between the IDT fingers (μm). Generally, a simple
situation, namely, λ ¼ a ¼ b is adopted; thus, f0 can be
further expressed as

f0 ¼ Vs=4λ ð2Þ

The amplitude and the phase velocity varied with the
change in the mass loading on the propagation path. The
phase change was collected by the detection system. The
phase change and the amplitude change are expressed as

Single-layer graphene (SLG)
grown on 6 mm × 3 mm copper.

PMMA coated on SLG/copper
by a spin-coater.

PMMA/SLG/copper slice immersed
into etchant to remove copper.

SH-SAW biosensor chip with single-
layer graphene obtained by treatment
with hot acetone (60 °C) overnight to

decompose PMMA.

PMMA/SLG directionally transferred
onto the SH-SAW biosensor chip, where

the sensitive area is located.

Transfer PMMA/graphene to distilled
water with the clean quartz substrate.

Fig. 1 Transfer process of CVD-grown single-layered graphene using a PMMA supporting layer.
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follows

ΔPh ¼ 360fl
1
V0

� 1
V1

� �
; ð3Þ

ΔAmp ¼ fl
a1
V1

� a0
V0

� �
; ð4Þ

where ΔPh is the phase shift of the SH-SAW biosensor (°),
f is the frequency (Hz), l is the propagation length (m), V0

is the velocity before loading (m/s), V1 is the velocity after
loading (m/s), ΔAmp is the amplitude change of the SH-
SAW biosensor (dB), a0 is the propagation loss before
loading (dB/λ), and a1 is the propagation loss after loading
(dB/λ).

Immobilization of the aptamer on single-layered graphene
Prior to the immobilization of the aptamer, the CS

solution (0.2%) was dropped on the surface of the sensi-
tive area and dried at room temperature to increase the
hydrophilicity of the SLG film. Next, 5 μL of GA solution
in acetic acid at 2.5% (m/m) (50 mmol/L, PH= 7.4) was
dropped onto the surface of the modified sensitive area,
and then the sensitive area was soaked in a GA solution
for 2 h to link the amino-groups in the CS. After that, the
SH-SAW biosensor was rinsed with deionized water to
clean the residual reagent, and then dried at room tem-
perature. The aptamer solution (10 nmol/L) was then
pumped into the reaction cell, so that the aptamer could
be chemically bonded to the aldehyde-groups in the GA.
The sensitive area was then washed with deionized water
to remove the unreacted aptamer. After that, the endo-
toxin solution (0–100 ng/mL) was pumped into the
reaction cell, and then the aptamer would specifically bind
to the endotoxin. Therefore, the endotoxin could be
detected by an SH-SAW biosensor with a CVD-
grown SLG.

Detection procedures
Prior to the experiment, a homemade detection cell was

fabricated to increase the ease of operation (Fig. S1). SMA
cables were used to connect the vertical network analyzer
(Agilent, E5080A) (Fig. S1D), and the phase signals were
monitored and recorded by a biosensor monitoring sys-
tem based on the LabVIEW software. First, the surface of
the sensitive area was treated with CS and GA to ensure
the linking of the related groups, and then the detection
biosensor chip was put into the groove of the detection
cell. The phase (P0) of the SH-SAW biosensor was then
monitored until a steady baseline was observed in the
liquid phase environment. Next, the aptamer solution was
pumped into the reaction cell to link the aldehyde in GA
until the phase reached a stable value, and the steady-state
phase was taken as P1. Finally, the endotoxin solution was

pumped into the reaction cell, and the biosensor was then
maintained at 37 °C for the reaction. When the resonance
phase reached a stable value, the steady-state phase was
taken as P2. The phase shift attributed to the aptamer-
endotoxin reaction was calculated by the equation:
ΔP ¼ P2 � P1.

Selectivity assessment
To assess the selectivity, SH-SAW biosensor chips were

employed to detect aflatoxin and the endotoxin obtained
from Pseudomonas aeruginosa (P. aeruginosa). The
aptamer was immobilized on the sensitive surface of the
SH-SAW biosensor chip, and then the aflatoxin and the
endotoxin obtained from P. aeruginosa were injected into
the reaction cells to verify the selectivity.

Electrical measurements and characterizations
Detailed information regarding the electrical measure-

ments and the characterizations of the equipment used in
this study are given in SI-1.2.

Results and discussion
The principles and the structure of the SH-SAW biosensor
with SLG
The detailed configuration of the SH-SAW device with

SLG is shown in Fig. 2. The SLG was deposited on the
sensitive area of the SH-SAW device as the sensitive layer
(Fig. 2a). Additionally, the real product of the SH-SAW
biosensor with the SLG is shown in Fig. 2b. The specific
parameters of the SH-SAW device are shown in SI-2.1. To
illustrate this approach for the high sensitivity detection of
the endotoxin, the principle of the SH-SAW biosensor is
demonstrated in Fig. 2c, d. The aptamer was first
immobilized on the SLG film, and then the endotoxin was
captured based on the specific interaction between the
aptamer and the endotoxin. The phase shift of the SH-
SAW biosensor was thus observed for the mass-change in
the sensitive area. Additionally, the propagation char-
acteristics of the SH-SAW is verified by the COMSOL
5.2a software (Fig. S3).
The aptamer immobilization processes are shown in

Fig. 3. The CS was first immobilized on the SLG film, and
then the amino groups in the CS reacted with the alde-
hyde in GA to form C=N bonds. After that, the aldehydes
groups in GA reacted with the amine-functionalized
aptamer. It was then ready for the specific detection of an
endotoxin.

Characterizations of SLG
The Raman spectra of the SLG film are presented in Fig.

4a. The Raman spectra exhibit the characteristic peak of a
high-quality SLG: a sharp G-band (≈1600 cm−1) and a
sharp 2D-band (2699–2720 cm−1).47 The I2D/IG ratio
(2.37) shows the excellent quality of the SLG.
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To examine and analyze the surface chemical com-
positions of the SLG, X-ray photoelectron spectroscopy
(XPS) was conducted. As shown in Fig. 4b, the blue line
represents the raw spectrum. To fit the C1s spectrum,
four components were obtained: the sp2 component of
C=C (green line, at 284.6 eV) and the oxygen-
containing groups including C–O (purple line, at
286.1 eV), C=O (black line, at 287.1 eV), and COOH
(red line, at 288.7 eV).48 The contents of the chemical
states of these elements at different peak positions were
calculated using the peak area. As shown in Fig. 4c–e,
the data indicated that impurities could not be found on
the surface of the SLG film. Therefore, the PMMA was
completely removed from the graphene surface due to
hot acetone.
Additionally, scanning electron microscopy (SEM)

and transmission electron microscopy (TEM) were used
to characterize the surface topography of the sensitive
area and the single-layered graphene obtained from the
sensitive area respectively. Figure 4a shows that the
black area is the single-layered graphene film grown in
the sensitive area by CVD, and the white area is the
quartz substrate. It is known that graphene possesses

good electrical conductivity; hence, this obvious divid-
ing line (Fig. 5a) indicates that the single-layered gra-
phene kept a certain distance from the IDTs. Therefore,
short circuit of the IDTs could be avoided. Figure 5b
shows polymers on the surface of the single-layered
film. As shown in Fig. 5c, d, the morphology of the
single-layered graphene is very clear. To prepare test
samples, graphene was obtained from the sensitive area.
Next, the samples were made into a suspension by
ultrasonic oscillation in alcohol. Finally, the suspension
was dropped on ultrathin carbon mesh for testing with
TEM.

Characterization by AFM
The AFM images are presented in Fig. 6. The surface

morphology of the sensitive area with single-layered gra-
phene is illustrated in Fig. 6a, b, which show that the
surface morphology is very smooth. Figure 6c, d indicate
that the surface morphology was remarkably changed
after the aptamer was immobilized in the sensitive area.
After the endotoxin was pumped into the reaction cell,
the obvious change in the surface morphology (Fig. 6e, f)
indicated that the specific binding of aptamer and

Vin

Vout

Single-layer
graphene

Sensitive layer of single-layered
graphene

Pad

a b

c d

Pad
IDTs

Input IDTs

Amplitude
Velocity

Amplitude

Droplet

Endotoxin

Aptamer

Velocity

Propagation of the surface acoustic wave

Au

36° X-90° Y quartz

Output IDTs

Fig. 2 The principles and detailed configuration of the SH-SAW device with SLG. a Schematic of the SH-SAW biosensor chip and the working
principles. b Photograph of the fabricated SH-SAW biosensor chip. c, d Principles and schematic illustration of endotoxin detection on the SLG
surface.
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endotoxin occurred in the sensitive area. The parameters
used for the AFM technique in the morphological analysis
were the following: imaging resolution was 256, the

scanning speed was 0.7 Hz, the imaging mode was the
tapping mode, and the imaging force setpoint was as
follows: 2.9313 P: 1.4 I: 0.7.

SLG film

Endotoxin
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Fig. 3 The surface functionalization process including the surface modification with chitosan and the glutaraldehyde to amine-functionalized
aptamer immobilization processes.
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The analytical performance of the SH-SAW biosensor with
SLG
Stability is an important factor used to evaluate the

performance of an SH-SAW biosensor. Initially, the PBS
solution was pumped into the reaction cell while the
phase signal was kept stable in the air phase. Then the
PBS solution was pumped out of the reaction cell. The
result (Fig. 7a) revealed that the phase signal could remain
in the stable state when sudden environmental changes
occurred. Therefore, the SH-SAW biosensors had excel-
lent stability and external interference could be excluded.
The phase shift can be attributed to the mass added to the
sensitive area, and thus, the authenticity of the data can be
guaranteed. In addition, the endotoxin was pumped into
the sensitive area without the aptamer being immobilized
on it, which confirms that the phase shift was indeed
caused by the specific binding of the aptamer and the
endotoxin. The result is shown in Fig. 7b. The phase was
kept in the steady state after the endotoxin was pumped
into the reaction cell. Therefore, the phase shift can be

guaranteed by the specific binding of the aptamer and the
endotoxin. In addition, the phase shifts induced by
pumping the PBS and aptamer into the sensitive area
without the SLG film are shown in Fig. S4. The results
revealed that the SLG film was used to immobilize the
aptamer in the sensitive area by the crosslinking method.
In the stable test environment, the performance of the

SH-SAW biosensor with the SLG film was assessed by
detecting the different concentrations of the endotoxin
(blank, 10, 25, 50, 75, and 100 ng/mL). The real-time
phase shifts are presented in Fig. 8a, and the corre-
sponding histogram is shown in Fig. 8b. As one can see
from the results, the phase shifts increased with increasing
endotoxins concentration. The phase shifts were linear for
the concentration of endotoxin in the range from blank to
100 ng/mL, with a correlation coefficient of 0.97767 (Fig.
8c). In the linear region, the calculated sensitivity was S ≈
0.044 deg/ng/mL. The limit of detection was as low as
3.53 ng/mL, which was the blank concentration plus the
three-fold standard deviation. The CVs of the ▵Phase

Single-layered graphene film

Single-layered graphene

Single-layered graphene

200 nm0.5 μμm

c d

a b

Surface polymer

Quartz
substrate

Fig. 5 The SEM images of CVD-grown single-layered graphene film in the sensitive area. a, b SEM images of CVD-grown single-layered
graphene film in the sensitive area of the SH-SAW biosensor chip. c, d TEM images of single-layered graphene obtained from the sensitive area of the
SH-SAW biosensor chip.
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obtained from different concentrations of endotoxin are
shown in Table S3. The outcome of the experiment is also
compared with some other reported results in Table 1.
The selectivity is especially important to the perfor-

mance of an SH-SAW biosensor. A nontarget biological
sample may cause a higher phase shift than the actual
value, which would undoubtedly lead to incorrect
experimental results. Therefore, the endotoxin obtained
from P. aeruginosa and the aflatoxin were pumped into
the reaction cell with a concentration of 50 ng/mL to test
and verify the selectivity of the SH-SAW biosensor. As
shown in Fig. 8d, the phase shifts of the endotoxin
obtained from P. aeruginosa and the aflatoxin were almost
the same as those of the blank solution, while the phase

shift of the endotoxin with a concentration of 50 ng/mL
was approximately 3.5°. The results reveal that the SH-
SAW biosensor in this study had excellent selectivity in
discriminating the endotoxin from the endotoxin
obtained from P. aeruginosa and the aflatoxin.

Conclusions
In this work, we reported a highly sensitive and label-

free method for the detection of an endotoxin by an
SH-SAW biosensor with SLG film. This technology
proved the high sensitivity of the SH-SAW biosensor, and
provided an effective platform for the detection of an
endotoxin. The SH-SAW biosensor demonstrated a linear
relationship with the concentration range of the
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endotoxin from 0 to 100 ng/mL, and a detection limit of
3.53 ng/mL was achieved. In addition, the stability and
excellent specificity make the SH-SAW biosensor a pro-
mising alternative to conventional endotoxin detection

methods. Therefore, an SH-SAW biosensor with SLG
may offer a more effective and accurate prognosis eva-
luation in clinical diagnosis. However, the repeatability of
this device was not ideal. In the future, this biosensor may
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be developed as a miniaturized and versatile device.
However, more detailed work should be performed before
clinical application.
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