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Abstract
Miniaturized enzymatic biofuel cells (EBFCs) with high cell performance are promising candidates for powering next-
generation implantable medical devices. Here, we report a closed-loop theoretical and experimental study on a micro
EBFC system based on three-dimensional (3D) carbon micropillar arrays coated with reduced graphene oxide (rGO),
carbon nanotubes (CNTs), and a biocatalyst composite. The fabrication process of this system combines the top–down
carbon microelectromechanical systems (C-MEMS) technique to fabricate the 3D micropillar array platform and
bottom–up electrophoretic deposition (EPD) to deposit the reduced rGO/CNTs/enzyme onto the electrode surface.
The Michaelis–Menten constant KM of 2.1 mM for glucose oxidase (GOx) on the rGO/CNTs/GOx bioanode was
obtained, which is close to the KM for free GOx. Theoretical modelling of the rGO/CNT-based EBFC system via finite
element analysis was conducted to predict the cell performance and efficiency. The experimental results from the
developed rGO/CNT-based EBFC showed a maximum power density of 196.04 µW cm−2 at 0.61 V, which is
approximately twice the maximum power density obtained from the rGO-based EBFC. The experimental power
density is noted to be 71.1% of the theoretical value.

Introduction
Driven by demographic factors such as shifting lifestyle

choices, degenerative chronic diseases, and growing ger-
iatric population, the market for implantable medical
devices (IMDs) stood at $43.1 billion in 2011 and is
expected to increase to $116.3 billion by the end of 20221.
Due to economic and ecological concerns, alternative green
and efficient power sources should be sought to replace
current commercially available lithium-ion batteries. Enzy-
matic biofuel cells (EBFCs), a subclass of fuel cells that
employ enzymes to convert biological energy into elec-
tricity, have been touted as a potential power source for
IMDs with typical power requirements of micro- to milli-
watts2. In principle, glucose is catalysed by glucose oxidase
(GOx), produces gluconolactone and protons, and gen-
erates electrons on the anode. On the cathode, a laccase

catalyst reduces molecular oxygen and generates water by
combining the oxygen atoms with electrons and protons.
EBFCs offer competitive advantages over conventional
power sources, including the utilization of renewable and
nontoxic biocomponents, high reaction selectivity and
activity of biocatalysts, abundance of biofuels, and physio-
logical operating conditions (human body temperature and
near neutral pH)3. Major milestones in the evolution of
bioelectricity generation are illustrated in Fig. 1, i.e., Gal-
vani’s bioelectricity in 17914, water electrolysis in 18395, the
initial half-cell using Escherichia coli in 19106, the first
microbial biofuel cells in 1931 (later funded by the NASA
space program)7 and the first EBFC using cell-free enzyme
in 19648. The early work on EBFCs in the 1960s involved
the use of a purified enzyme and a mediator for performing
mediated electron transfer (MET) to the electrode sur-
face9,10. Since then, research on EBFCs remained relatively
unnoticed until Berezin et al.11 made one of the most
outstanding contributions by discovering direct electron
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transfer (DET) in 1978. In the past two decades, few efforts
have been made to improve the power density, lifetime,
immobilization methods, enzyme loadings, and cell
designs12–14. In 2001, the first revolutionary micro EBFC
utilizing a single carbon fibre as the microelectrode and
body fluids as biofuel was demonstrated by Heller15, which
revealed the feasibility of using EBFCs to power miniatur-
ized IMDs. It is also clear that the current trend of devel-
oping high-performance micro EBFCs is highly related to
recent progress in nanoscience and nanotechnology. The
resulting nanostructured electrodes can enable increased
surface area and enzyme loading, provide a favourable
confined environment for long-lasting immobilization of
enzymes, and facilitate high-efficiency electron transfer
while circumventing the need for mediators. The power
densities of CNTs and graphene-based EBFCs have already
reached a range from a few tens of µW cm−2 to almost
2mWcm−216,17, which is sufficient to supply small IMDs.
However, challenges remain regarding how to further
improve the cell performance of nanomaterials to enable
micro EBFCs. Although there has been considerable effort
to improve the performance of EBFCs by improving DET,
enzyme loading, enzyme lifetime, etc., integrative theoretical
and experimental work on combining both aspects of a
high-performance electrode material and optimized archi-
tecture design is still limited. In particular, carbon nano-
materials such as graphene nanosheets tend to aggregate
and restack, and the actual accessible electrode surface
areas are much smaller than the theoretical value. In
addition, there are many other issues, such as controllability
and scalability of contact resistance, interfacial defects, and
impurities. Therefore, a scalable process by which high-
performance nanomaterials can be effectually integrated
onto microstructured electrodes with high surface areas is
urgently needed.
Recently, carbon microelectromechanical systems (C-

MEMS) and carbon nanoelectromechanical systems (C-
NEMS) have been regarded as promising platforms for
various electrochemical energy storage, power generation,
and biosensing applications, such as lithium-ion batteries,

supercapacitors, DNA, and protein biosensors18–36. The
C-MEMS structures based on pyrolyzed patterned pho-
toresist could also serve as useful platforms for minia-
turized EBFCs. The resulting three-dimensional (3D)
microstructures with high aspect ratios significantly
increased the surface area over limited footprint areas,
and the customized current collectors and microelec-
trodes could be patterned by a straightforward photo-
lithography process on Si wafers. Particularly for on-chip
miniaturized EBFC application, C-MEMS/NEMS could
provide the opportunity to integrate various semi-
conductor devices and energy storage/power generation
devices on the same Si substrates. In addition, our pre-
vious theoretical modelling study of C-MEMS-based
EBFCs in both the steady state and transient state
revealed general design rules for microelectrode arrays
and demonstrated the useful performance of micro EBFCs
to power IMDs in a blood artery37,38. Recently, the prac-
tical integration process of nanomaterials onto C-MEMS
microstructures has been developed29. The 3D graphene/
enzyme composite-based EBFC generated a maximum
power density of 136.3 μW cm−2 at 0.59 V, which is
almost seven times the maximum power density of the
bare 3D carbon micropillar array-based EBFC35. We also
studied one-dimensional (1D) nanomaterial CNTs as
spacers between graphene nanosheets as an effective
strategy to prevent the aggregation behaviour of 2D
materials38. The CNTs not only prevent restacking of
graphene sheets by acting as nanospacers but also
enhance the kinetics of the electrode, thus resulting in a
high-frequency response in interdigitated micro-
supercapacitors with superior time constants as low as
4.8 ms36. In the present research, a remarkable closed-
loop work is reported containing both theoretical and
experimental studies on C-MEMS-based micro EBFCs
with reduced graphene oxide (rGO) (2D)/CNTs (1D)
hybrid nanomaterials integrated on 3D carbon micropillar
arrays. The fabrication methods of this study combine
top–down C-MEMS technology to build 3D micropillar
arrays with bottom–up electrophoretic deposition (EPD)
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to co-deposit enzyme/nanomaterial composites onto 3D
micropillar platforms. The reduced graphene oxide/car-
bon nanotube (rGO/CNT)-based 3D EBFC generated a
maximum power density of 196.04 µW cm−2 at 0.61 V,
which was noted as 71.1% of the modelling result. We
believe that the scalable approach reported in this study to
fabricate high-performance miniaturized EBFCs will shed
light on new strategies for EBFC research.

Results
Characterization of bioelectrodes
The fabrication process of bioelectrodes, including

top–down C-MEMS technology and bottom–up EPD, is
illustrated in Fig. 2. The 3D micropillar arrays were
constructed by the C-MEMS technique18–20, which
involves a two-step photolithography process followed by
a pyrolysis step. Then, EPD was performed to co-deposit
enzyme/nanomaterial composites onto the 3D carbon
micropillar arrays. The microstructure of EPD co-
deposited enzyme/nanomaterial composites onto C-
MEMS-based 3D micropillar arrays was investigated by
scanning electron microscopy (SEM). As shown in Fig. 3a,
the enzyme/nanomaterial composite thin film was seam-
lessly deposited with good homogeneity on both the
conductive 2D current collector and high respect ratio 3D
micropillar arrays. The height of a single cylindrical
micropillar was ~120 µm, and the diameter was ~35 µm,
while the centre-to-centre distance of the closest micro-
pillars was ~130 µm. The cross-sectional images of rGO/
GOx and rGO/CNTs/GOx indicated that the thicknesses
of nanomaterials/enzyme composite thin films are ~3.7
and 4.7 µm, respectively. In Fig. 3b, a 35° tilted view from
the cross section of the rGO/GOx thin film peeled from
the C-MEMS 2D current collector layer also showed the
local folding and stacking of the rGO layers. Stacked
graphene nanosheets can be observed with extended
irregular porous structures. In addition, from the top view
of the co-deposited rGO/GOx film on the top of one
micropillar (inset in Fig. 3b), small stacks of rGO
nanosheets with micro-sized wrinkles from GO bending

during the EPD process could be observed. As expected,
the rGO maintained its fidelity and the firm shape of the
stack. Furthermore, pores with dimensions of approxi-
mately several hundred nanometres between the stacks of
graphene layers were also observed. However, the heavily
stacked rGO nanosheets would inhibit the diffusion of
mass transport species into the rGO film and hinder the
electron transfer efficiency from the enzyme to the elec-
trode. To prevent rGO from restacking, 10 wt% 1D multi-
walled CNTs were mixed with 90 wt% 2D rGO, and the
mixture was deposited by EPD under the same conditions.
The 40° tilted view from the cross section of the rGO/
CNTs/GOx thin film on the C-MEMS 2D current col-
lector layer is shown in Fig. 3c. The film clearly showed
uniformly packed rGO nanosheets with the appearance of
CNTs between the nanosheet layers. The addition of 1D
CNTs significantly decreased the rGO restacking and
created a 3D network between 2D rGO nanosheets. The
unique microstructures and addition of CNTs are
expected to facilitate easy penetration of mass transport
species and improve electron transfer efficiency between
the enzymes and microelectrodes.
Although the oxygenated functional groups in GO can

indeed give rise to remarkable structural defects for
functionalization, the loss in electrical conductivity could
limit the ability of GO as an electrically active material.
Thus, the reduction of GO to rGO is highly desired.
Analysis of the surface chemistry of the deposited films
with Fourier transform infrared spectroscopy (FTIR)
indicated that the GO was reduced to rGO during the
EPD process. The FTIR spectra of GO before and after
deposition are shown in Fig. S1. The broad adsorption
peak centred at ~3310 cm−1 in the spectrum of GO was
assigned as isolated hydroxyl groups39. Water, which
exhibits signals from O–H bonds at 1600 cm−1, was
observed40. The existence of –O–C–O– bonds was con-
firmed by the peak at 2340 cm−1 41. The peak at
1030 cm−1 was consistent with C–O stretching vibra-
tions40. The presence of phenol C–O groups and car-
boxylic acid C=O groups was indicated by the peaks at
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Fig. 2 The fabrication process: top–down C-MEMS to fabricate the 3D micropillar array platform and bottom–up EPD to deposit the rGO/
CNTs/enzyme onto the electrode surface (not to scale)
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1250 cm−1 and 1730 cm−1, respectively40,42. According to
the structural model of GO, these functional groups could
exist on the periphery of the GO nanosheets. After the
EPD process, the intensities of signals from oxygen
functionalities were significantly weakened. The spectrum
of EPD-rGO exhibited mainly peaks originating from
C–O and C=O stretching vibrations.
The immobilization of GOx and laccase on the anode

and cathode, respectively, was also studied by FTIR. Fig-
ure 3d(i) presents rGO/CNTs on the micropillar, in which
there is no obvious characteristic peak. After EPD
deposition of rGO/CNTs/laccase on the biocathode,
various absorption peaks were observed, as shown in Fig.
3d(ii). The absorption peak centred at ~3250 cm−1 was
assigned as the N-H stretching vibration, which is a
characteristic peak for amino groups from enzymes41. The
peak at 2340 cm−1 was consistent with the O–C–O
stretching vibration, also indicating the existence of the
enzyme42. The peak at 1730 cm−1 assigned to C=O
stretching vibrations from carboxylic groups and C=C
stretching vibrations at 1625 cm−1 could be observed as
well40. The phenolic C–O peak at 1250 cm−1 was from
carbonyl groups, and the peak at 1030 cm−1 was from

C–O stretching vibrations42. The spectrum also showed
the presence of epoxy C–O stretching at ~1000 cm−142.
The FTIR spectrum for the EPD-deposited rGO/CNTs/
GOx bioanode is shown in Fig. 3d(iii). Similar char-
acteristic peaks were observed as well. As is known, the
amino groups (–NH2) and carboxylic groups (–COOH)
are abundant in GOx and laccase. Therefore, the FTIR
results clearly indicated the successful immobilization of
the enzymes with the rGO/CNT composite on the 3D
carbon micropillar arrays. For comparison, the rGO/
enzyme without CNTs was also investigated by FTIR, as
shown in Fig. S2, and similar surface functionalization and
immobilization were achieved.
The schematic drawing of the EBFC based on C-MEMS

is illustrated in Fig. 4a. To calculate the
Michaelis–Menten constant (KM) of GOx on the devel-
oped rGO/CNTs/GOx bioanode, which is relative to the
enzymatic affinity and the ratio of the microscopic kinetic
constant, the current-time relationship of the rGO/CNTs/
GOx bioanode on additions of glucose (from 0.02 to
8mM) at an applied potential of 0.05 V was investigated.
The results showed that the bioanode could respond very
rapidly to changes in the glucose concentration (Fig. 4b).

rGO/CNTs (4.7 µm)

SEI 15.0 kV X150 WD 24.5 mm 100 µm SEISEM 25.0 kV X9000 WD 25.1 mm 1 µm

1 µm

SEISEM 25.0 kV X10,000 WD 25.1 mm 1 µm

100 nm

rGO (3.7 µm)

Glassy carbon (2.1 µm)

SiO2

3500

(i) EPD–rGO/CNTs

(ii) EPD–rGO/CNTs/laccase

(iii) EPD–rGO/CNTs/GOx

a b

dc

A
bs

or
ba

nc
e 

(a
.u

.)

N–H

N–H

C–H O–C–O

O–C–O

O–C–O

C–H
C–O

C–O

C–O
C–H

C–H
C–O

C–O

C–H

C=O

C=O

C=C

C=C

C=C

3000 2500 2000
Wavenumber/cm–1

1500 1000

Fig. 3 Characterization of bioelectrodes after EPD. SEM images showing the morphology of a rGO/CNT/GOx-encrusted 3D carbon micropillar
arrays; b cross-sectional view of thin film and top view of a single micropillar (inset) of rGO/GOx; c cross-sectional view of thin film and top view of a
single micropillar (inset) of deposited rGO/CNTs/GOx; d FTIR spectra of (i) EPD-rGO/CNTs, (ii) EPD-rGO/CNTs/laccase, and (iii) EPD-rGO/CNTs/GOx

Song and Wang Microsystems & Nanoengineering            (2019) 5:46 Page 4 of 11



The response displayed a linear relationship at glucose
concentrations ranging from 0.02 to 7.24 mM. Based on
the slope, the KM of GOx after co-deposition was calcu-
lated to be 2.1 mM according to the Lineweaver-Burk
equation43. The resulting KM is higher than that of free
enzyme (1.8 mM), which means that GOx is less active
after EPD on the microelectrodes. However, the resulting
KM is much smaller than the average published KM of
GOx using different immobilization methods44–46. This
result indicates that the enzyme after EPD-based immo-
bilization could remain comparatively active. To compare
the electron transfer behaviours of the bioanodes and
biocathodes and to verify successful immobilization,
cyclic voltammograms were performed. From Fig. 4c, the
rGO/GOx and rGO/CNTs/GOx bioanodes exhibited
redox peaks at maximum currents of ~1.1 mA and
2.2 mA, respectively. Upon comparison, the rGO/CNTs/
GOx bioanode presented a much better redox activity,
which can be attributed to a more accessible surface area
and more efficient electron transfer. Similarly, the rGO/
CNTs/laccase biocathode exhibited a much higher max-
imum redox current than the rGO/laccase biocathode, as
shown in Fig. 4d. The above comparison of both bioa-
nodes and biocathodes suggested that the rGO/CNT/

enzyme-based 3D carbon micropillar arrays are more
suitable for high-performance EBFCs.

Simulation of rGO/CNT/enzyme-based EBFCs
To predict the performance of the developed rGO/CNT/

enzyme-based EBFCs, a detailed modelling of the EBFC
system was conducted using COMSOLMultiphysics, which
solves partial differential equations by finite element ana-
lysis (Fig. 5a). First, mass transport was investigated for the
glucose and oxygen diffusion around electrodes in micro-
electrode arrays. Ideally, glucose should interact with the
total surface area of electrodes from top to bottom to fully
utilize the immobilized enzymes. However, the glucose
reacts immediately with the top portion of the electrode
when the molecule approaches the electrode arrays, and the
rest of the glucose reacts gradually when it diffuses to the
bottom of the electrode. From the concentration profile
shown in Figs. 5b and S3, non-uniformity of the glucose
concentration along the surface of electrode was observed.
There was a gradual decrease in the glucose concentration
inside the well from the top to the bottom of the 3D
electrode. The competition between a higher enzyme
reaction rate and a lower diffusion rate causes glucose
depletion throughout the electrode surface and
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consequently generates a non-uniform glucose concentra-
tion. Since the concentration gradient on the surface of the
electrode influences the enzyme kinetics defined by the
Michaelis–Menten reaction rate, this gradient leads to the
observed enzyme reaction variation in the enzyme layer as
shown in the reaction rates in Figs. 5b and S4. From the
simulation results, the enzyme reaction rate decreased from
top to bottom along the surface of the microelectrodes,
which is in good agreement with the concentration gradient
profile. Moreover, compared with the inner enzyme layer,
the outermost surface of the microelectrode exhibited a
higher enzyme reaction rate due to diffusion. In addition,
the noticeable maximum enzyme reaction rate at the top
edge of the microelectrodes resulted from the edge effect.
When the substrate reacted with the enzyme immobilized
on the electrode, the competition between higher enzyme
reaction rate and lower diffusion rate caused a non-uniform
glucose concentration and non-uniform reaction rate,
consequently leading to a non-uniform current density
increasing from the bottom to the top of the electrode. In
addition, the change in resistive heating, a process by which
the passage of an electric current through an electrode
generates heat, is shown in Fig. S5. It is observed that the
maximum current density and resistive heating occurred at
the top corner of each micropillar electrode. Due to the
edge effect, the resistive heating was almost five times
higher at the top corners compared with other locations.
Various external loads in the range of 0.5–500 kΩ were
considered in the simulation to derive the power density-

voltage relationship. As shown in Fig. 6, the simulated total
current density vs. voltage and voltage vs. power density are
plotted. Here, the integration of the current density along
the electrode surface has been used to calculate the total
current density. The power density of the EBFC increases as
the voltage increases, reaching a maximum value of
~272 μWcm−2 at 0.58 V, and then decreases with
increasing voltage.

Evaluation of rGO/CNT/enzyme-based EBFCs
Two types of EBFCs were constructed using rGO/

enzyme and rGO/CNTs/enzyme bioelectrodes, as sche-
matically shown in Fig. 4a. Cell performance was eval-
uated by varying the external resistors from 0.5 to 500 kΩ
between the bioanode and the biocathode. The current
density vs. voltage behaviour of the rGO/enzyme-based
3D EBFC at various external resistors is shown in Fig. 6a.
The open-circuit voltage and the maximum current
density were found to be 0.81 V and 431.2 µA cm−2,
respectively. Similarly, the rGO/CNT/enzyme-based 3D
EBFCs were constructed and evaluated under the same
conditions, resulting in an open-circuit voltage of 0.88 V
and a maximum current density of 844 µA cm−2. The
significant increase in the open-circuit voltage and max-
imum current density can be attributed to the unique
microstructure of the electrode arrays and improved
kinetics of the rGO/CNT composite.
Furthermore, the power densities of the two EBFC

systems were calculated, and they are plotted in Fig. 6b.
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The maximum power density of the rGO/CNT/enzyme-
based EBFC was calculated to be 196.04 µW cm−2 at
0.61 V, which is approximately two times the maximum
power density of the rGO/enzyme-based EBFC
(91.34 µW cm−2 at 0.51 V). By comparing both experi-
mental and theoretical maximum power densities, the
efficiency of the experimental rGO/CNT/enzyme-based
EBFC reached 71.1% of the maximum simulated value. In
addition, the stability of the rGO/CNT/enzyme-based
EBFC was evaluated. After 7 days, the maximum power
output dropped to 35.5%. After operation, the micro-
structure of the EPD co-deposited enzyme/nanomaterial
composites on C-MEMS-based 3D micropillar arrays was
again investigated by SEM. As shown in Figs. S6 and S7,
the cross section and surface of rGO/CNTs/GOx with a
thickness of 4.6 ± 0.1 µm displayed structural fidelity in
terms of morphology and dimension. The decreased
performance could be due to the inherent instability of
enzymes. To improve the lifetime of EBFCs as power
supplies for small electronics, several strategies could be
attempted, such as physical trapping of enzymes, sub-
stitution of new enzymes or addition of chemicals for
increasing stabilities of enzymes47–49.

Discussion
The novelty of this study is to combine 1D and 2D

carbon-based materials in the form of 3D carbon micro-
structures to develop high-performance micro EBFCs.
Mano et al.50 reported a high-performance EBFC gen-
erating an areal power density of 740 µW cm−2 using a
single carbon nanofibre. Nevertheless, the total power of
the system could be a concern due to the limited amount
of enzyme on the single carbon nanofibre. The resulting
novel structure in this work exhibited the following
desirable characteristics: (1) conformal coating of

composite materials on 3D microelectrode arrays; (2) high
surface area and active surfaces; and (3) feasibility and
scalability of embedding biocatalysts. Compared with our
previous work on graphene-based EBFCs, the perfor-
mance of the rGO/CNT-based EBFCs has been greatly
improved35. The prolonged cell life might result from the
more stable immobilization of the components due to the
functionality of rGO. From the comparison between the
experimental and simulation results, the rGO/CNT-based
EBFC reached 71.1% of the maximum theoretical per-
formance. The difference in performance between simu-
lation and experiment may be due to the following
reasons. First, even though the EPD is known to form
uniform deposited layers on different 2D substrates,
electric field-induced non-uniform coating on 3D
microelectrodes could affect the actual performance.
Thus, the uniform boundary condition in the nanoma-
terial layer could result in a higher simulated cell per-
formance than the experimental results. Second, the
distribution and activity of the enzyme in the rGO/CNT
layer is hard to predict during EPD, while the subdomain
condition in the simulation assumed a uniform distribu-
tion and activity of the enzyme. Third, the diffusion of fuel
in the enzyme/rGO/CNT layer is most likely not as ideally
uniform as assumed in the simulation, where a constant
diffusion coefficient was used. Although the simulation
has some inevitable limitations, we have demonstrated
that finite element analysis is a very useful tool to predict
the performance of EBFCs.
In this work, a high-performance EBFC based on a C-

MEMS platform and rGO/CNT composites was fabricated.
A maximum power density of 196.04 µWcm−2 at 0.61 V
and 64.5% power remaining after 7 days were achieved. This
EBFC performance is adequate to power low-voltage
complementary metal-oxide-semiconductor integrated

1.0

0.8

V
ol

ta
ge

/V

Voltage/V

0.6

0.4

0.2

0.0
1.0 1.20.80.60.40.20.00 200 400 600

rGO/CNTs
/enzyme

rGO/CNTs
/enzyme

Simulated rGO/CNTs/enzyme

a b
Simulated rGO/CNTs/enzyme

rGO/enzyme

rGO/enzyme

Current density/µA cm–2

P
ow

er
 d

en
si

ty
/µ

W
 c

m
–2

800 1000 1200
0

60

120

180

240

300

Fig. 6 Cell performance of EBFCs. a Current density and voltage relationship of the rGO/CNT/enzyme-based EBFC, rGO/enzyme-based EBFC and
the simulated rGO/CNT/enzyme-based EBFC; b Power density performance of the rGO/CNT/enzyme-based EBFC, rGO/enzyme-based EBFC and the
simulated rGO/CNT/enzyme-based EBFC

Song and Wang Microsystems & Nanoengineering            (2019) 5:46 Page 7 of 11



circuits and disposable biosensor applications. The high cell
performance could be attributed to the unique rGO/CNTs
integrated with the C-MEMS platform, which can facilitate
better charge transport and yield high power density. The
power density of the experimental value is noted to be
71.1% of the theoretical value obtained from finite element
analysis. Our approach is scalable in terms of enzyme
loading and cell performance.

Materials and methods
Chemicals
Two negative photoresists, NANOTM SU-8 25 and SU-8

100, as well as SU-8 developer, were purchased from
MicroChem Corp. (Westborough, MA) GOx (100 U mg−1

solid), laccase (20 U mg−1 solid) and glucose were pur-
chased from Sigma-Aldrich and used without further
purification. Glucose was prepared in phosphate buffer
solution (pH= 7.4). Graphene oxide (0.7–1.2 nm in
thickness and 300–800 nm in lateral dimensions) and
multi-walled carbon nanotubes (30–50 nm in outer dia-
meter) were purchased from CheapTubes, Inc. (Cam-
bridgeport, VT). All aqueous solutions were prepared in
deionized water.

Instrumentation
SU-8 was deposited by a Headway researchTM (Garland,

TX) photoresist spinner, and an OAI 800 mask aligner
was used for UV exposure. The pyrolysis process was
conducted in a Lindberg alumina-tube furnace. The
morphology of the microstructures was investigated using
a JOEL 6335 FE-scanning electron microscope. FTIR
(JASCO FT/IR 4100 spectrometer) was used to analyse
the functionalized electrode surface. Cyclic voltammo-
grams were measured by a VMP3 multichannel poten-
tiostat/galvanostat (Princeton Applied Research). The
resulting bioanodes and biocathodes were connected to
an external circuit for EBFC performance testing using a
CHI 660 C workstation. Finite element analysis was per-
formed using COMSOL Multiphysics 4.3b commercial
software (license no. 1023246).

Bioelectrode fabrication
The C-MEMS fabrication procedure is shown in Fig. 2.

Briefly, C-MEMS-based 3D micropillar arrays were pre-
pared by a two-step photolithography process followed by a
pyrolysis step. In the first step, a 2D round (diameter of
8mm) pattern was formed as the current collector. The
NANOTM SU-8 25 photoresist was spin-coated onto a
silicon oxide wafer (4″ in diameter, (1 0 0)-oriented, n-type)
at 500 rpm for 12 s and 3000 rpm for 30 s, followed by a soft
bake at 65 °C for 3min and a hard bake at 95 °C for 7min
on a hotplate. The photoresist film was then patterned
under a UV exposure dose of 300mJ cm−2, followed by a
post-exposure bake at 65 °C for 1min and then 95 °C for

5min on a hotplate. The second photolithography step was
conducted using NANOTM SU-8 100 photoresist to con-
struct cylindrical micropillar arrays on a patterned thin film
current collector. The photoresist was spin-coated at
500 rpm for 12 s and 1500 rpm for 30 s followed by a soft
bake at 65 °C for 10min and a hard bake at 95 °C for
45min. UV exposure was conducted under a UV exposure
dose of 700mJ cm−2. A post-exposure bake was performed
at 65 °C for 3min and 95 °C for 10min on a hot plate. The
sample was then developed using the NANOTM SU-8
developer for 5–10min, followed by isopropanol rinsing
and nitrogen drying. Finally, the microstructures were
pyrolyzed at 1000 °C for 1 h in a Lindberg alumina-tube
furnace under a constant flow of 500 sccm forming gas
(95% nitrogen, 5% hydrogen). EPD was performed to inte-
grate rGO/CNTs and the enzyme composite onto the 3D
micropillar arrays (see Fig. 2). rGO/CNTs at a weight ratio
of 9:1 (1.5mg/mL) and GOx or laccase (1.5mg/mL) were
dispersed in deionized water and then sonicated for 1 h to
form a homogenous mixture. The rGO/CNTs/enzyme
composite was then deposited by EPD with a DC voltage of
10 V at a distance of 2 cm for 3min. During the EPD
process, the evolution of gas bubbles at the cathode was
observed because of the water electrolysis, and the deposi-
tion occurred at the anode. After the process, the bioelec-
trodes were dried and kept at 4 °C to prevent denaturation
of the enzyme. In addition, rGO/enzyme-based control
bioelectrodes without CNTs as additives were prepared in a
similar way for comparison purposes.

EBFC simulation
The overall redox reaction of the EBFC is given by

Anode : Glucose�!GOx Gluconolactoneþ 2Hþ þ 2e�

ð1Þ
Cathode : O2 þ 4Hþ þ 4e� �!Laccase

2H2O ð2Þ

A number of enzymes were found to be capable of DET
with an electrode, including laccase, whose ability to
catalyse DET has been demonstrated. In GOx, as with
many redox proteins, the redox centre flavin adenine
dinucleotide (FAD) is buried within the protein core.
When GOx catalyses glucose oxidation, GOx–FAD is
reduced to GOx–FADH2, which can be oxidized by the
electrode back to GOx–FAD, as shown in the following
reaction:

GOx� FADþ Glucose ! GOx� FADH2 þ Gluconolactone

ð3Þ
GOx� FADH2 $ GOx� FADþ 2Hþ þ 2e� ð4Þ

To simplify the modelling, we assume that the enzyme
(GOx/laccase) and electrode reactions are coupled by
DET. In such a system, the coupled overall process is the
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redox transformation of the substrates, which can be
considered an enzyme-catalysed electrode process. In
addition, the following assumptions have been made to
simplify the computational model:

● The steady-state response is achieved without
considering forced convection.

● The enzyme is uniformly distributed in the
enzyme layer.

● Negligible change in heat transfer is assumed
between the enzyme layer and electrode interface.

● Temperature distribution around the EBFCs is
assumed to be uniform.

● Some interfering reactions, such as hydrogen
peroxide inhibition, are neglected for simplicity.

● The DET between enzyme and electrode is assumed
to simplify the modelling.

Two modules have been applied: (1) diffusion module to
incorporate the mass transport and enzymatic kinetics;
and (2) conductive module to integrate the concentration
and potential. In the diffusion module, the diffusion of
substrate with enzyme kinetics is solved based on

reaction-diffusion equations:

∂c
∂t

þ ∇ �D � ∇cð Þ ¼ v ð5Þ

where c is the concentration of substrate, D is the diffu-
sion coefficient, and v is the redox reaction rate defined by
equation. The efficiency of utilization of the fuel is directly
related to the enzyme kinetics. The Michaelis–Menten
kinetics for a single-substrate reaction are considered for
the anode and cathode, respectively. The steady-state
kinetics of the enzyme reaction (v) are expressed by

v ¼ kcat½A�
1þ KM=½S� ð6Þ

where kcat is the catalytic rate constant and KM is the
Michaelis–Menten constant of the enzyme. [A] and [S]
are the concentration of the enzyme and the substrate,
respectively.
In the conductive DC module, the governing PDE to

calculate the potential is given by Ohm’s law equation:

J ¼ σE þ J e ð7Þ

where J is the current density, σ is the conductivity of the
material, E is the electrode potential solved by Eq. [8], and
Je is the external current density.

The electrode potentials (E) in EBFCs can be related to
the Nernst equation, which arises from potential differ-
ences produced by chemical reactions:

E ¼ E� þ RT
zF

ln
Cox½ �
Cred½ �

� �
ð8Þ

Table 1 Boundary conditions for simulation models

Boundary Diffusion Potential

Boundary of bulk domain c ¼ c0 n � J ¼ o

Bulk-enzyme interface �n N1 �N2ð Þ ¼ 0 V ¼ V0

Enzyme-electrode interface �n N1 �N2ð Þ ¼ 0 n J1 � J2ð Þ ¼ 0

Table 2 Simulation parameters and constants

Parameter/constant Description Value Reference

R Universal gas constant 8.314 J·mol·K−1

T Room temperature 300 K

F Faraday’s constant 96485 C·mol−1

Dglucose Diffusion coefficient of glucose 7−10 m2·s−1 51

Doxygen Diffusion coefficient of oxygen 2.13-(0.0092Ht)·10−9 m2·s−1 52

KM_GOx Michaelis–Menten constant for GOx 2.1 mM *Calculated from experimental results

KM_laccase Michaelis–Menten constant for laccase 3.28 mM 53

kcat_GOx Catalytic rate constant of GOx 6.5 S−1 54

kcat_laccase Catalytic rate constant of laccase 2.69 S−1 53

EoA Reference potential for anode −0.32 V 55

EoC Reference potential for cathode 0.585 V 55

σcarbon Conductivity of glassy carbon 8000 S·m−1 56

σsubstrate Conductivity of thin film layer 10,000 S·m−1 56
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where Eo is the standard potential, [Cox] and [Cred]
represent the concentration of the oxidized and reduced
species (the original activity can be replaced by low con-
centration), respectively, R is the universal gas constant, T
is the temperature, F is the Faraday’s constant, and z is the
number of electrons transferred in the cell reaction.
The dimensions used in this simulation are consistent with

the experimental design. The boundary conditions and the
relevant constants are shown in Tables 1 and 2, respectively.
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