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Incoherent non-Hermitian skin effect in photonic
quantum walks
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Abstract
The non-Hermitian skin effect describes the concentration of an extensive number of eigenstates near the boundaries
of certain dissipative systems. This phenomenon has raised a huge interest in different areas of physics, including
photonics, deeply expanding our understanding of non-Hermitian systems and opening up new avenues in both
fundamental and applied aspects of topological phenomena. The skin effect has been associated to a nontrivial point-
gap spectral topology and has been experimentally demonstrated in a variety of synthetic matter systems, including
photonic lattices. In most of physical models exhibiting the non-Hermitian skin effect full or partial wave coherence is
generally assumed. Here we push the concept of skin effect into the fully incoherent regime and show that rather
generally (but not universally) the non-Hermitian skin effect persists under dephasing dynamics. The results are
illustrated by considering incoherent light dynamics in non-Hermitian photonic quantum walks.

Introduction
The physics of dissipative classical and quantum systems

has received a renewed and growing attention recently1–8,
providing a flourishing and impactful area of research with
the prediction and observation of a wealth of unprecedented
physical phenomena propitious for future applications,
especially in photonics2–7. Recent progress in the field of
non-Hermitian (NH) topological phases has shown great
promise in discovering new types of topological phenomena
beyond the Hermitian paradigm. A representative example
is the NH skin effect9–11, which has opened new avenues for
understanding the elusive NH physics9–37. The phenom-
enon, unique to the NH band theory9,11,12, describes the
strong dependence of the energy spectrum of certain NH
systems on boundary conditions and the exotic property for
which an extensive number of eigenstates reside at the
boundaries of a system rather than being uniformly dis-
tributed throughout the bulk. Featuring the breakdown of
conventional bulk-boundary correspondence9,13, the NH

skin effect was early introduced in one-dimensional (1D)
systems9,10 and was shown to be related to a non-trivial
point-gap spectral topology15,16, with a characteristic fin-
gerprint of a persistent directional current in the bulk
dynamics14,16; for recent reviews see29,31,32,35–37. Extensions
of the NH skin effect to two (2D) and higher dimensional
systems have been investigated23,24,28,30, suggesting that in
high dimensions the skin effect is a universal phenomenon30.
The NH skin effect and failure of the conventional bulk-
boundary correspondence have been experimentally
observed in a variety of synthetic models of NH mat-
ter18–21,25–28,34, including photonic lattices19,21,26,27, and its
persistence in fully quantum-mechanical models of open
quantum systems has been pointed out38–41. In most models
displaying the NH skin effect so far considered full or partial
wave coherence is usually assumed, as in effective NH
Hamiltonian or Lindblad master equation models, however,
the fate of the NH skin effect in the fully incoherent regime,
where quantum coherence is lost, and the dynamics behaves
fully classically42–46, remains largely unexplored. Incoherent
or partial coherent hopping dynamics is commonplace in
many complex physical, chemical and biological systems out
of equilibrium45,47,48, and it is thus of main relevance to
extend the idea of skin effect to incoherent models.
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In this work, we consider the fully incoherent regime of
NH models and show that rather generally (but not uni-
versally) the NH skin effect persists under incoherent
(dephasing) dynamics. The results are illustrated by con-
sidering incoherent photonic quantum walks in synthetic
mesh lattices19,21,26,43,49,50, which should provide an
experimentally accessible platform for the observation of
incoherent NH skin effect in bulk dynamics.

Results
Incoherent non-Hermitian skin effect
Let us consider a rather arbitrary NH lattice or network

system, typically a 1D or 2D system, with open boundaries

of given shape, and let us indicate by bH the tight-binding
Hamiltonian of the system under fully coherent wave
dynamics, which in physical space is described by a NH
matrix Hn;m ¼ n; j; Ĥm

� �
, where fjng describes the

Wannier basis, n= 1,2,3,…,N labels the sites (or nodes) of
the lattice, and N is the total number of sites (Fig. 1a). In
1D systems, the NH skin effect arises rather generally in
the presence of non-reciprocal hopping amplitudes and
the fingerprint is a non-trivial point gap topology of the
periodic-boundary energy spectrum15,16,33,36. In 2D

systems the NH skin effect is a rather universal phe-
nomenon related to a non-vanishing spectral area on the
complex plane covered by the periodic-boundary spec-
trum30. Under fully coherent dynamics, the wave function
of the system evolves according to ψ tð Þj i ¼ Ûcoh tð Þ ψ 0ð Þj i,
possibly with normalization of the wave function norm at
each time instant, where Ûcoh tð Þ ¼ exp �iĤt

� �
is the

coherent propagator. Partial coherence dynamics can be
described by quantum master equations of Lindblad form
with dephasing, where the NHSE is related to the edge
localization of the eigenstates of the Liouvillian super-
operator40,41. Here we consider the fully incoherent
dynamics, which can be simply described by a sequence of
coherent evolution and phase randomization of the wave
function. Namely, the incoherent dynamics is obtained as
a dephasing process by assuming that, at the time instants
tα ¼ Δt; 2Δt; ¼ ; αΔt,.. spaced by the time interval Δt, the
phase of the wave function amplitude ψn tαð Þ ¼
n; j;ψ tαð Þh i is randomized, i.e. it is multiplied by a random

phase ϕ αð Þ
n , with ϕ αð Þ

n uncorrelated in both site index n and

time step α. After letting ρn;m tð Þ ¼ ψ�
n tð Þψm tð Þ, where the

overbar denotes statistical average over the random phase
distribution, after each time tα one clearly has ρn;m ¼ 0 for
n≠m, i.e. dephasing drives the dynamics into the classical
regime (Fig. 1b), which is fully described by a discrete-
time map for the (unnormalized) occupation probabilities
Pn tð Þ ¼ ρn;n tð Þ of the various lattice sites (classical ran-
dom walk). Assuming a short time interval between suc-
cessive stochastic phases, such that Ûcoh Δtð Þ ¼
exp �iHΔtð Þ can be expanded up to second order in Δt as
Ûcoh Δtð Þ ’ 1� iHΔt � 1=2ð ÞH2Δt2, the average occupa-
tion probabilities satisfy the master equation (see Sec.S1
of the Supplementary Material for technical details)

dPn

dt
¼

XN
l¼1

Mn;lPl tð Þ ð1Þ

In the above equation, Mn;l are the elements of the
Markov transition matrix of the random walk, given by

Mn;l ¼ 2δn;lIm Hn;n
� �þ Δt Hn;l

�� ��2 � δn;lRe
X
q

Hn;qHq;n

( )" #
ð2Þ

The dynamics becomes trivially decoupled when
Im Hn;n

� �
≠0, i.e. when non-Hermiticity in the system is

introduced by on-site gain and/or loss terms, since in this
case at leading order we can disregard the term of order ~
Δt in Eq.(2) and the Markov transition matrix M is
diagonal. In the following, we will therefore focus our
attention to the most interesting case where Hn,n is real

a

Hn,l Mn,l 

Hl,n Ml,n
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�l � �l �

b

 
 

Incoherent  dynamicsCoherent  dynamics

 Hamiltonian H Markov transition matrix M

Time t Time t

�t

��(t )��= e–iHt ��(0)�
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Fig. 1 Model. a Schematic of a lattice system (network) comprising N
sites (nodes). Under coherent dynamics the system is described by a
NH tight-binding matrix Hamiltonian Hn,l and the state vector ψ tð Þj i
evolves in time along a single trajectory. b Under incoherent
dynamics, with randomized phases in each lattice site at successive
time intervals Δt, the trajectory of the state vector is modified. After
statistical averaging over all different trajectories, corresponding to
different realizations of stochastic phases, excitation transfer among
the nodes of the network is described by a Markov transition matrix
Mn,l (classical random walk). The relation between the matrices H and
M is given by Eq.(3)
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and non-Hermiticity in the system is introduced by vio-
lation of the Hermitian conjugation relation Hn;m ¼ H�

m;n
for some n≠m. In this case one obtains

Mn;l ¼ Δt Hn;l

�� ��2 � δn;lRe
X
q

Hn;qHq;n

( )" #
ð3Þ

Note that the incoherent dynamics described by the
master Eq. (1) with Markov transition matrix M can be
formally viewed as the coherent dynamics of an associated
Hamiltonian system with Wick-rotated matrix Hamilto-

nian H’= iM. For n≠ l, Mn;l ¼ Δt Hn;l

�� ��2 represents the
(incoherent) hopping rate from site l to site n in the
classicalized dynamical regime. In the Hermitian limit,

Hn;l ¼ H�
l;n, the total probability

PN
n¼1Pn tð Þ ¼ 1 is con-

served, all eigenvalues λl of M are real with λl � 0, and
there is one zero eigenvalue λ1 ¼ 0 of the most dominant
eigenstate, corresponding to the uniform distribution
eigenvector Pn ¼ 1=N . In this case the incoherent
dynamics basically drives any initial state into the steady-
state corresponding to equal probability of excitation in
each site of the lattice, regardless of the shape of the
boundaries. In the non-Hermitian case, i.e. when
Hn;l ≠H�

l;n for some l≠n, the total probability is not con-
served, the eigenvalues can be real or appear in complex
conjugate pairs, and the constraint Re λlð Þ � 0 can be
violated. However, at each time step we can renormalize
the probabilities by letting Pn tð Þ ! Pn tð Þ=PlPl tð Þ, so that
probability conservation is restored and under OBC the
system is driven toward the stationary state corresponding
to the eigenvector of M with the largest real part of cor-
responding eigenvalue. Like for the coherent Hamiltonian
H, we say that the system displays incoherent NH skin
effect whenever in the large N limit an extensive number
of eigenstates of the Markov transition matrix M, or
equivalently of H’, are localized at the boundaries or
corners of the lattice.

The appearance of the NH skin effect is generally (but
not exclusively) related to non-reciprocal couplings36, i.e.
Hn;m

�� ��≠ Hm;n

�� �� for some n≠m, which is a frequent source
of non-Hermiticity in out of equilibrium systems. In this
case one speaks about non-reciprocal skin effect. Since
Hn;m

�� ��≠ Hm;n

�� �� implies Mn;m ≠Mm;n, the system is likely to
display non-reciprocal skin effect under incoherent
dynamics as well. However, the NH skin effect can appear
also in models with reciprocal hopping, i.e. Hn;m

�� �� ¼
Hm;n

�� �� for any n≠m. This kind of edge localization is
dubbed the reciprocal skin effect20,30,36. Since the elements
ofM are insensitive to the phases of the elements of H, the
reciprocal NH skin effect in coherent models is expected
to be washed out under incoherent (dephasing) dynamics.
This means that, as a general rule of thumb, the skin effect

persists under incoherent dynamics when it originates
from local non-reciprocal couplings. Conversely, when it
originates from interference effects, such as in the reci-
procal skin effect, under incoherent dynamics it dis-
appears. Such general results can be exemplified by
considering two significative NH models displaying either
non-reciprocal or reciprocal NH skin effects.

Non-reciprocal skin effect
The first example, which provides a paradigmatic and

simplest model displaying the NH skin effect based on
non-reciprocal hopping amplitudes, is the clean
Hatano-Nelson model51,52 in a 1D lattice (Fig. 2a).
The Bloch Hamiltonian of this model is given by
H kð Þ ¼ κ1 exp ikð Þ þ κ2 exp �ikð Þ, where κ1,κ2 are the
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Fig. 2 Non-reciprocal skin effect. a Schematic of the 1D lattice with
non-reciprocal hopping amplitudes κ1 and κ2 (Hatano-Nelson model).
b Left panel: energy spectrum E in complex plane of the Hatano-
Nelson Hamiltonian H under PBC and OBC for parameter values κ1= 1
and κ2= 2. Lattice size N= 50. Right panel: corresponding spectrum λ

of the Markov transition matrix M for Δt ¼ 0:05. c Bulk dynamics

(snapshot of ψn tð Þj j2, normalized at each time step to its norm, on a
pseudocolor map) under coherent (left panel) and incoherent (right
panel) regimes for initial single-site excitation of the lattice. In the

incoherent regime, the distribution ψn tð Þj j2 has been obtained after
averaging over S= 1000 trajectories corresponding to different
realizations of the stochastic phases (see Materials and Methods). The
dashed straight lines indicate the asymptotic drift dynamics at the
speeds vcoh ¼ κ1 þ κ2ð Þ (left panel) and vinc ¼ Δt κ22 � κ21

� �
(right

panel)
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non-reciprocal left/right hopping rates. Correspond-
ingly, in Bloch space the Markov matrix describing the
incoherent Hatano-Nelson model has the form M kð Þ ¼
Δt �2κ1κ2 þ κ21 exp ikð Þ þ κ22 exp �ikð Þ� �

. The eigenva-
lues and corresponding eigenvectors of both matrices
H and M are strongly dependent on the boundary
conditions, i.e. periodic (PBC) or open (OBC) bound-
aries, as illustrated in Fig. 2b. In the coherent regime,
the eigenenergies of H(k) under PBC describe an ellipse
in complex energy plane of equation E ¼ H kð Þ ¼
κ1 exp ikð Þ þ κ2 exp �ikð Þ, where k varies in the Brillouin
zone – π ≤ k < π. Under OBC the spectrum is entirely
real and covers the interval �2

ffiffiffiffiffiffiffiffiffi
κ1κ2

p
; 2

ffiffiffiffiffiffiffiffiffi
κ1κ2

p� �
; it is

obtained from the relation E= H(k) by complex-
ification of the Bloch wave number k, which should
vary on the generalized Brillouin zone9,12 k ¼ q � i γ,
with �π � q<π and γ ¼ 1=2ð Þ log κ2=κ1ð Þ. Likewise, in
the incoherent regime the eigenvalues of M(k) under
PBC describe an ellipse in complex plane of equation
E=M(k), with �π � k<π, whereas under OBC the
spectrum is entirely real and describes the interval
�4κ1κ2Δt; 0ð Þ. Both coherent and incoherent skin
effects are clearly demonstrated by the exponential
localization of the eigenvectors of Ĥ and M̂ at the edges
of the lattice under OBC, which arises from the com-
plexification of k. In bulk dynamics, the fingerprint of
the non-reciprocal skin effect is an asymptotic drift of
excitation along the lattice, i.e. a persistence current in
the system, regardless of the initial state of the sys-
tem14,16. For the coherent Hatano-Nelson model, the
drift velocity is given by14 vcoh ¼ κ1 þ κ2ð Þ. Likewise, in
the incoherent version of the Hatano-Nelson model an
asymptotic drift of the probability distribution Pn tð Þ is
observed in the bulk at the drift velocity

vinc ¼ Δt κ22 � κ21
� � ð4Þ

In fact, for an infinitely-extended lattice the solution to
the master Eq. (1) for the incoherent Hatano-Nelson
model can be given in terms of the integral representation

Pn tð Þ ¼
Z π

�π
dkF kð Þ exp iknþ λ kð Þt½ � ð5Þ

where λ kð Þ ¼ M kð Þ ¼ Δtκ21 exp ikð Þ þ Δtκ22 exp �ikð Þ �
2Δtκ1κ2 is the PBC spectrum of M and the spectral
amplitude F(k) entering in Eq. (5) is determined by the
initial probability distribution Pn 0ð Þ. For example, if at
initial time the system is prepared at site n= 0, i.e.
Pn 0ð Þ ¼ δn;0, one has F kð Þ ¼ 1= 2πð Þ. In the long time
limit, the integral on the right hand side of Eq. (5) is
dominated by the spectral contribution at around k ¼
k0 ¼ 0, where the real part of λ kð Þ takes its largest value,

and can be calculated using standard asymptotic
methods, yielding

Pn tð Þ � F k0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π
Δt κ21 þ κ22ð Þt

s
exp Δt κ2 � κ1ð Þ2t� �

´ exp � n� vinctð Þ2
2Δt κ21 þ κ22ð Þt

( )
ð6Þ

where vinc is given by Eq. (4). Equation (6) clearly shows
that the bulk dynamics of the probability distribution in
the lattice drifts at the speed vinc and spreads around its
center of mass diffusively, i.e. the width of the distribution
increases in time as

ffiffi
t

p
. An example of bulk dynamics for

the Hatano-Nelson model both in the coherent and
incoherent regimes, corresponding to initial excitation of
site n= 0 of the lattice and displaying a drift motion, is
shown in Fig. 2c. We mention that the non-reciprocal skin
effect under incoherent dynamics is observable in other
models, such as in the 1D Su-Schrieffer-Heeger NH
model9 or rather generally in non-reciprocal 2D models,
such as those displaying corner states30,36, i.e. in which all
eigenstates are localized at corners of the system.

Reciprocal skin effect
As a second example, let us consider a 2D square lattice

with reciprocal hopping amplitudes, namely with an Her-
mitian coupling κ1 in the horizontal direction and an anti-
Hermitian hopping amplitude iκ2 in the vertical direction
(Fig. 3a). The Bloch Hamiltonian of the system reads
H kx; ky
� � ¼ 2κ1 cos kx þ 2iκ2 cos ky. This model shows the

dubbed geometric reciprocal NH skin effect30: the spectrum
of H(k) under PBC covers a non-vanishing area in complex
plane, which implies the appearance of skin modes for rather
arbitrary system shape, except for square geometries30. The
corresponding form of the Markov transition matrix M in
Bloch space is readily calculated from Eq.(3) and
reads explicitly M kx; ky

� � ¼ 2Δt κ22 � κ21
� �þ 2Δt κ21 cos kx

�
þκ22 cos kyÞ. Note that, while H(k) is a complex function and
covers a non-vanishing area (a square) in complex energy
plane, M(k) is entirely real and describes a segment on the
real axis, as shown in Fig. 3b. Therefore, while the system
under coherent dynamics displays the reciprocal skin effect
for rather arbitrary shape of the boundaries, such as for a
triangular boundary as in Fig. 3a, the skin effect is washed
out in the corresponding incoherent model, as illustrated in
Fig. 3c-f. The figures show the spectra under OBC of the
Hamiltonian H (panel c) and of the Markov matrixM (panel
e), along with the spatial distributions of all eigenstates

W x; yð Þ ¼ 1=Nð ÞPl ψ
lð Þ x; yð Þ�� ��2, where the sum is extend

over the number N= L(L+ 1)/2 of the normalized right
eigenvectors ψ lð Þ x; yð Þ of H (panel d) and M (panel f) in the

Longhi Light: Science & Applications           (2024) 13:95 Page 4 of 9



triangular-shaped system. Note that, while on average the
eigenstates of M are uniformly distributed over the entire
sites of the triangle (Fig. 3f), indicating the absence of the
NH skin effect, on average the eigenstates of H are localized
near the diagonal edge of the triangle (Fig. 3d), a clear sig-
nature of the reciprocal NH skin effect. Finally, we mention
that our general analysis could be applied to show washing
out of the reciprocal skin effect for incoherent dynamics in
other 2D models, such as in the model of ref. 20.
The above examples indicate that the skin effect persists

under incoherent (classical) dynamics when it arises from
non-reciprocal hopping amplitudes in the Hamiltonian,
but vanishes in reciprocal systems. This result can be
extended to special forms of reciprocal and non-
reciprocal skin effects, such as the critical skin
effect17,36, where OBC eigenenergies and eigenstates of
NH lattice systems jump discontinuously across a critical
point in the thermodynamic limit and the system displays
scale-free localization, i.e. the localization length of skin
modes scales with the system size. This case is considered
in Sec.S2 of the Supplementary Material.

Incoherent skin effect in discrete-time photonic
quantum walks
Photonic quantum walks have provided a fantastic

platform for the observation of a wealth of NH phe-
nomena, such as the non-reciprocal skin effect, NH bulk-

boundary correspondence and NH topological phase
transitions19,21,26,50. Quantum walks also offer feasible
systems to introduce controllable decoherence, thus sui-
ted to flip from fully coherent to fully incoherent (classi-
cal) dynamics42,43,46. The spreading laws of the walker in
the quantum and classical regimes are well known53 and,
remarkably, quantum coherence yields a faster spreading
on the lattice than classical random walks (ballistic versus
diffusive). Here we suggest simulating the incoherent
dynamics of local excitations along a dissipative lattice
displaying the non-reciprocal NH skin effect using pho-
tonic quantum walks in well-established protocols, such
as those based on a time-multiplexed configuration in
fibre networks19,21,26,49,50. A schematic of the discrete-
time quantum walk is shown in Fig. 4a. The state vector of
the system is defined by

ψ tð Þj i ¼
X
n

ðu tð Þ
n jni � jHi þ v tð Þ

n jni � jV iÞ ð7Þ

where n is the spatial position of the walker on a 1D lattice
and H,V denote the internal degree of freedom of the
walker (for example the horizontal H or vertical V

polarization state of the photon). The variables u tð Þ
n and

v tð Þ
n are the (non-normalized) amplitude probabilities to
find the walker, at discrete time step t, at lattice site n and
with the internal state H or V, respectively. The non-
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normalized probability P tð Þ
n to find the walker at lattice site

n, regardless of its internal state, is thus given by P tð Þ
n ¼

u tð Þ
n

��� ���2 þ v tð Þ
n

��� ���2. Under coherent dynamics, the state vector

evolves according to

ψ t þ 1ð Þj i ¼ Ûcoh ψ tð Þj i ð8Þ
where the one-step propagator Ûcoh is given by the
composition of three operations, namely

Ûcoh ¼ K̂ γð ÞŜĈ θð Þ ð9Þ
where

Ŝ
X
n

jn� 1ihnj � jHihHj þ jnþ 1ihnj � jV ihV jð Þ

ð10Þ
is the conditional spatial shift operator,

ĈðθÞ ¼
X
n

cos θ i sin θ

i sin θ cos θ


 �O
jnihnj ð11Þ

is the coin operator with rotation angle θ, and

K̂ðγÞ ¼
X
n

exp γð Þ 0

0 exp �γð Þ

 �O

jnihnj ð12Þ

is the NH operator that introduces an imaginary gauge
phase γ and is responsible for the appearance of the non-

reciprocal skin effect. The coherent evolution for the
amplitudes u tð Þ

n and v tð Þ
n reads explicitly

u tþ1ð Þ
n ¼ exp γð Þ cos θ u tð Þ

nþ1 þ i sin θ v tð Þ
nþ1

� 
ð13Þ

v tþ1ð Þ
n ¼ exp �γð Þ cos θ v tð Þ

n�1 þ i sin θ u tð Þ
n�1

� 
ð14Þ

The Hamiltonian Ĥ describing the coherent evolution is
derived from the relation Ûcoh ¼ exp �iĤ

� �
and in Bloch

space its form H(k) is explicitly derived in the Supple-
mentary Material (Sec. S3). The eigenvalues of H(k) are
given by E ± kð Þ ¼ ± a kð Þ, where we have set

a kð Þ � acos cos θ cos k � iγð Þf g ð15Þ
and k is the Bloch wave number. Under PBC, k is real and
spans the range �π � k<π. Correspondingly, the PBC
spectrum forms two closed loops in complex energy plane
(Fig. 4b), which is the fingerprint of the NH skin effect.
Under OBC, the energy spectrum is entirely real (Fig. 4b)
and is obtained from the same expression E ± kð Þ ¼ ± a kð Þ
where now k ¼ q þ iγ is complexified (�π � q<π) and
varies on the generalized Brillouin zone. In fact, under
OBC the NH phase γ in Eqs. (13) and (14) can be removed
by the non-unitary gauge transformation u tð Þ

n !
u tð Þ
n exp �γnð Þ and v tð Þ

n ! v tð Þ
n exp �γnð Þ, which in Bloch

space is equivalent to complexification of the Bloch wave
number9,11,12. Such a non-unitary gauge transformation
also explains the exponential localization of all eigenstates
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of H at one edge of the lattice. In bulk dynamics, the NH
skin effect can be visualized as a chiral drift dynamics of
the walker along the lattice for rather generic initial state
of the walker; an example of drift dynamics is shown in
Fig. 4c. The drift velocity can be calculated by standard
asymptotic methods and reads (details are given in Sec.S3
of the Supplementary Material)

vcoh ¼ ±
cos θ cosh γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos2θ sinh2γ
q ð16Þ

where the sign depends on the sign of γ.
The incoherent quantum walk is obtained by multi-

plying, at each time step, the amplitudes u tð Þ
n and v tð Þ

n by
random and uncorrelated phase terms42,43. This implies
that, on average, at each time step the probabilities of the
walker to shift on the left or right sides of the lattice,
depending on the coin state, sum up incoherently. After

letting X tð Þ
n ¼ u tð Þ

n

��� ���2 and Y tð Þ
n ¼ v tð Þ

n

��� ���2, where the overline

denotes statistical average, the resulting incoherent
quantum walk is thus described by the following classical
random-walk map

X tþ1ð Þ
n ¼ exp 2γð Þ cos2θX tð Þ

nþ1 þ sin2θY tð Þ
nþ1

� 
ð17Þ

Y tþ1ð Þ
n ¼ exp �2γð Þ sin2θX tð Þ

n�1 þ cos2θY tð Þ
n�1

� 
ð18Þ

which defines the incoherent propagator Ûinc in one time
step. The corresponding Markov transition matrix M is
obtained from the relation Ûinc ¼ exp M̂

� �
, and its explicit

form in Bloch space, M(k), is derived in the Supplemen-
tary Material (Sec.S3). The eigenvalues ofM(k) are formed
by the two branches

λ± kð Þ ¼ 1
2
ln 2cos2θ � 1
� �

± ia0 kð Þ ð19Þ

where k is the Bloch wave number and where we have set

a0 kð Þ ¼ acos
cos2θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2cos2θ � 1
p cos k � 2iγð Þ

� �
ð20Þ

Under PBC, k is real and varies in the range �π � k � π
; correspondingly the eigenvalues of the Markov matrix
describe two closed loops in complex plane (Fig. 4d). On
the other hand, under OBC is complexified and takes the
values k ¼ q þ 2i γ, with �π � q � π; the corresponding
energy spectrum describes open segments (Fig. 4d), and
the eigenstates are squeezed toward one edge of the lat-
tice, corresponding to the incoherent NH skin effect. We
note that for the special case of Hadamard coin θ ¼ π=4
the elements and eigenevalues of the Markov transition

matrix in Bloch space apparently diverge [Eqs. (19) and
(20)], owing to the fact that the incoherent one-step
propagator matrix Uinc kð Þ displays a vanishing eigenvalue
(more technical details are given in Sec. S3 of the Sup-
plementary Material). However, such a divergence is not
of physical relevance and the incoherent quantum walk
dynamics for the Hadamard coin θ ¼ π=4 can be solved
analytically in a simple way (Sec. S4 of the Supplementary
Material), the (unnormalized) occupation probability
P tð Þ
n ¼ X tð Þ

n þ Y tð Þ
n being given by an asymmetric binomial

distribution.
In bulk dynamics, the skin effect is visualized as a uni-

directional drift of any initial state of the walker; an
example of drift dynamics is shown in Fig. 4e. The drift
velocity for the incoherent quantum walk can be calcu-
lated from an asymptotic analysis and reads (Sec. S3 of the
Supplementary Material)

vinc ¼ cos2θ sinh 2γð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin4θ þ cos4θsinh2 2γð Þ

q ð21Þ

It is worth commenting on the behavior of the drift
velocities vcoh and vinc, for the coherent and incoherent
quantum walks, as the NH gauge phase γ is increased
above zero. A typical behavior of the two velocities versus
γ, for a coin angle close to the Hadamard coin, is shown in
Fig. 4f. Note that, while for coherent dynamics the drift
velocity is non-vanishing for any arbitrarily small value of
γ [Eq. (16)], in the incoherent quantum walk the drift
velocity vanishes as γ ! 0 [Eq.(21)]. This behavior can be
explained by the different spreading dynamics of quantum
and classical random walks in the Hermitian limit γ = 053.
In a quantum walk the spreading is ballistic and the
excitation asymptotically spreads with two main peaks
centered along the two space-time lines n ¼ ± vt, where
v ¼ cos θ is precisely the limit of vcoh as γ ! 0. As γ is
slightly increased above zero, one of the two peaks is
amplified while the other one is attenuated and asymp-
totically dies, resulting in an irreversible drift along the
dominant peak (Fig. S2 in the Supplementary Material).
Conversely, in the classical random walk the spreading is
diffusive and there is one main peak along the space-time
line n = 0. In this case, as γ is slightly increased above
zero, the drift velocity remains small. However, a γ is
further increased, the drift velocity in the incoherent
quantum walk can overcome the drift velocity of the
coherent regime (Fig. 4f). This means that, very interest-
ingly, in NH quantum walks dephasing effects, leading to
classicalization of the dynamics, can enhance excitation
transport in the lattice, contrary to what happens in the
Hermitian case where transport is always faster under
quantum coherence.
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Discussion
The NH skin effect, i.e. the phenomenon that eigen-

states of a NH Hamiltonian mainly reside at the
boundary of the system rather than in the bulk, provides
one of the most exotic manifestations of point-gap
topology in non-Hermitian systems. Understanding and
exploiting the NH skin effect can have practical impli-
cations for designing devices with unique properties,
especially in the context of photonics and quantum
technologies. For example, in photonics the NH skin
effect may be harnessed for light funneling21, for guiding
light in robust ways54 and for designing novel kinds of
topological lasers55,56. So far, the NH skin effect has
been unravelled in systems displaying full or partial wave
coherence, while the fate of the NH skin effect when
coherence is lost – a regime which is commonplace in
many complex physical, chemical and biological systems
out of equilibrium– remains largely unexplored. Here
we have investigated the fate of the NH skin effect in the
fully incoherent regime, showing that the effect persists
under incoherent dynamics when it originates from non-
reciprocal hopping in the system, while reciprocal skin
effect is washed out by dephasing. The results have been
illustrated by considering incoherent photonic quantum
walks in synthetic lattices, which should provide an
experimentally accessible platform for the observation of
incoherent non-reciprocal skin effect. Interestingly,
while in Hermitian quantum walks decoherence leads to
transport slowing down, in NH quantum walks
dephasing effects can make transport faster. The present
study provides major advancements in the under-
standing of NH skin effect and is expected to stimulate
further studies on an emergent and impactful area of
research. For example, it would be interesting to inves-
tigate the fate of the NH skin effect and topological
phase transitions in disordered systems with dephasing,
skin effects in incoherent models of interacting particles,
and other exotic phenomena such as intermittency,
which should arise in NH classical and quantum walks
with random traps.

Materials and Methods
The numerical simulations of wave packet evolution in

the bulk of the lattice under incoherent dynamics is
obtained by propagating the initial state of the system
ψ 0ð Þj i along a large number S of trajectories (Fig. 1b), and
then making the statistical average of the unnormalized

occupation probabilities Pn t ¼ NΔtð Þ ¼ n; j;ψ tð Þh ij j2. In
each trajectory the state vector of the system evolves

according to ψ NΔtð Þj i ¼ QN
α¼1P̂αÛcoh Δtð Þ ψ 0ð Þj i, where

Ûcoh Δtð Þ ¼ exp �iĤΔt
� �

describes the coherent propa-
gation of the system for the time interval Δt (Δt = 1 for

the quantum walk model), P̂α ¼
P
n
expðiϕ αð Þ

n Þjni hnj

describes the stochastic phase shift operation, and ϕ αð Þ
n are

the uncorrelated random phases applied at lattice site n
and time step α, uniformly distributed in the range
�π;πð Þ. The propagation is performed in physical space
on a wide enough lattice size to avoid edge effects at the
largest propagation time. The coherent propagator
Ûcoh Δtð Þ has been computed in physical space by using
exponential matrix function in MatLab. In the snapshots
of wave packet evolution shown in Figs. 2 and 4, after each
time step Δt the wave function ψ tð Þj i has been renor-
malized as ψ tð Þj i ! ψ tð Þj i= jψ tð Þjj j, where jψ tð Þjj j is the
norm of the wave function.
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