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Abstract
Photonic quantum computation plays an important role and offers unique advantages. Two decades after the
milestone work of Knill-Laflamme-Milburn, various architectures of photonic processors have been proposed, and
quantum advantage over classical computers has also been demonstrated. It is now the opportune time to apply this
technology to real-world applications. However, at current technology level, this aim is restricted by either
programmability in bulk optics or loss in integrated optics for the existing architectures of processors, for which the
resource cost is also a problem. Here we present a von-Neumann-like architecture based on temporal-mode encoding
and looped structure on table, which is capable of multimode-universal programmability, resource-efficiency, phase-
stability and software-scalability. In order to illustrate these merits, we execute two different programs with varying
resource requirements on the same processor, to investigate quantum signature of chaos from two aspects: the
signature behaviors exhibited in phase space (13 modes), and the Fermi golden rule which has not been
experimentally studied in quantitative way before (26 modes). The maximal program contains an optical
interferometer network with 1694 freely-adjustable phases. Considering current state-of-the-art, our architecture
stands as the most promising candidate for real-world applications.

Introduction
Photonic system plays important role in quantum

simulation1–6 and quantum computation7–35 and other
applications such as machine learning36,37. It has the
merits of high coherence, robustness in ambient tem-
perature and pressure environment. Besides, it is also very
convenient for information transmission, which is essen-
tial for quantum network and distributed computation38.

The milestone of universal quantum computation with
linear optics is the Knill-Laflamme-Milburn (KLM)
scheme7, before which, people believe that non-linear
effect (e.g., Kerr non-linearity) is indispensable to provide
the photon-photon interaction8. KLM utilize the
measurement-related “hidden non-linearity”7 and Hong-
Ou-Mandel (HOM) effect (photon indistinguishability
induced exchange interaction) to propose a viable way to
realize universal quantum computation based on linear
optics. One essential gate in KLM scheme is the non-
linear sign change (NS) gate. This gate is, however, non-
deterministic, which has a largest success probability of 1/
4, as has been proved in both numerical9 and analy-
tical10,11 ways. Thus, the controlled-phase (CZ) gate,
which can be constructed by two independent NS gates
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and the HOM effect, is also non-deterministic. There are
several ways to make a (near-)deterministic CZ gate. One
way is to utilize entanglement, teleportation, measure-
ments and feedforward to realize CZ gate with success
probability of n2/(n+ 1)2 (n is the qubit number in the
ancillary entanglement state)7,8. Another way is to utilize a
memory with single-photon emissions, measurements
and repeated operations to realize CZ gate deterministi-
cally12. Besides the KLM scheme, a similar computation
model based on cluster (entangled) state and measure-
ment are proposed, also known as one-way quantum
computation13–15. These universal models cost a lot of
resources, e.g., entanglement and number of measure-
ment operations, and still very hard at current state-of-
the-art.
Nowadays, a great interest is attracted in a game called

Boson sampling16 and its variants, i.e., Scattershot Boson
Sampling17 and Gaussian Boson Sampling (GBS)18. These
games describe that a multi-photon state goes through a
multimode unitary evolution and the final photon-
number distribution at each mode is required. They are
non-universal computation models, but can demonstrate
the quantum advantage over classical computer with the
size being large enough. After the efforts during a dec-
ade19–26, quantum advantage based on GBS has been
demonstrated22,25. Especially fortunately, GBS is recently
found to have connection with graph theory27–29 and can
be used to solve quite a lot of hard problems in molecular
dynamics30,31 and other fields like medicine, etc. This
makes GBS a powerful tool in solving many hard real-
world problems which cannot be efficiently solved in
classical computer, but not only a quantum game.
As a quantum processor that is suitable for real-world

applications, the universal programmability is the basic
requirement; even if in current non-universal computa-
tion model of GBS, the universal programmability of the
multimode-unitary-evolution circuit is neces-
sary21,26,32–34. To be distinguished, we call the later
multimode-universal (MM-universal) programmability
(we note that in some previous works, people also would
like to just simply call it “universal”21,26). This require-
ment will make the processor meet various real-world
conditions. Our work just focuses on the MM-universal
programmability of the photonic processor.
MM-universal programmability is another critical abil-

ity for photonic processor that is as important as quantum
advantage, but these two abilities have an approximate
tradeoff relation, in which the loss plays a role. To date,
some experiments give up or partially sacrifice the MM-
universal programmability to reduce loss thus achieve
quantum advantage22,25, and some others insist on the
way of MM-universal programmability but the loss is
difficult to be reduced21,32,33, and the largest size of MM-
universal photonic processor is 20 modes with 380 phase

shifts33 which is not enough to show quantum advantage.
Besides the degree of programmability, different systems
also affect the loss, and generally speaking, on-table optics
(or bulk optics) will have less loss than integrated optics.
We can see that the quantum-advantage-demonstration
experiments are all performed on-table currently. More-
over, most current photonic processors are in unlooped
configuration. This feature is not friendly to MM-
universal programmability, which needs a huge number
of free real parameters, i.e., phase shifts. These phase
shifts will cost a great of resources, e.g., phase shifters,
electric-pulse generators and the rooms for installing
them, etc., and make the experiment both expensive and
cumbersome. This shortcoming is less obvious in inte-
grated optics because of the small size of photonic chip
(but the electric-pulse generators and cables are still
complex, besides, the heating effect and the crosstalk
among different electrodes by heat will be a problem), so
we see that the experimental demonstrations of MM-
universal programmability are all in integrated optics.
Therefore, at current stage of technology level, the
potential of current photonic processors to be used in
real-world applications to surpass classical computer is
restricted.
Here we describe another architecture for photonic

processors which has a looped structure and encodes on
temporal mode of photons (temporal-mode encoding is
also feasible for the photon circulation compared to
spatial mode). This architecture enables the construction
of a MM-universally programmable circuit with resource-
efficiency and software-scalability. The on-table optical
system enables this architecture with relatively less loss
and the potential to achieve quantum advantage in near
future based on current technology level (see Supple-
mentary Information of ref. 35). This architecture will
break the restrictions mentioned above and make pho-
tonic processors promising in the real-world applications,
and actually the second-generation of processor following
this architecture has been used for molecular docking and
RNA folding35.

Results
As mentioned previously, we present an architecture for

photonic processors and focus on the MM-universal
programmability of the circuit. The looped structure
requires that this architecture should include a quantum
memory to temporally store the photon qudit. This makes
this architecture seem like the well-known von-Neu-
mann/Harvard (VH) architecture39. Both these two
architectures store data and program instructions in
memories, and fetch them one step by one step for data
processings. The difference is that the data and program
in von-Neumann architecture are stored in the same
memory but those in Harvard architecture are in different
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memories. Nowadays, these two original architectures are
not often used, but instead by more complicated hybrid
architectures. Nevertheless, people still generally called
them von-Neumann architecture40, and as our model is
more like Harvard architecture, we simply call it the VH
architecture.
A typical VH architecture, precisely, the Harvard

architecture, is sketched Fig. 1a. After the data are input
into the processor, the processor will acquire instruction
from the instruction memory, and then it prepares an
operation according to the instruction to handle the data.
At the end of the single loop, the processed data are sent
into the quantum data memory. In the next loops, the
data are repeatedly acquired from and buffered into the
data memory, and simultaneously the corresponding
instructions are read out from the instruction memory to
guide the processor to prepare the suitable gates. Until the
task is finished, the final data are output for detection. We
also see the superconducting quantum processor with
von-Neumann architecture40, but it does not affect the
advantage of our work in photonic system. The reason is
as following. In the matter systems40–50, the data carriers
can play as the memories by themselves, and the in-
memory-computing architecture51,52 is more preferred. In
contrast, von-Neumann architecture containing frequent

data exchange between memory and processor is harmful
by inducing more data loss and power consumption.
However, the situation is completely different in the
photonic system, since the photon flies quickly and can-
not play as the memory by itself. To construct a looped
structure and make the photonic processor resource-
efficient, we nevertheless need a memory, i.e., the VH
architecture in this case indeed will be helpful.
In our architecture, the temporal modes are used to

encode data, and the primary structure used to process
the modes is sketched in Fig. 1b. Comparing with the VH
architecture in Fig. 1a, the component from EOM1
(electro-optic modulator) to EOM5 is recognized as the
processor unit. EOM1 and EOM5 are controlled by digital
signals generated by the instruction memory unit to
address which data will be handled or not. EOM2-4 are
controlled by analog signals also generated from the
instruction memory unit to create an arbitrary unitary
gate. The processed data can be temporarily sent into the
delay-line quantum-data-memory unit (the same as that
in the early-age classical computers, such as EDVAC and
UNIVAC I53,54), and they will be retrieved for the next
instructed operations in the following loops. The pulses
before the entrance PBS (polarizing beam splitter) and
those after AOM (acousto-optic modulator) represent the
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Fig. 1 Hardware of the VH architecture photonic processor utilizing temporal-mode encoding. a A typical structure of quantum VH
architecture. It comprises separated processor unit, instruction- and quantum-data-memory units. The data after input, are repeatedly exchanged
between the processor and data-memory units to be processed according to the instructions or temporarily stored, until they are output for
detection. b Brief sketch of the hardware. Although the practical hardware construction is much more complicated, this sketch can comprehend the
essence of this system. Compared to the figure a, EOM2-4 with continuously-variable phase shift universally simulate quantum gates according to
instructions, EOM1 and EOM5 with two-valued phase shift play the role of address control also following the instructions, and they constitute the
processor unit; the whole light path includes a big circulation (benefited by the utilization of temporal mode) with the data repeatedly and
alternately going through the processor unit and a delay-line quantum-data-memory unit (similar role as that in EDVAC and UNIVAC I), which
corresponds to the frequent data exchange between processor and data memory; an instruction memory unit store the programs and accordingly
generate electrical signals; the pulses before the entrance PBS represent the data input with temporal mode, and pulses after AOM is data output.
The phase stability analysis can be found in Supplementary Information
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data input and output, respectively, in temporal mode.
The software of this processor is a series of instructions
written in the instruction memory unit in advance. To
fulfill a task, it should be compiled into an instruction
series first. An example of the complicated instruction
series will be found in the Supplementary Information.
The temporal mode is more stable in phase, and most
suitable for the loop-structure construction and also for
long-distance transmission, since it is insensitive to the
slow phase shifts (induced by mechanical shaking or
temperature drift) and the spatially nonuniform environ-
mental noises (including photon losses caused by mirror
imperfections or coupling-efficiency difference). The
temporal-mode encoding and circulation structure in VH
architecture make this processor can be resource-
efficiently scalable in both mode number and evolving
depth just by using software.
To illustrate the unique capacities of our photonic VH-

architecture processor, we utilize it to investigate the
quantum signature of chaos, which is a widely interested
fundamental problem55–67 and is closely related to the
classical-quantum boundary56,57,60, and can also be used
to benchmark quantum simulators64,65. Quantum sig-
nature of chaos is investigated in this work from two
different aspects which can be compiled into two quan-
tum programs. These two quantum programs are able to
be executed on the same photonic processor, respectively
(in a resource-efficient way), though they require different
resources, i.e., numbers of temporal modes and evolving
steps. The first program investigates the wavefunction
distributions in phase space, which provide visual pictures
to show the different behaviors in regular and chaotic
regions. The second program, requiring more resources,
quantitatively investigates the Fermi golden rule (FGR) of
the quantum signature of chaos66,67, which is derived
from the random matrix theory (RMT)61–63 and was
never quantitatively confirmed in experiment before.
We begin with the quantum kicked-top model (QKM),

whose classical counterpart is usually employed to study
classical chaos. The first quantum task is to simulate the
evolution of this model and give a visual picture of the
evolved states in both regular and chaotic regions. This
model is governed by a periodic Hamiltonian

HðtÞ ¼ ð_p=τÞJ y þ ð_k=2jÞJ2z
Xþ1

n¼�1
δðt � nτÞ ð1Þ

where J is the angular momentum with J2 ¼ jðjþ 1Þ (j is
chosen to 6 in our experiment); and J y as well as J z are the
corresponding angular momentum operators, whose
explicit expressions can be found in the Supplementary
Information. p represents the rotation angle about y axis,
the δ function represents the kicks and k is the kick
strength determining the regular or chaotic degree of the

dynamics, τ represents the duration between kicks. This
system has an equivalent Floquet representation

U ¼ e�iπJ y=2e�ikJ2z=j ð2Þ

To compile the quantum task into a series of instruc-
tions (a program), we first decompose the subevolution
e�iπJ y=2 of U into some simple matrices using Trotter
expansion (see Methods), and then further translate U
into an instruction string (see Supplementary Informa-
tion). The instruction string is called a period, in which
the program creates a buffer of 2jþ 1 ¼ 13 temporal
modes, as shown in Fig. 2a. Our whole program iterates
the instruction string 4 times (repeat n ¼ 4 periods of U).
We use the Husimi distribution Rðθ;ϕÞ68 (ðθ;ϕÞ is

parameters of a coherence state |θ,ϕ〉69,70 which located
on a spherical surface with fix radius) as the visual picture
to distinguish the regular region and the chaotic region in
QKM. Husimi distribution is a widely used quasi-
probability distribution to study the correspondence
between quantum phase space distributions and the
classical phase space structure71. For any state ρ, its
Husimi distribution is defined as R θ;ϕð Þ ¼
θ;ϕ; j; ρ; j; θ;ϕh i. See details in Supplementary
Information.
In this quantum task, the initial state ρ0 is chosen to be a

coherent state (a point in the phase space), and we measure
all the states after each evolution period (shown in Fig. 2a),
denoted as fρið0 � i � nÞg. In experiments, s ¼ 35 initial
coherent states in the phase space are randomly selected to
perform the same evolution to obtain the whole experi-
mental density-matrix set S ¼ fρqi ji ¼ 1; 2; ¼ ; n;q ¼
0; 1; ¼ ; sg. We then calculate the average Husimi dis-
tribution Q θ;ϕð Þ on S (see Methods). The results for k ¼ 1
are shown in Fig. 2b (regular region), and for k ¼ 12 are in
Fig. 2c (chaotic region). þx, þy and þz represent the dif-
ferent view angles of the spherical surface (more data are
found in Supplementary Information). It is clear that when
the system is in chaotic region (Fig. 2c), the distribution is
much more uniform than that in regular region (Fig. 2b),
which means the system states are much more dispersive
for chaotic region than that for regular region.
Besides the visually distinguishing of the regular and

chaotic regions from aspect of Husimi distribution, our
high-fidelity processor (>0.992 for one period) allows us to
give a deeper quantitative investigation of FGR in the
quantum chaotic region. The FGR can be described by the
exponential damping of the average fidelity, which is
averaged on different initial states in the whole space, along
the evolution periods66. For a given initial state, the fidelity
is defined between the evolved states going through the
evolution U with and without perturbation P ¼ e�iδJ z (δ
represents the perturbation strength). The region governed
by FGR is called Fermi golden region, which is a subregion
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of chaotic region, and it notes that the decay rate of the
average fidelity is independent of k in this region.
The FGR can be explored by the second program on the

same processor (an example of the compiled control
sequences can be found in Supplementary Information).
In this program, besides the 13 modes used to simulate
the evolution of U in the first program, another 13 tem-
poral modes are created to simulate the evolution UP ¼
UP with perturbation. Combining these two parts (total
26 modes) will form a controlled evolution: an ancilla
qubit controls a 13-dimensional qudit (see Fig. 3a).
According to the algorithm in ref. 67, the average on

initial states in the whole qudit space can be completed by
preparing the initial state as maximally mixed state I13,
and the average fidelity between quantum states Uijϕ0i
and Ui

Pjϕ0i (jϕ0i represents an arbitrary initial state, and
0 � i � n indicates the number of the periods) can be
directly obtained through the Hadamard test circuit by
detecting the expectation value of the ancilla qubit on σz

(see Fig. 3a). This average fidelity is written as Fi ¼
jhϕ0; j; ðUyÞiUi

P; j;ϕ0ij
2
, and the overline denotes the

average on the space.

Figure 3b shows the dynamics of the experimental
average fidelity Fi (0 � i � 6) in the cases of k ¼ 1 (reg-
ular region) and k ¼ 12 (chaotic region). To better

illustrate the exponential decay of the average fidelity, we
define F ¼ lnF, then F will be linear with the period index
i if FGR is obeyed. The black solid line is the theoretical
prediction of FGR. The red symbols represent k ¼ 1 case,
and the blue symbols are k ¼ 12 case. The bars with light
colors are the theoretical results with ideal U evolutions,
and bars with deep colors are the theoretical results with
Trotter-expanded U . The circles (squares) with error bars
represent the experimental results, and the errors are
derived by the standard deviation of 5 repeated experi-
ments (the same in Fig. 3d). We see the Trotter expansion
makes the values of F systematically less than their the-
oretical values, but it does not affect the main conclusions.
The experimental results coincide well with the theore-
tical values with Trotter expansion. For the k ¼ 1 case,
the average fidelity deviates from the exponential decay
after i ¼ 3 and remains around a certain stable value. For
the k ¼ 12 case, we see a good agreement between the
experimental results and FGR within the error of Trotter
expansion. The blue dashed line is the linear fitting of
these data. These values of fidelity can be regarded as the
indicator of quantum signature of chaos66.
To further quantitatively detect the properties of FGR,

we study the relation between the decay rate of average
fidelity (slope of F) and the perturbation strength δ. The
experimental value of the decay rate, 4, with different δ
are shown in Fig. 3c as hollow circles, and error bars are
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distribution (phase space). Compared to (c), the chaotic region, (b) corresponding to regular region is less dispersive

Yu et al. Light: Science & Applications           (2024) 13:74 Page 5 of 10



fitting errors. These circles are fitted using f b; að Þ ¼
δb þ a, and the fitted parameters are b ¼ 1:9030 ± 0:0138
and a ¼ 0:0017 ± 0:0006. The shadow in this figure
represents the fitting error. This result approximately
indicates that the degree of chaos is corresponding to δ2,
coincident with FGR. The solid line below the circles
describes the values of 4 ¼ δ2 which are overall less than
the experimental data due to the Trotter expansion.
Besides, the relation between the slope of F and the kick

strength k is also studied here. We obtained the slope for
three different k (k ¼ 12; 14:3 and 16:6) and shown in Fig.
3d. The bars with errors represent the experimental
results, and the dashed lines and shadows are the linear
fittings and fitting errors. The solid line is the ideal the-
oretical value. Within error bars, we see these three
results coincide to each other very well, and this k-inde-
pendence phenomenon indeed reveals one of the key
features of the quantum signature of chaos in Fermi
golden region.

Discussion
Using this MM-universally programmable photonic

processor with VH architecture, we have run two pro-
grams (requiring different resources) compiled into a
sequence of instructions to comprehensively investigate
the quantum signature of chaos in QKM from both the
visual and quantitative aspects. Especially, the Fermi
golden region of quantum signature of chaos is quanti-
tatively characterized in experiment for the first time. The
temporal mode and the looped structure make the pro-
cessor intrinsically scalable and can be realized by only
controlling software. In contrast, for other photonic
processors with fixed mode number and evolving depth
which are even MM-universally programmable, to run
these two kinds of programs on the same processor will
induce either inadequacy or wasting of resources. Besides,
these quantum tasks on chaos contain a large optical
interference network. Different from the GBS experiment
which only needs one multimode evolution, the chaos
experiment needs to repeat the evolution many times and
requires more real parameters, i.e., freely-adjustable pha-
ses. Maximally, our chaos experiment includes 6 periods,
and each period has 84 mode couplers and 26 phase shifts
(see right panel of Fig. S6a). Each mode coupler contains 3
phases (EOM2-4). Considering another 26 phase shifts at
the end of the program, we have totally ð3 ´ 84þ
26Þ ´ 6þ 26 ¼ 1694 freely-adjustable phases in this opti-
cal network. To make this large optical interference net-
work stable is not easy, especially for the on-table optical
experiments encoding on path mode. In our experiment,
the relative phases among different modes are quite stable
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Fig. 3 The second program to quantitatively study FGR. a Brief
sketch of logic diagram. In this program, 26 temporal modes are
created. 13 of them are still performed with U (i.e., the program in Fig.
2), and the other 13 are performed with UP . This structure constitutes a
big controlled gate by an ancilla qubit. n= 5 or 6 periods of
evolutions are compiled in this program. The Rx operation belongs to
the state preparation and detection, and is performed by the
transformations between temporal to polarization modes (See
Supplementary Information). Using this algorithm, the average fidelity
F can be directly readout. b Fidelity decay under k ¼ 1 and k ¼ 12.
When k ¼ 1, fidelity fluctuates as the period index i grows; when
k ¼ 12, fidelity decays following FGR, and the fitted slope of F
denoted as ¼ cðjÞ4 is just the decay rate, where cðjÞ is a negative
constant related to j. c Fidelity decay rates represented by 4 with
various δ under k ¼ 12. It demonstrates that the decay rate is

proportional to δ2 within the errors of Trotter expansion, and the
fidelity decay rate coincidences with FGR. d shows that when the
evolution is located in Fermi golden region, a constant decay rate will
be observed under various k
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owing to the temporal-mode encoding, utilization of
double-core fiber (the two short fiber in Fig. 1b) and the
fast light speed. Furthermore, our system is a controllable
quantum system, thus the states and coherence contained
in them are really evolved in both regular and chaotic
regions but not only a mathematical calculation. This
situation is different from the simulation on classical
computer. Ultimately, the algorithm employed for the
FGR experiment provides an exponential speedup on the
average-fidelity measurement67. Without this algorithm,
the average-fidelity measurement will cost a lot of
resources and the accuracy for average is also limited by
the sampling number and sampling uniformity.
The quantum-memory technology is still under rapid

development. For example, a free-space multiplexed
delay-line photonic memory is reported recently72; the
quantum memory based on cold Cs atoms with efficiency
of ~90% at storage time of ~10 μs is realized73; the
quantum memory based on solid-state rare-earth crystal
with storage time of 1 h is demonstrated74; etc. With these
achievements, our VH-architecture processor can be
further improved to be fully flexible in the future.
The processor also has potential to be fabricated on

chip in the future, based on the development of the
integrated-optics technologies, especially the integration
of fast electro-optic unit and memory unit.
In addition, our photonic processor is ready to perform

GBS18,27–31 when its input is changed to squeezed states
(the indistinguishability of the photons in these states at
diffident modes is also better owing to the temporal-mode
encoding), which has been demonstrated in our second
generation of processor following the same architecture35.
At current technology level, considering the MM-
universal programmability with acceptable resource cost,
photon loss and phase stability, our architecture may be
the most promising photonic quantum computing
architecture to be put into real-world applications.

Methods
Discussions of methods to show flexibility of our VH-
architecture photonic processors
As that in classical digital computers, the VH-

architecture endows our photonic processor with the
high flexibility of multiple-thread, multiple-core and dis-
tributed computation abilities, as shown in Fig. 4.
Although these functions can also be realized in matter-
system-based processor without VH-architecture, they
will be comparatively difficult for other photonic pro-
cessors without VH-architecture, and here we focus the
photonic system which also has its unique merits com-
pared with matter systems. The primary characteristic of
this architecture is that it has independent structures of
processor unit, memory units and repeatedly data
exchange between them (the circulation), and the whole

program can be divided into a chain of instruction-data-
binding units which are stored in memory units and not at
all related to the processor unit. Therefore, the stored
instruction-data-binding units belonging to different
programs can be mixed and share the different time slices
of the same processor, as shown in Fig. 4a, which we call
multiple-thread here. Let us recall the program shown in
Fig. 3a which contains a controlled operation. If we ignore
the operations on the ancilla qubit, and decompose the
controlled operation into two programs respectively cor-
responding to U and UP . These two programs can be
considered to be executed on two different time threads of

ProcessorProcessor
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D
at

a 
in

pu
t

ProcessorProcessor
2

ProcessorProcessor
n

D
ata output

Program I:Program I:
Instruction 1Instruction 1

+data 1+data 1

Program II:Program II:
Instruction 1Instruction 1

+data 1+data 1

Program I:Program I:
Instruction 2Instruction 2

+data 2+data 2

Program II:Program II:
Instruction 2Instruction 2

+data 2+data 2

ProcessorProcessor

a

b

c

Data input
from other

quantum computer

Data output
to other

quantum computer

Quantum
computer n

Quantum
computer 1

Quantum
computer 2

Fig. 4 Flexibility of this photonic VH-architecture processor.
a Multiple (time-slice) thread. The programs are divided into series of
instruction-data-bindings which are independent of the processor
unit. Each binding corresponds to a basic element of these programs.
Owing to the memory units in VH architecture, these bindings can be
temporarily stored. This makes the binding chains from different
programs can be mixed and share the time slices of the processor unit
alternately. b Multiple core. Also because of the dependence of
instruction-data-bindings and the processor, more than one processor
cores sharing the memory units can be used to cooperate to fulfill the
same task. c Distributed computation. When it is extended to a
network with each node having an entire set of processor and
memories, the data can be transmitted and stored in the memories of
the whole net (the yellow arrows in the figure b), and all the
processors can cooperate to realize a quantum task. During this
process, the temporal mode is convenient for phase-stable
transmission, and the difficult light-matter interface can be avoided
since the information carriers during calculation and transmission are
both photons
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the single processor. The time of this processor is equally
divided in this example, but in general cases, this can be
more flexible with nonuniform and customized time
arrangement.
Also because of the separation of processor and

instruction-data-bindings, we can use more than one
processors to handle the data according to corresponding
instruction together, and these processors share the
memory units, for which we call multiple-core, as shown
in Fig. 4b. These processor cores can be either series-
wound or shunt-wound. The former will benefit if the
data storage and fetch from memory takes time or has
resource losses, and the latter will play roles when the
program can be designed to be parallelly executed, as that
in classical computer.
Moreover, when we construct a network, with each node

including a computer, and the nodes are connected using
optical fibers. The data can transmit through the fibers
among memories in different nodes (the yellow arrow lines
in Fig. 4b), and the processors can cooperate to handle the
data in the whole net to fulfill a common task, for which we
call distributed computation, as shown in Fig. 4c. The
temporal mode used here has the advantage of convenience
and phase-stability in transmission among different nodes
compared to path mode or other spatial modes, and the
photonic coding avoid the light-matter interface between
data processing and transmission compared to the matter-
based processor in distributed computation.

Trotter expansion for the subevolution e�iπJ y=2

J y can be decomposed into J ya þ J yb, with J ya and J yb
having separated blocks of two-level submatrices. The
matrix expressions for J y and J ya, J yb can be found in

Supplementary Information. Both e�iπJ ya=2 and e�iπJyb=2

can be further decomposed into a series of independent
two-level unitary evolutions between each pair of adjacent
modes. Since J ya and J yb are not commuting, therefore, to

realize e�iπJ y=2, Trotter expansion (e�iπJ y=2 �
ðe�iπJ ya=2=2me�iπJyb=2=me�iπJ ya=2=2mÞm where m is Trotter
number) is necessary, with Uya having the form of

e�iπJ ya=2=2m and Uyb having the form of e�iπJ yb=2=m alter-
nately evolving m times, as shown in Fig. 2a.

As we see in the experimental results, Trotter expansion
will induce a systematic error, which has been already
considered in the program design, and does not affect the
fidelity of the photonic processor.

Calculation for the average Husimi distribution Q θ;ϕð Þ
The average is taken in both time and space. For a

certain initial coherent state, we first derive the time
average, by calculating the Husimi distribution of each ρi
after ith period of evolution (Ri θ;ϕð Þ), and then their

average RTA θ;ϕð Þ ¼ 1
1þn

Pn
i¼0 Ri θ;ϕð Þ. Next, we randomly

choose s= 35 initial coherent states in the whole phase
space, and repeat the above-introduced evolutions and
calculations, deriving s different RTA θ;ϕð Þ. Now we need
to take an average for these RTA θ;ϕð Þ, however, due to the
symmetry of the space, this average will be all the same
everywhere, which can not distinguish the regular region
and chaotic region. Nevertheless, by observing the cases of
k ¼ 1 and k ¼ 12, we still see an obvious difference
between them in the distributions RTA θ;ϕð Þ. For the k ¼
1 case, the profile of the island and sea in RTA θ;ϕð Þ is
approximately stable, but the RTA values in island can
sometimes larger than that in sea, and sometimes less
than that. Then when an average is taken, both the RTA

values in island and sea will counteract, and erase out the
profile. Whereas for the k ¼ 12 case, no stable profiles can
be found. This difference well exhibit the chaotic property
of this system when k ¼ 12, and in contrast, k ¼ 1
belongs to regular region. To show this chaotic behavior
more clearly, we introduce an asymmetric transformation
of RTA θ;ϕð Þ, i.e., R0

TA θ;ϕð Þ ¼ ð2RTA θ;ϕð Þ �
1Þsgnð2RTA θ0;ϕ0ð Þ � 1Þ with sgnð�Þ being the sign func-
tion and θ0;ϕ0ð Þ representing a randomly chosen fixed
point. For the regular case with stable profile, this trans-
formation to a great extent stop the counteraction of R0

TA

both in island and sea, and the profile is highlighted by
taking the average of s samples, i.e., Q θ;ϕð Þ ¼
1
S

Ps
1 R

0
TA θ;ϕð Þ. Whereas for the chaotic case which does

not have a stable profile, the same process still can not
stop the counteraction and the average Q θ;ϕð Þ is none
the less always the same everywhere. We note that the
choice of θ0;ϕ0ð Þ basically does not affect the main con-
clusion. Additional information can be found in Supple-
mentary Information.

Fidelity decay as the indicator of quantum signature of
chaos and quantitative features in Fermi golden region
The classical chaos can be heuristically determined by

the effect of the tiny perturbation which will dramatically
change the evolution results. Along the similar idea, the
effect of the perturbation can be measured by the fidelity
between the evolved states with ( ϕni ¼ Un

P

�� ��ϕ0i) and
without (jϕ0

ni ¼ Unjϕ0i) the perturbation (P) for the given
initial state jϕ0i, i.e.,

Fn ¼ j ϕn; j;ϕ0
n

� �j2 ð3Þ

The effect of the initial state can be removed by taking
average on the initial state in the whole space. According
to RMT in quantum chaos61–63, the average fidelity
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should exhibit exponential-decay behavior, i.e.,

Fn ’ expð�ΓnÞ ð4Þ

where Γ represents the decay rate with the form of Γ ¼
ξðjÞδ2, and ξðjÞ is related to the angular momentum
quantum number j. δ is the perturbation strength in the
perturbation Hamiltonian P ¼ e�iδJ z , and δ then can also be
understood as the phase shifts of each eigenstate of J z

66.
Under this situation, ξðjÞ only depends on the eigenvalues of
J z (i.e., only j-dependent), thus the decay rate of average
fidelity will be proportional to δ2. Since the detailed behavior
of the decay rate is derived from RMT, the observation of
the corresponding behavior not only can be used to
distinguish the regular and chaos region of the system, but
also can be used to support RMT behind quantum chaos.

Generally, there are different chaos regions in the
chaotic system (may suggest different theories behind
them), such as, Fermi gold region and Lyapunov region75

which can be distinguished by the dependence of the
decay rate on the kick strength k. In the Fermi golden
region, the decay rate is independent of the parameter k,
however, in the Lyapunov region the decay rate will
change with k.
In our programmable processor, we observed the

exponential decay of the average fidelity and its decay rate
is scaled with the perturbation strength δ as δ2 with k ¼
12. These results definitely confirmed that the system is in
chaos region and strongly support that RMT is valid in
chaotic system. Our further observation that the decay
rate keeps all the same for k ¼ 12; 14:3; 16:6, suggests that
the QKM system with k 2 ½12; 16:6� is in Fermi golden
region.
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