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Abstract
Scalable, high-capacity, and low-power computing architecture is the primary assurance for increasingly manifold and
large-scale machine learning tasks. Traditional electronic artificial agents by conventional power-hungry processors
have faced the issues of energy and scaling walls, hindering them from the sustainable performance improvement
and iterative multi-task learning. Referring to another modality of light, photonic computing has been progressively
applied in high-efficient neuromorphic systems. Here, we innovate a reconfigurable lifelong-learning optical neural
network (L2ONN), for highly-integrated tens-of-task machine intelligence with elaborated algorithm-hardware co-
design. Benefiting from the inherent sparsity and parallelism in massive photonic connections, L2ONN learns each
single task by adaptively activating sparse photonic neuron connections in the coherent light field, while incrementally
acquiring expertise on various tasks by gradually enlarging the activation. The multi-task optical features are parallelly
processed by multi-spectrum representations allocated with different wavelengths. Extensive evaluations on free-
space and on-chip architectures confirm that for the first time, L2ONN avoided the catastrophic forgetting issue of
photonic computing, owning versatile skills on challenging tens-of-tasks (vision classification, voice recognition,
medical diagnosis, etc.) with a single model. Particularly, L2ONN achieves more than an order of magnitude higher
efficiency than the representative electronic artificial neural networks, and 14× larger capacity than existing optical
neural networks while maintaining competitive performance on each individual task. The proposed photonic
neuromorphic architecture points out a new form of lifelong learning scheme, permitting terminal/edge AI systems
with light-speed efficiency and unprecedented scalability.

Introduction
Artificial intelligence (AI) tasks become increasingly

abundant and complex fueled by large-scale datasets1–4.
One open question in the field of machine learning is how
artificial agents could propagate in a smarter manner with
exceptional learning scalability and realize versatile
advanced AI tasks5–8. With the plateau of Moore’s law
and end of Dennard scaling, energy consumption
becomes a major barrier to more widespread applications

of today’s heavy electronic deep neural models9–12,
especially in terminal/edge systems13,14. The community
is imminently looking for next-generation computing
modalities to break through the physical constraints of
electronics-based implementations of artificial neural
networks (ANNs).
Photonic computing has been promised to overcome

the inherent limitations of electronics and improve energy
efficiency, processing speed and computational through-
put by orders of magnitude15–17. Such extraordinary
properties have been exploited to construct application-
specific optical architectures18–22 for solving fundamental
mathematical and signal processing problems with per-
formances far beyond those of existing electronic pro-
cessors. Optical neural networks (ONNs) are constructed
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to validate simple visual processing tasks23–26 such as
hand-written digit recognition27–29 and saliency detec-
tion30,31, using wave-optics simulations or small-scale
photonic computing systems. Meanwhile, some works
combine the photonic computing units with a variety of
electronic ANNs to enhance the scale and flexibility of
optical architectures, e.g., deep optics32–34, amplitude-
only Fourier ONNs31, and hybrid optical-electronic
CNN35. However, existing optics-based implementations
are limited to a small range of applications and cannot
continually acquire versatile expertise on multiple tasks to
adapt to new environments. The main reason is that they
inherit the widespread problem of conventional comput-
ing systems, which are prone to train new models inter-
fering with formerly learned knowledges, rapidly forget
the expertise on previously learned tasks when trained on
something new, i.e., ‘catastrophic forgetting’36–40. Such an
approach fails to fully exploit the intrinsic properties in
sparsity and parallelism of wave optics for photonic
computing, which ultimately results in poor network
capacity and scalability for multi-task learning.
In contrast, humans possess the unique ability to

incrementally absorb, learn and memorize knowledge. In
particular, neurons and synapses perform work only when
there are tasks to deal with, in which two important
mechanisms participate: sparse neuron connectivity41–43

and parallelly task-driven neurocognition44–47, together
contribute to a lifelong memory consolidation and
retrieval. Accordingly, in ONNs, these characteristic fea-
tures can be naturally promoted from biological neurons
to photonic neurons based on the intrinsic sparsity and
parallelism properties of optical operators31,48–51. An
optical architecture imitating the structure and function
of human brains demonstrates its potential to alleviate the
aforementioned issues, which shows more advantages
than electronic approaches in constructing a viable life-
long learning computing system.
Herein, we propose L2ONN: a reconfigurable photonic

computing architecture for lifelong learning (Fig. 1).
Neuromorphically inspired, L2ONN can incrementally
learn tens-of-tasks in one model with light-speed efficient
computation. We show that the unique characteristics of
light, spatial sparsity and multi-spectrum parallelism that
for the first time developed in photonic computing
architecture, endow ONNs with lifelong learning cap-
ability. Specifically, considering the physical propagation
of free-space coherent light field (Fig. 2): Phase change
materials (PCM)-based sparse optical filters are employed
to modulate photonic neuron connections of each single
task; And a multi-spectrum light diffraction-based optical
computing module is constructed to extract the multi-
task features allocated with different wavelengths.
Throughout the architecture, photonic neurons are
selectively activated according to the input signals. Unlike

existing ONNs trying to imitate ANN structures, the
photonic lifelong learning of L2ONN is initially designed
following the physical nature of light-matter interaction,
to fully explore the functional and performance potentials
of wave optics in photonic computing.
The free-space L2ONN can adaptively allocate compu-

tational resources with unprecedented scalability and
versatility, permitting ONNs to increment capabilities and
memorize knowledges with enhanced performance. In the
experiments, for the first time, we evaluate that L2ONN
can progressively learn challenging tens-of-tasks, e.g.,
from hand-written digit classification to complex scene
recognition (Fig. 3). The network achieves up to 14×
larger learning capacity than the vanilla ONN52 while
maintaining competitive accuracy on each individual task,
and more than an order of magnitude higher efficiency
than the representative electronic based neural networks,
e.g., LeNet53. It is worth noting that the learning sequence
on complexity of tasks affects much on overall network
performance (Fig. 4). The smarter way is to start from an
easy task and slowly transition to more difficult ones,
which corresponds with the progressive learning styles of
human.
An on-chip L2ONN is designed and fabricated for fur-

ther validation, which experimentally verifies its lifelong
learning performance on representative classification tasks
in an all-optical and scalable manner (Fig. 5). The chip can
realize a low-cost mass manufacturing based on standard
CMOS technology, it is promising to implement L2ONN
as a photonic accelerator onto the highly-integrated
terminal/edge AI systems. We expect that our study will
provide a light-speed and low-power solution to practically
tackle real-world manifold tasks, meanwhile breaking
through the energy and scaling walls towards more
extensive applications of transformative AI techniques.

Results
Humans possess an extraordinary capacity to retain

memories and increment new knowledges throughout
their lifespan. The process of human lifelong learning is
illustrated in Fig. 1a, the brain can progressively absorb,
learn and memorize knowledges, e.g., evolving from
recognizing basic characters and objects to understanding
complex scenes. During learning, neurons and synapses
are gradually activated and connected to remember spe-
cified tasks, which only function when there are task-
related external stimuli. We depict that two important
neurocognitive mechanisms participate here: sparse neu-
ron connections and parallel task-driven processing,
which can be naturally promoted from biological neurons
to photonic neurons based on the intrinsic sparsity and
parallelism of light.
Neuromorphically inspired, the principle of photonic

lifelong learning is illustrated in Fig. 1b. Each stage
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activates a new set of photonic neurons represented with
a new color. These updated neurons encode the newly
learned knowledge, and will be consolidated to avoid
catastrophic forgetting in future learning, just like human
never forgets basic skills, e.g. how to ride a bicycle.
Schematic of the proposed free-space L2ONN workflow
of multi-task inference is presented in Fig. 1c. The inputs
of multiple tasks are encoded into coherent light field with
different wavelengths, and parallelly delivered into the
cascaded sparse optical layers. Through light-wave pro-
pagation, the optical features are further processed and
the inference results are calculated. The learning strategy
and training method are shown in Fig. S1. Along with the
photonic lifelong learning, L2ONN can obtain versatile
expertise on challenging tens-of-tasks adapting to new
scenarios, such as vision classification (Fig. 3), voice
recognition (Fig. S6), and medical diagnosis (Fig. S7).
The free-space implementation of L2ONN architecture

is proposed in Fig. 2. Specifically, Fig. 2a illustrates the

overall structure, where the inputs are transferred into
multi-spectrum representations bearing multi-task infor-
mation, projected to a shared domain, and propagated
through the diffraction computing module, which is cas-
caded by sparse optical layers in the Fourier plane of a
coherent 4f optical system30. Each layer consists of an
optical filter which is adaptively switched in accordance
with different tasks, and a diffractive unit modulates the
subsequent light field. Thus, photonic neurons can be
selectively activated dependent on input signals. Outputs
of each layer will be remapped as inputs to next except
last one. Final optical outputs will be detected on output
plane and further fed into an electronic read-out layer for
recognition results. Detailed layer size and depth of
L2ONN are presented in Fig. S2.
Detailed construction of a single layer is presented in

Fig. 2b. The layer receives originally sparse features from
previous layer and performs optical diffraction for sub-
sequent layers. Particularly, we adopt phase change materials

c Unactivated photonic neuron Activated photonic neuron

Multi-task inputs Recognition results

7

Plane

(sun)

Sparse photonic computing

Photonic lifelong learning

a

Human lifelong learning

b

Learning task 1

Learning task 2

Learning task 3

Learning task n

Optical

layers

Fig. 1 Principle of the photonic neuromorphic architecture. a Illustration of human lifelong learning. The brain can incrementally absorb, learn
and memorize knowledge throughout its lifespan. Neurons and synapses are adaptively connected by task-driven neurocognition. b Diagram of the
neuromorphic photonic lifelong learning. The photonic connections in each optical layer are gradually activated with different tasks. Photonic
neurons only lighten when activated by corresponding signals, in which the active connections are relatively sparse and the information is parallelly
transmitted in spectrum. c Workflow of the L2ONN multi-task inference. Input information of multiple tasks is encoded into coherent light with
different wavelengths, and processed with the sparse photonic computing module to obtain the final results
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(PCM)54,55 for optical filters to switch both spatial and
spectrum-wise activations. The applied PCM is composed of
GeSbTe (GST) growing on a transparent Si substrate. Each
GST cell has 2 states of amorphous and crystalline with
different transmission spectra, which can be switched
instantly by the control light (see Fig. S4). The all-optical
control ensures that the modulations on phase and intensity
are conducted with minimal delay. Under a fixed wavelength,
we define the GST cells with higher transmission as activated
and lower transmission as unactivated. Such PCM-based
spectrum-specific modulation realizes higher performance
than the on-off binary modulation based on digital

micromirror device (DMD) (see Fig. S3 and Table S4). Fur-
thermore, the selection of wavelengths shows evident effects
on the network performance. After investigation, that
working wavelengths are configured with gap of 50 nm to
achieve highest accuracy (see Fig. S9 and Table S4).
Figure 2c shows the multi-task training strategy of L2ONN

using an 8 ´ 8 optical filter. The primitive states of all PCM
cells stay unactivated and incrementally activate along with
the training process. For each new task, the optical filter
initially learns a dense activation map, which is further
pruned to a sparse one utilizing an intensity threshold (details
in Method), only the photonic neurons of intensity beyond
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Fig. 2 Free-space implementation of photonic lifelong learning (L2ONN). a Overall structure of L2ONN. Inputs of multi-tasks are projected into

coherent light field with the multi-spectrum representations Uλi

k . Beam splitter (BS), mirrors (M), lens (L) and optical filters are employed to guide and
modulate the light. The cascaded sparse optical layers are realized by configuring the light-controlled optical filters at the Fourier plane of a 4f optical
system. With propagation of optical feature embeddings O at the output plane, the final results can be obtained through an electronic read-out layer.
b Detailed construction of the reconfigurable optical layers. Each layer receives sparse features as the inputs. PCM-based filters are all-optically
switched, which sparsely conducts spatial and spectrum-wise photonic neuron activations. The activated photonic neurons are then connected in
the subsequent diffractive computing module. c Training strategy of photonic lifelong learning on an 8 × 8 optical filter. Training of each task initially
learns a dense activation map, which is further pruned to a sparse one. The activation map of each task is retained and stay fixed in the following
evolution of learning. The final filter shares optical weights learned from all seen tasks
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threshold will be activated and keep fixed in the following
evolution of learning. The activation map on filter shares
optical weights learned from all seen tasks and gradually
acquires versatile expertise on new tasks to adapt to new

environments, avoiding the catastrophic forgetting issue of
conventional ONNs.
The photonic lifelong learning capability (Fig. 3) and

numerical performance (Fig. 4) of a three-layer
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Fig. 3 Evaluation on the photonic lifelong learning capability. a 5 representative vision classification tasks used for training L2ONN. Evolution of
the activation map in layer 1 of b L2ONN and c vanilla ONN. With task learning, the photonic neuron connections in L2ONN are initially sparse and
constantly enlarged, colored with red, yellow, green, blue and purple, respectively, while in vanilla ONN are quite dense from the first task.
d Convergence comparison between L2ONN and vanilla ONN. Each task is trained for 5 epochs, L2ONN can increment its capabilities and memorize
all seen tasks, while vanilla ONN rapidly forgets what was learned before and falls into the catastrophic forgetting area (below 20% accuracy)
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free-space L2ONN (details in Fig. S2) is validated on 5
representative vision classification tasks56–60 in Fig. 3a.
L2ONN is incrementally trained on these 5 tasks and
the evolution on activation map of layer 1 is obtained
in Fig. 3b, which gradually enlarges and remains fixed
along with the following task learning. It can be
observed that L2ONN only requires a fraction of pho-
tonic neuron activation to grasp each new task.

We contrastively construct a three-layer vanilla ONN
with the same amount of parameters and also a compu-
tational equivalent five-layer electronic LeNet (see Fig. S2)
incrementally learning tasks in the same way. Figure 3c
shows the variation of photonic neuron activation map of
vanilla ONN, which keeps dense during the whole train-
ing process. Each new task learning tends to fully occupy
the parameter space and interfere with formerly learned
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ones, leading to the evident catastrophic forgetting issue.
Figure 3d compares the convergence plots between
L2ONN and vanilla ONN, 25 epochs are applied and 5
epochs for each task. Setting below 20% accuracy as the
catastrophic forgetting baseline, vanilla ONN would
rapidly experience the forgetting issue after 2 epochs of
training new task, which indicates that the previously
learned expertise has been almost erased. Differently,
L2ONN can memorize the knowledges of all seen tasks
and increment its capabilities on new tasks. Using a fixed
activation threshold of 0.5, L2ONN can continually learn
at most 14 tasks occupying totally 96.3% photonic neuron
connections, while achieving more than an order of

magnitude higher efficiency than the electronic ANN (see
Note S1). Details about the dynamic evolution of activa-
tion map and accuracy variation are presented in
Video S1. More evaluation results on vision classification
are reported in Figs. S5, S8, Table S1. The proposed
photonic lifelong learning architecture can adaptively
allocate computational resources with unprecedented
scalability, permitting ONN to acquire versatile expertise
with superior learning capacity when dealing with con-
tinuous streams of new data.
Figure 4a reports the accuracy comparison among different

benchmarks of vanilla ONN of individual task learning,
L2ONN of incremental optical learning and electronic ANN
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of incremental electronic learning. The electronic ANN is
installed with equivalent computations, applied with similar
pruning rate and trained with the same training strategy as
L2ONN. During the learning process, L2ONN with highly
sparse photonic computing just loses at most 1.9% accuracy
compared with the vanilla ONN with full connections, while
only using 34.3% parameters of the vanilla ONN to grasp all
5 tasks. As for the comparison on incremental learning
capability, the electronic ANN just gains a 1.2% accuracy
improvement on the first task but gets lower accuracy on all
rest of tasks when compared with L2ONN. More sig-
nificantly, the electronic ANN suffers a rapid performance
degradation from the 4-th task training, due to the lack of
inherent sparsity compared with photonic computing (see
Video S2).
Moreover, Fig. 4b compares the performance with dif-

ferent sparsity among vanilla ONN, L2ONN and electro-
nic ANN on individual FashionMNIST task. The
electronic ANN outperforms ONN-based approaches
when the sparsity is below 40%, however, its performance
visibly decreases if the sparsity is beyond 60%. In contrast,
L2ONN robustly obtains competitive accuracy of 82.6%
(only 3.1% reduced) when sparsity reaches 99% while
vanilla ONN gets 53.8% and electronic ANN is 22.3%. In
particular, L2ONN achieves 14× larger capacity than
existing optical neural networks while maintaining com-
petitive accuracy on each individual task. We conclude
that optics own more instinct advantages in sparsity and
parallelism than electronics due to the massive optical
information, achieving equivalent or higher performance
while costing fewer computational resources. More eva-
luations of L2ONN on voice recognition and medical
diagnosis datasets are presented in Figs. S6, S7, S8 and
Tables S2, S3.
Figure 4c investigates how learning sequence impacts

the performance of photonic lifelong learning. First, we
train L2ONN on each individual task with the same
intensity threshold of optical filter and obtain the activa-
tion density of layer 1, which is regarded as the classifying
criteria of task difficulty grade. Consequently, 5 tasks can
be classified into 3 difficulty grades since tasks 1 and 2,
and tasks 3 and 4 have similar densities. Under such
standard, L2ONN is trained with 2 extreme training
sequences of easy to hard and hard to easy, and their
corresponding accuracy curves are compared in Fig. 4d.
We observe that training from easy to hard costs less
photonic neuron activation at all steps (23.25% at most)
but achieves higher performance on all tasks (10.42% at
most) when compared with the training from hard to easy.
L2ONN further proves its human-like characteristics in
lifelong learning which requires a step-by-step process to
gradually absorb, memorize and consolidate skills, start-
ing from complex tasks will receive the opposite effects,
just like human always learns creeping before walking.

Furthermore, we successively shift the interior sequences
of difficulty grades 1 and 2 and report the evaluation
results in Fig. 4e. Although spatial distributions show
differences, the activation densities and accuracies barely
vary from the basic training sequence (easy to hard).
The design and fabrication of the on-chip L2ONN

architecture are depicted in Fig. 5. Figure 5a shows its
holistic schematic. Multi-task inputs are encoded into
optical signals and transmitted by multi-spectrum wave
sources. The sparse diffractive layers are based on an
integrated one-dimensional dielectric metasurface, which
consists of a series of etched slots filled with silicon
dioxide on device layer of silicon-on-insulator (SOI)
substrate (see Fig. S10). Each slot functions as a single
photonic neuron and acts as a secondary wave source, the
amplitude and phase of which are determined by the
product of the input wave and the complex-valued
transmission at that neuron. During the sparse optical
features propagating, neurons with lighted color represent
activated by the corresponding tasks while the gray ones
means unactivated.
As illustrated in Fig. 5b, the architecture conducts each

task with a slot group and gradually enlarges the activations
along with lifelong learning process. Wi

k represent the acti-
vated neuron weights of i-th task in k-th layer, which are
sparsely pruned utilizing an intensity threshold thresk . The
activation weights of each task are set fixed in the subsequent
task training, while the unactivated neurons can be iteratively
configured when new tasks are learned (details in Method).
Figure 5c presents the micrograph of a real fabricated all-
optical chip for photonic lifelong learning, which consists of a
16-channel data-input grating coupler array, a dual-layer
diffractive modulation area and a 4-channel read-out grating
coupler array (details in Note S2). Each hidden layer contains
1000 stand-alone slots corresponding to the diffractive pho-
tonic neurons. Specifically, the multi-task signals are fed into
the sparse diffractive unit with 16 input waveguides, output
intensity signals are measured by 4 detectors after modula-
tion. The whole chip merely encompasses an area of under
1mm2, indicating high level of compactness and integration.
Figure 5d reports the confusion matrices along with the

on-chip lifelong learning process on 2 representative
datasets (Iris flower classifier61 and Red wine quality62).
The datasets are transferred onto the phase of light and
then used to train the sparse weights of diffractive unit. It
can be observed that the proposed on-chip L2ONN can
effectively avoid catastrophic forgetting issue and incre-
ment its experiences on new task. After training, the
sparsely activated neurons are etched on slots to imple-
ment 2 tasks on a single chip. The optical field propaga-
tion using photonic finite-difference time-domain
(FDTD) evaluation is shown in Fig. 5e, running a testing
example from task 2. The amplitude of input light source
mode in input ports represents data features while the
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light intensity detected with output plane delivers classi-
fication results. More details about multi-task training
and FDTD analysis are shown in Figs. S11, S12. Experi-
mental evaluation has verified that the proposed photonic
chip can execute both tasks in an all-optical and scalable
manner. It is promising to integrate the photonic lifelong
learning mechanism into optoelectronic AI systems by
replacing the off-the-shelf devices with on-chip L2ONN.

Discussion
This paper innovates a reconfigurable photonic neuro-

morphic architecture for scalable tens-of-task lifelong
learning (L2ONN). It learns each single task by adaptively
activating sparse photonic neuron connections, while
continually acquiring expertise on various tasks by gra-
dually enlarging the photonic activation, multi-task opti-
cal features are parallelly processed by multi-spectrum
representations allocated with different wavelengths. An
on-chip L2ONN is fabricated and experimentally verified
its lifelong learning performance by incrementally
implementing tasks on a single chip.
Mechanism of the photonic lifelong learning is inspired

by the fact of brain functions of protecting memories and
accommodating new knowledges by leveraging sparse
neuron connections and parallel task-driven neurocogni-
tion. Optics own more inherent advantages in sparsity and
parallelism than electronic computing systems due to the
massive optical information. Unlike the existing artificial
intelligence methods are prone to train new models
interfering with formerly learned knowledges, the pro-
posed photonic neuromorphic architecture increments
capabilities on multiple tasks and avoids the catastrophic
forgetting issue. With the speed of light, L2ONN gains
high capacity to continually acquire versatile expertise
when confronted with continuous streams of new data.
In summary, we have demonstrated the photonic life-

long learning provides a turnkey solution for large-scale
real-life AI applications with unprecedented scalability
and versatility. L2ONN shows its extraordinary learning
capability on challenging tens-of-tasks, such as vision
classification, voice recognition and medical diagnosis,
supporting various new environments. We anticipate that
the proposed neuromorphic architecture will accelerate
the development of more powerful photonic computing
as critical support for modern advanced machine intelli-
gence and towards beginning a new era of AI.

Materials and methods
Free-space architecture design
As shown in Fig. 2b, the proposed free-space L2ONN

architecture is designed with a sparse diffractive com-
puting module for light propagation and an electronic
fully-connected layer for recognition result read-out.
Specifically, the diffractive computing part is cascaded by

several 200 ´ 200 optical layers and formed into the
Fourier plane of a 4f optical system under coherent light.
Beam splitter (BS), mirrors (M), lens (L) and PCM-based
optical filters are employed to guide and modulate the
photonic neuron connections, phase modulators are
applied to extract and propagate optical features, and an
optical intensity sensor is used at the output plane to
capture the final results. Utilizing a multi-spectrum
coherent light source, multi-task inputs are transferred
into optical representations, projected to a shared domain,
and propagated by light diffraction.
Assuming Uλi

k is the input complex light field of k-th
optical layer on allocated wavelength λi of i-th learned
task, a 2f system under coherent illumination is adopted
and Uλi

k is Fourier transformed into:

U 0λi
k ¼ FUλi

k
ð1Þ

where U 0λi
k represents the optical features in Fourier

domain and F denotes the Fourier transform matrix. U 0λi
k

is further modulated by optical filter:

U 00λi
k ¼ Ik λi

� �
MkU

0λi
k

ð2Þ

where U 00λi
k is the features after modulation, Mk denotes

the functions of phase and IkðλiÞ denotes the intensity
modulation, which can adaptively prune and conduct the
photonic neuron connections to enable various tasks.
Later, U 00λi

k is Fourier transformed back to the real space
applying another 2f system, whose normalized output of
this layer Oλi

k is measured by an intensity sensor:

Oλi

k ¼ jFU 00λi
k j

2 ð3Þ

Note that except for the last layer, we remap the output
intensity of each layer to complex optical field as the input
of the next layer:

Uλi

kþ1 ¼ remap Oλi

k

� �
ð4Þ

where remapðÞ function applies the corresponding non-
linearity to the photonic computing. Define the number of
total layers as n (set as 3 in our experiments), the final
outputs of the sparse diffractive computing module Oλi

n
will be directly detected on output plane and spatially
cropped into 14 ´ 14 blocks, and the intensity of each
block is measured with sensor and fed into a 196 ´ 10
electronic fully-connected layer to obtain the final
recognition results (see Fig. 1).

Optical modeling and training
The L2ONN free-space and on-chip implementations

consist of four basic units: propagation, phase modulator,
sensor, and remapping. These units construct the
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reconfigurable optical layer. Diffraction propagation unit
is formulated by the angular spectrum method, where
zero paddings are further adopted to ensure the boundary
condition of optical feature propagation. Phase modulator
unit applies phase shifts to the input optical field. Sensor
unit transfers the complex optical information of ampli-
tude and phase to intensity. The intensity to pixel value
mapping is linear due to the gamma correction set as 1.
Remapping unit converts the normalized intensity back to
complex optical field as inputs for the following layers.
Here we adopt the remapping method from MONET21.
During training, the loss function is defined as:

L ¼ LCEN Pi;Gi
� �þ α

Xn
k¼1

ðjjIkðλiÞjj2 þ jjMk jj2Þ ð5Þ

where LCEN represents the softmax cross-entropy loss63,
Pi and Gi are the network precision and ground truth of
i-th task, and α denotes the normalization coefficient,
respectively.

Illustration of training strategy is shown in Figs. 2c, 5b.
We apply the intensity mask measured by sensor unit as
photonic neuron activation map. For each new task, the
optical filter initially learns a dense activation map, which
is further pruned to a sparse one utilizing an intensity
threshold:

mapik ½mapik<thresk � ¼ 0 ð6Þ

where mapik denotes the trained map of k-th layer on i-th
task. The key factor thresk is determined by training
process of each layer on each task. In other word, the
sparsity proportions of optical filters are also trained as
hyperparameters across all layers to achieve best perfor-
mance. Only the photonic neurons of intensity beyond
threshold will remain activated and keep fixed in the
following evolution of learning:

ΔW mapik ^
_i�1

m¼1
mapmk

h i
¼ 0 ð7Þ

where ΔW denotes the gradient matrix of backpropaga-
tion on optical weights W , operation

V
searches the

indices of coincident cells between new and former maps,
and operation

W
gradually merges the photonic neurons

on activation maps of all trained tasks.

The network model is implemented with PyTorch
V1.11 running on a single NVIDIA RTX3090 graphic
card. Network parameters are optimized using the Adam
optimizer64. All benchmarks including vanilla ONN and
LeNet for comparison are made under the same hardware
and software environments.

Dataset preparation
We use 5 representative machine vision datasets including

MNIST56, FashionMNIST57, KMNIST60, OracleMNIST58

and OverheadMNIST59 for evaluation on the free-space
L2ONN, and 2 typical classification datasets of Iris flower
classifier61 and Red wine quality62 for implementation of on-
chip L2ONN. Among them, MNIST is the classic hand-
written digit classification dataset of 10 classes; Fashion-
MNIST consists of 10 classes with fashion article images;
KMNIST is a drop-in replacement for MNIST dataset with
10 classes in Japanese; OracleMNIST includes ancient Chi-
nese characters from 10 categories; OverheadMNIST is a
benchmark satellite dataset with overhead views of 10
important object; Iris flower classifier contains 3 classes
where each class refers to a type of iris plant; and Red wine
quality includes 3 classes of wine qualities.
In Figs. S6, S8, we also evaluate the free-space L2ONN on 6

voice recognition tasks with recognition patterns from
Vowel, Number, Word, Command, Gender and Urban-
Sound. Vowel65 consists of 12 audio classes of Japanese
vowels; Number, Word and Command come from subsets of
Speech Commands66, which is a large-scale audio dataset of
rich spoken words, these 3 subsets contain 10, 15, and 10
categories, respectively; Gender67 includes 4 classes of audios
from male, female, boy and girl; UrbanSound68 collects 10
classes of urban sounds from Gun Shot, Dog bark, etc. To
uniform the input format, the original voice data is pre-
processed into mel-scale frequency cepstral coefficients
(MFCC)69 with a pre-emphasis factor of 0.97.
In addition, free-space L2ONN is tested on 4 medical

diagnosis datasets. As shown in Figs. S7, S8, BloodMNIST
of 8 classes, OrganMNIST of 11 classes, PathMNIST of 9
classes and TissueMNIST of 8 classes are adopted for
network evaluation. These datasets are all from subsets of
MedMNIST70, which is a large-scale MNIST-like collec-
tion of standardized biomedical images.
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