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Complex-frequency waves: beat loss and win
sensitivity
Qingqing Cheng 1,2 and Tao Li 3✉

Abstract
Recent experiments have demonstrated that synthesized complex-frequency waves can impart a virtual gain to
molecule sensing systems, which can effectively restore information lost due to intrinsic molecular damping. The
enhancement notably amplifies the signal of trace molecular vibrational fingerprints, thereby substantially improving
the upper limit of sensitivity.

Spectral analysis has emerged as a powerful, non-
invasive tool for molecular identification, gaining promi-
nence in applications like COVID-19 detection1 due to its
specificity and cost-effectiveness. Despite these advances,
detecting trace molecules presents a substantial challenge.
Traditional methods, such as surface plasmon resonance
(SPR)2, a quasi-bound state in the continuum (QBIC)3,
and FANO resonance4, have made strides in enhancing
light-matter interactions to improve the sensitivity and
quality of sensing systems5. However, the intrinsic mole-
cular damping always weakens these interactions, posing a
significant hurdle in trace molecule detection. To over-
come this, additional optical gain materials are being
explored as a means to compensate for the damping6,
aiming to overcome the limitation in sensing technolo-
gies. While the approach shows promise, it also intro-
duces challenges such as increased interference and
instability7, which are unfavourable to the detection
process.
Complex-frequency waves (CFW) with temporally

attenuation characteristics can impart virtual gain to
systems, effectively mitigating the information that is lost
due to intrinsic system losses8. In fact, a geneous design of
superlens composed of negative index material with

metallic inclusions has been hindered towards wide
applications for a couple of decades due to large metal
loss9,10. The CFW is quite promising to compensate for
the loss and empower the superlens applications, never-
theless, there are still challenges in experimentally rea-
lizing CFW in the time domain. In a recent
groundbreaking development11, Guan et al. have suc-
cessfully addressed these issues by synthesizing truncated
CFW across multiple frequencies. Their method involves
treating the CFW as a coherent amalgamation of several
real frequency waves. By measuring the optical response
at various real frequencies and adhering to the Lorentzian
lineshape, they recombine responses from different fre-
quencies. The process culminates in the numerical
synthesis of the optical response under complex fre-
quency excitation. The innovative multi-frequency syn-
thetic approach to truncated CFW introduces virtual
gains into superlens imaging11 and surface plasmon
polaritons propagation12, effectively overcoming the metal
or plasmonic losses of systems.
As for trace molecule detection, the intrinsic damping

loss in molecular materials significantly diminishes the
interaction between molecular vibrational modes and
plasmons. Specifically, the intrinsic damping broadens the
vibrational spectrum of trace molecules, consequently
reducing the signal-to-noise ratio of their fingerprint
signals. Such a scenario poses a challenge for the accurate
detection of trace molecules. To counteract the issue, the
application of virtual gain provides an ideal and feasible
solution. The synthesis of CFW has thus been identified as
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a promising approach to enhance the sensitivity in trace
molecule sensing.
In a recently published paper in eLight, a collaborative

team led by Prof. Shuang Zhang from the University of
Hong Kong, Prof. Qing Dai from the National Center for
Nanoscience and Technology, along with Prof. Na Liu
from the University of Stuttgart, has unveiled a method
for ultrahigh-sensitive molecular sensing13. The method is
based on the application of synthesized complex-
frequency excitation. The researchers constructed a
complex frequency excitation from multiple real fre-
quency responses with temporal truncated measure-
ments. Here, the time truncation function is crucial in
preventing energy divergence. Moreover, the sidebands
resulting from time truncation are effectively eliminated
through time averaging. The electric field ET ðt0Þ can be

expanded as ET ðt0Þ ¼ E0
2π

Rþ1
�1

1
ið~ω�ωÞ e

�iωt0dω. Naturally,

the response in a quasi-steady state, under truncated
CFW excitation, can be coherently synthesized from dis-
crete real-frequency responses across a sufficiently broad
spectral range. The final expression for the response
under complex frequency excitation is denoted as Fð~ωÞ �
P

n FðωnÞ 1
ið~ω�ωnÞ e

ið~ω�ωnÞt0Δω=2π, where FðωnÞ represents

the response at the real frequency. Note that both
amplitude and phase information of FðωnÞ are essential.
The phase component can be determined using the
Kramers-Kronig relation for extraction14.

Figure 1 displays a comparative illustration of the cur-
rent challenges and advancements in molecular sensing
using graphene plasmons (GP)15,16. Figure 1a shows that
while GP can enhance the interaction between light and
molecules, the resulting signal in the extinction spectra of
thin molecular layers remains notably weak. The phe-
nomenon can be understood in terms of coupled har-
monic oscillators17. Plasmon−phonon coupling generates

two new hybrid modes, whose splitting distance depends
on their coupling strength. At low concentrations, the
intrinsic damping leads to a notably weak coupling
strength between the plasmon and phonon, and the
linewidth of the hybrid mode exceeds the splitting dis-
tance. It results in a substantial overlap between the two
hybrid mode peaks, thereby obscuring subtle features in
the extinction spectra. CFW can overcome the intrinsic
damping loss, effectively restoring the molecular tiny
responses. As demonstrated in Fig. 1b through numerical
calculation, the application of synthesized CFW sig-
nificantly amplifies the initially weak molecular vibra-
tional response, showcasing a remarkable enhancement in
detection sensitivity.
The work demonstrates the remarkable capability of

synthesized CFW to significantly enhance molecular char-
acteristic signals, thereby elevating the sensitivity ceiling of
various sensors across diverse experimental contexts. This
includes scenarios such as detecting deoxynivalenol mole-
cules without plasmonic enhancement, as well as measuring
silk protein molecules and bovine serum albumin protein
solutions using graphene-based plasmonic sensors. The
scalability and versatility of the synthesized CFW metho-
dology hold immense promise for advancing the study of
light-matter interactions. The breakthrough has the
potential to unlock a wide array of applications in fields
ranging from bio-detection and optical spectroscopy to
biomedicine and pharmaceutical science, particularly within
the realm of terahertz time-domain spectroscopy.
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Fig. 1 Illustration of damping compensation for sensing
enhancement through synthesized CFW. a The extinction
spectrum of the molecular layer enhanced by GP at real frequency.
b The extinction spectrum of the molecular layer enhanced by GP at
CFW
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