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Abstract
Compared with electrical neural networks, optical neural networks (ONNs) have the potentials to break the limit of the
bandwidth and reduce the consumption of energy, and therefore draw much attention in recent years. By far, several
types of ONNs have been implemented. However, the current ONNs cannot realize the acceleration as powerful as
that indicated by the models like quantum neural networks. How to construct and realize an ONN with the quantum
speedup is a huge challenge. Here, we propose theoretically and demonstrate experimentally a new type of optical
convolutional neural network by introducing the optical correlation. It is called the correlated optical convolutional
neural network (COCNN). We show that the COCNN can exhibit “quantum speedup” in the training process. The
character is verified from the two aspects. One is the direct illustration of the faster convergence by comparing the loss
function curves of the COCNN with that of the traditional convolutional neural network (CNN). Such a result is
compatible with the training performance of the recently proposed quantum convolutional neural network (QCNN).
The other is the demonstration of the COCNN’s capability to perform the QCNN phase recognition circuit, validating
the connection between the COCNN and the QCNN. Furthermore, we take the COCNN analog to the 3-qubit QCNN
phase recognition circuit as an example and perform an experiment to show the soundness and the feasibility of it.
The results perfectly match the theoretical calculations. Our proposal opens up a new avenue for realizing the ONNs
with the quantum speedup, which will benefit the information processing in the era of big data.

Introduction
Artificial neural networks are the computational models

composed of interconnected nodes, and can ‘learn’ to deal
with complicated tasks such as image feature recognition,
language translation, medical diagnosis, etc., through
‘training’ the parameters1–4. The optical neural networks
(ONNs) can perform the function of the artificial neural
networks by using optical elements. They have drawn much
attentions in recent years because of the potential to go
beyond their electrical counterparts. The advantages of the
ONNs include the low crosstalk, neglectable time delay in
propagation, low heat generation, etc.5,6. Especially, they are
expected to break the bandwidth limits of the electrical
neural networks, achieving ultrahigh computing frequency

enabled by THz-wide telecommunications band7. Also, the
ONNs can get rid of the troubles caused by the Von
Neumann bottleneck, avoiding the restrictions rooted in the
energy and time consumption when reading and trans-
mitting data from the memories8. With these benefits, the
ONNs are proven to perform the image processing9–16,
hand-written digits recognition17–21, and many other
tasks22–26. The related techniques are also found to be
applicable for logic27 or matrix28–30 operations. However,
all the ONNs at present cannot exhibit a speedup as pow-
erful as that indicated by the models such as quantum
neural networks31–39, because they are implemented in a
straightforward manner that closely follows the traditional
neural networks without incorporating an algorithmic
advances. With the proliferation of the data generated by
the daily communication, the traditional neural networks
must contain millions of parameters in order to capture the
feature of the data, so that the training of them for practical
use is becoming more and more consumptive. Hence, the
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same obstacle will also occur in the current development
direction of the ONNs. So, how to build a new ONN which
could provide an algorithmic speed-up is highly demanded
by the social needs and generally challenging.
On the other hand, the recent experimental progress

towards the realization of quantum information processors
has led to the emerged research field of quantum neural
networks31. Excitingly, the advance of the quantum
machine learning would fulfill the needs for data processing
with an algorithmic speed up. By far, several quantum
machine learning algorithms are proposed, including the
quantum generative network34, quantum Boltzmann
machine35, quantum transfer learning38, etc. Very recently,
the quantum convolutional neural network (QCNN) is
theoretically constructed37. Such a network has displayed its
unique property for identifying the symmetry of quantum
states. More importantly, it has been numerically shown
that the convergence of a QCNN model is faster than the
traditional convolutional neural network (CNN) model in
the task of classifying the classical data39, which would
greatly contribute to the application in daily life. However,
the realization of the QCNN requires a large amount of the
2-qubit gates and the sufficient long coherence time of the
multi-qubit system, which is technically hard for the current
quantum devices. So, the demonstration of the advanta-
geous quantum machine learning models like QCNN on
the quantum platforms has not been given.
Inspired by the theoretical model of the QCNN, in this

work, we introduce the optical correlation to the design of
ONNs and propose the correlated optical convolutional
neural networks (COCNNs). Such a new type of ONNs
exhibits the ability to achieve the “quantum speed up” as
effective as that shown by the QCNN. Such a speed-up is
verified from two aspects. For the first, the lost function of
the COCNN has shown a faster convergence behavior in the
classification tasks we consider when compared to that of the
traditional CNN model. The results coincides with behavior
of the QCNN39. For the second, the COCNN can realize the
function of the QCNN, such as the recognition of the Hal-
dane phase. This further validates the close relation between
the COCNN and the QCNN. Last but not least, we take the
3-qubit phase recognition circuit as an example and perform
an experimental realization of its function using the frame-
work of the COCNN. The results fit well with the theoretical
calculation. It means that our proposal reveals a new way of
realizing the ONNs with the “quantum speedup”, which will
benefit the information processing in the coming years.

Results
The structure of a COCNN and its performances
The sketch of a general COCNN is shown in Fig. 1. It is

composed of four basic parts: the correlated light source,
the convolution, the pooling, and the detections. As the
most basic component, we firstly introduce the part of the

correlated light source. This setup is used for encoding
the information. Different from the previous ONNs9,13,15

which only employ the amplitude of the light for the
encoding, we employ the correlation of the multimode
polarized beams to encode data. In fact, using such a
special type of classical beams, one can obtain the classical
analogy of the quantum correlations between qubits. For
example, a polarized beam field E¼αhþ βv, with h (v)
being the horizontal (vertical) polarization vector, is
analog to the qubit state αj0iþ βj1i under the mapping
hj0 and vj1. Here, α and β represent the complex coeffi-
cients of the polarization basis. In what follows, we use the
notation | ) to denote the classical states analog to the
qubit states, e.g., Ej Þ ¼ α hj Þ þ β vj Þ. More generally, by
employing N multi-mode polarized beams, one can
obtain a classical state

NEj Þ ¼ ch1h2 ¼ hN h1j Þ h2j Þ hNj Þ þ ch1h2 ¼ vN h1j Þ h2j Þ vNj Þ
þþ cv1v2 ¼ vN v1j Þ v2j Þ vNj Þ ð1Þ

which is the analogy of a general N-qubit quantum
state ψN

�� � ¼ q00¼ 0 00 ¼ 0j i þ q00¼ 1 00¼ 1j i þ þ q11¼ 1

11¼ 1j i. The N multi-mode polarized beams that give the
state of Eq. (1) can be denoted by Eiði ¼ 1; ¼ ;NÞ, each of

which can be expressed by
PM

k¼1 f kpi;k . The f k of Ei

denotes the orthonormal modes satisfying the relationR
f k1 r; tð Þ ¼ f kM r; tð ÞdΩ ¼ δk1;¼ ;kM , and Ω represents

the parameter domain where the condition holds.
pi;k¼ pHi;khþ pVi;kv denotes the polarization of the mode f k
. Such a setup of the beams Ei (i ¼ 1; ¼ ;N) encodes the
information to be processed, which is schematically shown
in the leftmost part of Fig. 1. Fundamentally, the N multi-

Convolution Pooling
Detection

HWP QWP OMU

Ei–1

Ei+1

Ei

NLU MP PBS BS BC

Processor

Correlated
Light source

Fig. 1 The general setup of a COCNN. The correlated light source,
whose polarized modes are marked by arrows with different
colors, is manipulated by the parts of the convolution (blue) and
the pooling (brown). The part of the convolution is composed of the
2-beam operations marked by blue, and the details of a 2-beam
operation is given in the blue dashed box. As shown inside the box, a
2-beam operation is implemented by eight Q-H-Qs and three NLUs.
The part of the pooling is composed of the combiners marked by
brown, and the details of a combiner is given in the brown dashed box.
As shown inside the box, a combiner is implemented by a BC, an HWP-
PBS-HWP, and an NLU. Finally, the detection of the output is performed
by a homodyne interferometer and a processor. The interferometer is
mainly built by a pair of mirrors (MP) and two beam splitters (BSs)
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mode polarized beams can be used to analogize the N-
qubit state, because the correlation of beams defined by the
integral

R
e1 �E1ð Þ e2 �E2ð Þ¼ eN �ENð ÞdΩ is formally

related to the quantum correlated projection
e1h j e2h j¼ eNh jð Þ ψN

�� �
. The unit vector eiði ¼ 1; ¼ ;N)

denotes the direction of the polarization projection of the
beam Ei, and eij i is the corresponding projection state of
the i th qubit40. A detailed explanation of the correspon-
dence between beam states and qubit states is given in the
first section of the Materials and methods. Based on Eq.
(1), a data sample expressed by a 2N -dimensional complex
vector can be encoded by the correlations of above N
beams. In what follows, we show that encoding the data by
the correlations enables a better way to process it.

Secondly, we introduce the part of the convolution, as
shown by the layers of the connected blue squares in Fig.
1. This is an essential part for processing the encoded data
in our proposal. Traditionally, the convolution of the data
is mathematically expressed by the linear transformation
of a vector, which is the main function of the convolution
blocks in the previous ONNs5,9,18. Here, the part of the
convolution is also the linear transformation, but applied
to the correlation rather than the amplitude of the beams
of light. This leads to a completely different way of design
for implementing the transformation. Following Eq. (1),
the convolution can be described by a unitary operation
Uc on NEj Þ. Here, we restrict that Uc is composed of
general 2-beam operations U2E , as shown by the blue
squares in Fig. 1. Given a state of the two correlated beams
2Ej Þ ¼ ch1h2 h1j Þ h2j Þ þ ch1v2 h1j Þ v2j Þ þ cv1h2 v1j Þ h2j Þ þ cv1v2 v1j Þ
v2j Þ, U2E represents the operations that can rotate 2Ej Þ to
an arbitrary state in the space spanned by
f h1j Þ h2j Þ; h1j Þ v2j Þ; v1j Þ h2j Þ; v1j Þ v2j Þg. It is the analogy of
the universal 2-qubit gate in the quantum computing
theory. The recipe for implementing U2E is shown in the
blue dashed box in Fig. 140, including two basic arrange-
ments of the optical elements. The first is the Q-H-Q,
composed of two quarter-wave plates (QWP) and one
half-wave plate (HWP). A Q-H-Q can arbitrarily rotate the
polarization state of a single beam, which is equivalent to
the rotation of a single qubit. The second is an optical
modulation unit (OMU), shifting the phase of the state
component v1j Þ v2j Þ by a factor of π. To realize such an
element is actually tricky, and we provide one kind of
design in S1 of the Supplementary Information. The
function of an OMU is equivalent to the quantum CZ gate.
The reason why the setup of the Q-H-Qs and the OMUs
in Fig. 1 implements an arbitrary rotation of 2Ej Þ can be
explained in refereeing to the quantum computing theory.
In the theory of quantum computing, a universal 2-qubit
gate can be decomposed into three CNOT gates and eight
single qubit rotations40, and a CNOT gate can be syn-
thesized by a CZ gate and two Hadamard gates41.

Therefore, the decomposition of U2E into Q-H-Qs and
OMUs can be correspondingly given. According to the
definition of a U2E , it can be parameterized by 15 real
numbers, which is the same with the parameter number of
a 2-qubit gate. So, as shown by Fig. 1, one layer of U2E

acting on the adjacent beams of an N -beam array may
have 15´ N � 1ð Þ trainable parameters in total. This is
larger than the convolution kernel applied in the standard
convolutional neural networks (CNNs) framework42, or
other equivalent ONN schemes5,9,18, which has at most N
parameters for an N -dimensional input.
Thirdly, we introduce the part of the pooling, as shown

by the layers of the brown squares in Fig. 1 with two
inputs and one output. This is the key step for reducing
the size of the data. Particularly, each brown square is
called a combiner whose basic function is to generate
simpler correlated states by decreasing the beam number.
The function of the combiner is strictly given by

2Ej Þ 2Eð j ! h1ð j � I½ � 2Ej Þ 2Eð j h1j Þ � I½ �
þ v1ð j � I2½ � 2Ej Þ 2Eð j v1j Þ � I½ � ð2Þ

where 2Eð j ( h1ð j, v1ð j) is the Hermitian conjugate of 2Ej Þ (
h1ð j, v1ð j). The form 2Ej Þ 2Eð j is analog to the density
matrix of a quantum state, and we also call it the density
matrix of the beam state 2Ej Þ. I is the identity operation
on a single beam state. Notice that Eq. (2) is analog to the
partial trace in quantum 2-partite system, which physi-
cally means looking into the single particle subspace of
the system. Therefore, via the combiner defined by Eq. (2),
the correlated state of the two beams is embedded into
the state of one beam, losing part of the original
information. Hence, if the combiner is applied for k
times, an array of N beams is reduced to an array of N − k
beams. The recipe of implementing Eq. (2) is shown in the
brown dashed box in Fig. 1. At first, the upper beam is fed
into a birefringence crystal (BC). The thickness of the BC
is demanded to break the coherence of the horizontal and
vertical polarization components. Then, the beam passes
through an element set of HWP-PBS-HWP. Such an
element set is equivalent to a polarizer, which can change
an arbitrary state αhþ βv to αþ βð Þðhþ vÞ=2. Then, the
beam is modulated onto the lower beam through a
nonlinear crystal unit (NLU). The basic function of an
NLU is to generate ϵ αþ βð Þ=2½ �hþ γ αþ βð Þ=2½ �v with the
input αþ βð Þðhþ vÞ=2 and another beam ϵhþ γv, where
ϵ and γ are also complex coefficients of the polarization
basis. The function of an NLU means that the h (or v)
component of one mode in the output beam is the
product of the h (or v) components of the corresponding
modes of the input beams. This is generally the second-
order nonlinear crystal in nature. A detailed analysis is
given in the S2 of the Supplementary Information. Notice
that by using one layer of the combiner, the information
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of the data encoded in the N -beam correlation is
suppressed into those of N � k beams. It indicates that
the dimension of the state space shrinks from 2N to 2N�k ,
which is more efficient than the layer for average pooling
or max pooling in the traditional CNNs, or other ONN
models involving equivalent structures9.
Fourthly, we introduce the part the of the detection. The

basic aim of the detection is to measure the correlation
defined by ∫(e1 ⋅ E1)(e2 ⋅ E2)… (eN ⋅ EN) dΩ. In our pro-
posal, we consider a two-step procedure to achieve so. In
the first step, each beam interferes with a local oscillator
(LO) signal by using a homodyne interferometer, so that
the projection of the ith beam ei �Ei can be obtained by
the intensity difference of the outputs of the inter-
ferometer. The polarization of LO signal for measuring
the i th beam Ei is set to be at the projection direction ei.
The LO signal is coherent with all modes of Ei, and can be
generated by splitting the beam of Ei, as shown by the
rightmost part of Fig. 1. In the second step, all the pro-
jections ei �Eiði¼1;¼ ;NÞ measured by the homodyne
detections are multiplied together by a processor. Then,
the obtained result is proportional to the correlation
defined by the above integral. In fact, the detection setup
here is identical to the one employed in ref. 40. The
underlying background of the setup is also the corre-
spondence between the beam states defined by Eq. (1) and
the qubit states, which is given in the first section of the
Materials and methods as mentioned above.
The training of a COCNN is similar to other machine

learning algorithms. By properly setting the loss function,
one can assess the performance of the COCNN on a given
dataset and update the parameters according to it. Here,
we also employ the mean square error (MSE) as the loss
function. If the target output of the ith data sample is
denoted by yi, and the corresponding output of the
COCNN is denoted by y0i, the MSE can be given by

MSE ¼ 1
2D

XD
i¼1

yi � y0i
� �2 ð3Þ

where D is the total number of the samples.

According to the above description, it can be noticed that
the COCNN has a good correspondence with the QCNN
proposed by ref. 37. This can be seen by the similarity
between the correlation

R
e1 �E1ð Þ e2 �E2ð Þ¼ eN �ENð ÞdΩ

and the quantum measurement e1h j e2h j¼ eNh jð Þ ψN

�� �
.

Such a relation indicates that the COCNN can exhibit the
properties of the QCNN accordingly. We show the relevant
evidence from the following two aspects. The first one is
about the speed-up in training. We numerically explore the
training process of a COCNN model on two datasets, and
take the performance of the CNN model on the same tasks
as reference. In general, the considered tasks are to give the
correct label of the input data sample by training the model

parameters. The results are shown in Figs. 2a and b. The
results in Fig. 2a are the convergence curves of the loss
function for a binary classification task. The dataset we
consider is composed of 0-1 vectors whose sizes are 8 × 1.
There are 8 types of vectors in the set, each of which is
labeled by 0 or 1. The distribution of the vectors is uniform,
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Fig. 2 The performance of COCNN. a The comparison between the
training of a COCNN model and that of a traditional CNN model on a
binary classification task, and (b) that on a multiclass classification task. In
(a) and (b), the hollow squares and solid dots are the numerical results.
The blue curve in (a) and the red curve in (b) are fitted by the squares
obtained by the traditional CNN model, which is composed of a
traditional convolutional layer and a traditional pooling layer (the classical
C-P layer model). The green curve in (a) and the magenta curve in (b) are
fitted by the dots obtained by the COCNN model, which is composed of
a convolutional layer and a pooling layer in our scheme (the correlated
C-P layer model). The error bar is marked on the corresponding dots.
c The simulation of the 12-qubit QCNN ansatz for recognizing the
Haldane phase by our COCNN. The background of the plot is colored
according to the derivative of the ground state energy density of the
Haldane Hamiltonian. The upper zone represents the paramagnetic
phase. The middle zone represents the Z2 ´ Z2 phase, or the Haldane
phase. The lower zone represents the antiferromagnetic phase. The red
triangles are obtained by the output of the COCNN analog to the QCNN

Sun et al. Light: Science & Applications           (2024) 13:36 Page 4 of 14



and each type of the vectors is randomly labeled. In the
COCNN scheme, it only requires the three-beam states,
3Ej Þ¼ch1h2h3 h1j Þ h2j Þ h3j Þþch1h2v3 h1j Þ h2j Þ v3j Þþ ¼ þ cv1v2v3 v1j Þ v2j Þ v3j Þ
, to encode this kind of data samples according to our setup.
The COCNN model for the task is composed of one con-
volutional layer (C-layer) and one pooling layer (P-layer).
The C-layer contains two 2-beam operation U2Es, each of
which is restricted to has 6 real trainable parameters. The
P-layer contains two combiners, leaving only one beam as
the output. The predicted label is given by the projection of
the output beam, and the projective measurement is para-
meterized by 3 real numbers (two for the direction and one
for the phase). By sequentially updating the 15 parameters
based on the derivative of the loss function, the model
finally converges. To verify the robustness of the results, we
randomly generate the training dataset for 12 times and
take the averages as the final results, as shown by the solid
dots in the lower place of Fig. 2a. The green curve is fitted
by this part of the results. As the reference, we establish a
15-parameter CNN to learn the same series of datasets, and
adopt the MSE as the loss function as well. We also utilize
the averages of the 12 trails as the results, as shown by the
hollow squares in the upper place of Fig. 2a. The blue curve
is fitted by this part of the results. Apart from the case of
Fig. 2a, the COCNN can also be applied to complicated
multiclass classification tasks. In order to show the point,
we also consider the task on classifying a dataset containing
four classes, shown in Fig. 2b. The dataset we consider is
composed of 0-1 vectors whose sizes are 16 × 1. There are
one hundred types vectors in the set, each of which is
randomly labeled by 0, 1, 2, or 3. The distribution is
approximately uniform. Using the COCNN scheme, the
four-beam states, 4Ej Þ ¼ ch1h2h3h4 h1j Þ h2j Þ h3j Þ h4j Þ þ ¼ þ
cv1v2v3v4 v1j Þ v2j Þ v3j Þ v4j Þ, are employed to encode the data
samples. The COCNN model for the task is also composed
of one C-layer and one P-layer. The C-layer contains three
2-beam operation U2Es, each of which is also restricted to
has 6 real trainable parameters as well. The P-layer contains
two combiners, leaving two beams as the output. The
predicted label is given by the correlated projection of the
two output beams, each local measurement of which is
parameterized by 3 real numbers as the above case. The
total parameter number is 26. We also generate the training
data set for 12 times, and take the averages to obtain the
solid dots in the lower place of Fig. 2b. The magenta curve
is fitted by this part of the results. The reference results
shown by the red curve are fitted by the loss function value
(marked by hollow squares in Fig. 2b) of a 26-parameter
CNN, and also averaged over 12 trails. The loss function is
the same with the above. The details are presented in the
second section of the Materials and methods. It can be seen
clearly from Figs. 2a and b that the COCNN model con-
verges faster than the CNNmodel. Also, the loss function of
the COCNN model eventually converges to a smaller value

than that of the CNN model, indicating a better learning
accuracy. It worth noticing that the performance revealed
by Figs. 2a and b is comparable with the numerical results
in ref. 39. Therefore, the speed-up we find here is as effective
as that of a QCNN.
The second one is about performing the specific func-

tion of a QCNN. As pointed out by ref. 37, one function of
a QCNN is to identify the phase of a many-body quantum
system. We consider the QCNN circuit for recognizing
the Haldane phase. As mentioned above, a correlated
projection of a quantum state can be mapped to the
correlation of the beams. So, the ground state of the
Haldane Hamiltonian,

H ¼ �J
XN�2

i¼1

ZiXiþ1Ziþ2 � h1
XN
i¼1

Xi � h2
XN
i¼1

XiXiþ1

ð4Þ

can also be encoded by the correlated beams we con-
sider. Xi and Zi in Eq. (4) are the Pauli-X and Pauli-Z
operator on the ith particle. Integer N is the total number
of the particles, and J, h1 and h2 are the coefficients of the
Hamiltonian43. In Ref. 37, a strict QCNN is presented to
justify the phase of the ground states under different J, h1
and h2. Because the convolution and pooling of our
scheme have a good correspondence with the quantum
counterparts in QCNN, our COCNN can also implement
the phase recognition algorithm based on the QCNN. An
instruction about the detailed setup is given in the second
section of the Materials and methods. We numerically
simulate the situation when N ¼ 12 and the results are
shown in Fig. 2c. The phases identified with the ground
state energy density is marked by the color of the back-
ground as the reference. The red triangles in Fig. 2c
denotes the phase boundary information obtained by the
second order derivative of the simulated results of the
COCNN for phase recognition. Corresponding to the
QCNN scheme, the results of the COCNN are the pro-
jections of the output beam states on the Pauli-X basis of
the polarization. Notably, due to the layers of pooling, the
correlation of the output is involved by fewer beams than
the input ones encoding the ground state. Hence, such an
output contains the information for identifying the phase
and is much easier to measure, just like the characters
shown by the QCNN. In the particular case here, the
phase of the state encoded by the correlation of the 12
beams is eventually recognized by measuring the corre-
lation of the 3 output beams. It also worth noticing that
the results in Fig. 2(c) is comparable with the numerical
illustration in ref. 37, validating the correspondence
between the COCNN and the QCNN. Therefore, our
scheme is capable of carrying out data processing similar
to that of a quantum network. We also provide a detailed
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analysis of the connections between COCNNs and
QCNNs in S3 of the Supplementary Information.

The experimental realization of a COCNN
In this part, we explore the experimental demonstration

of the above scheme. Taking the COCNN analog to the
3-qubit phase recognition QCNN as an example, we show
our experimental setup in Fig. 3. The setup also performs
the functions explained in Fig. 1, including the part of the
correlated light source, convolution, pooling, and mea-
surements. The part of correlated light source in the
experimental setup is implemented by adopting the spa-
tial modes as the fk of the beam state. The spatial modes
are generated by one 632.8 nm He-Ne laser (Thro-
labsHNL210LB). The light output by the laser is polarized
by a beam displacer (BD) and then split into four spatial
modes by three beam splitters (BS, ThorlabsBS016). For
each mode, the polarization state is adjusted by a Q-H-Q.
The filters thereafter are used for balancing the intensity
of different modes. This is a simplified version of the
strategy for generating the correlated light source in the
above discussions. The simplification is based on the
intrinsic relation between the beam state defined by Eq.
(1) and the corresponding qubit states. As mentioned
above, the intrinsic relation is strictly characterized by the
Eqs. (S6) in S1 of the Supplementary Information, indi-
cating that there could be more than one setup for the
beams in order to mimic a given quantum state. There-
fore, it can be explored to identify the most experiment-
friendly beam setup among the alternatives. In our case,
we choose to settle down the polarization components of
the two beams of the set, and implement the required
operation effectively by manipulating the states of the rest
beam. Hence, the analogy of the quantum circuit can be
realized by only one beam involving four spatial modes, as
shown by the left of Fig. 3. This largely reduces the

requirements on the experiments. A strict explanation of
the simplification is presented in the third section of the
Materials and methods.
Next, the modes are fed into the part of convolution,

corresponding to the blue layers in Fig. 1. The first
operation in this part is an operation analog to the two CZ
gates on adjacent qubits. After simplification, the opera-
tion is implemented by the pair of HWPs in the left yellow
region. The one on the second mode shifts the phase of
the vertical component by a factor of π, and the one on
the third mode shifts the phase of the same component by
the same magnitude. The second operation is a combi-
nation of the two single-beam rotations, which is analog
to the two quantum Hadamard gates on the first and the
third qubit respectively. In the general proposal, it can be
realized by two Q-H-Qs. Here, it is implemented by the
four BSs in the gray region. The upper left BS mix the first
and the third modes, and the lower left BS mix the second
and the fourth modes. The right two BSs mix the outputs
of the left ones. The third operation is a three-beam
operation, which is the analogy of quantum Toffoli gate
with the second qubit serving as the target qubit.
According to our general proposal, it can be realized by
using a series of 2-beam operations. Through the sim-
plification strategy here, it is implemented by the HWP in
the orange region. This HWP exchange the horizontal
and vertical component of the fourth mode. The fourth
operation is the same with the first operation. Therefore,
it is also implemented by a pair of HWPs whose area is
marked by yellow. The fifth operation is a single beam
rotation, analog to the single Hadamard gate on the sec-
ond qubit. This operation is applied for changing the basis
of the projection in the next part. Here, it is implemented
by four HWPs in the red region. Each HWP in the region
changes the h polarization component to hþ vð Þ= ffiffiffi

2
p

and
changes the v polarization component to h� vð Þ= ffiffiffi

2
p

.
Then, the following projection of the beam is going to be
casted in the Pauli-X basis.
After the part of convolution, the spatial modes go into

the region for pooling and measurements, corresponding
to the brown layers and the detections in Fig. 1. Because
of the simplification we consider, the pooling operation in
the experiment is realized by measuring the sum of the
intensity difference of all the modes (see S4 of the Sup-
plementary Information for details). Hence, it is merged
into the measurements as shown in Fig. 3. In the region,
the polarization of each mode is divided by a polarized
beam splitter (PBS), and finally recorded by the CCDs
(Thorlabs BC106N-VIS/M). By using such a detection
setup, one can obtain the intensity sum of the vertical or
horizontal components of the output. Further, the results
corresponding to the quantum measurements can be
acquired. Suppose the output state of our optical setup is
denoted by Eoutj Þ. Adding up the intensities of all the

Convolution

BD

Laser

QHQ Filter Mirror BS HWP PBS Detector

Correlated
Light Source

Pooling &
Measurement

Fig. 3 The experimental realization of a simplified COCNN analog
to the 3-qubit QCNN circuit for the phase recognition. The
pooling and the detection part are combined into one due to the
simplification. The optical elements used in the experiment is listed
below. The related elements for performing an operation are marked
by the area of a certain color
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components gives the result Tr Eoutð Þ Eoutð Þf g, and sub-
tracting the vertical component sum from the horizontal
component sum gives the result Tr Z Eoutj Þ Eoutð jf g, where
Trf gmeans taking the trace. If one arranges an HWP or a
QWP oriented at 22.5° before each PBS in the last region,
the results Tr X Eoutj Þ Eoutð jf g or Tr Y Eoutj Þ Eoutð jf g can
also be obtained by the subtraction, where X, Y, and Z are
the Pauli operators. These results correspond to the
quantum measurements Tr ρout

� �
, Tr Zρout

� �
, Tr Xρout

� �
and Tr Yρout

� �
respectively, where ρout is the output state

of a quantum circuit. Similar to the strategy for estimating
a single qubit state, the estimation of the single beam state
Eoutj Þ Eoutð j can be given by I � Tr Eoutj Þ Eoutð jf g þ X �
Tr X Eoutj Þ Eoutð jf g þ Y � Tr Y Eoutj Þ Eoutð jf g þ Z � Tr Zjf
EoutÞ Eoutð jg. Notice that function of our experimental
setup also has a one-to-one correspondence with the
3-qubit phase recognition QCNN37. The 3-qubit circuit is

shown by Fig. S3 in S4 of the Supplementary Information,
composed of four CZ gates, three Hadamard gates and
one Toffoli gate. The final output of the circuit is given by
the measurements on a single qubit state. A detailed
instruction of the whole theoretical background is pro-
vided in S4 of the Supplementary Information.
To benchmark the performance, we firstly check the

output of the above optical setup when the inputs are the
analogies of several special quantum states. Particularly,
we consider the ten states of the beams, including
h1j Þ h2j Þ h3j Þ, v1j Þ h2j Þ h3j Þ, v1j Þ v2j Þ h3j Þ, v1j Þ v2j Þ v3j Þ, p1j Þj
m2Þ p3j Þ, m1j Þ p2j Þ m3j Þ, l1j Þ r2j Þ l3j Þ, r1j Þ l2j Þ r3j Þ, h1j Þ h2j Þj½
h3Þþ v1j Þ v2j Þ v3j Þ�= ffiffiffi

2
p

, and h1j Þ h2j Þ v3j Þ þ h1j Þ v2j Þ h3j Þ½
þ v1j Þ h2j Þ h3j Þ�= ffiffiffi

3
p

. pj Þ and mj Þ denote hj Þ þ vj Þ½ �= ffiffiffi
2

p
and

hj Þ � vj Þ½ �= ffiffiffi
2

p
respectively. rj Þ and lj Þ denote hj Þ þ½

i vj Þ�= ffiffiffi
2

p
and hj Þ � i vj Þ½ �= ffiffiffi

2
p

respectively. The

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5
P

ro
ba

bi
lit

y
0.25

0
–0.25

1
0.75

0.5

Real Part
a

c d

e f

g h

i j

b

h
hV

V h
hV

V h
hV

V h
hV

V

h
hV

Vh
hV

Vh
hV

V
h

hV
V

h
hV V h

hV
V

h
hV

V
h

hV
V

h
hV

Vh
hV

Vh
hV

V
h

hV
V

h
hV

V
h

hV V
h

hV
V

h
hV

V

Real PartImaginary Part Imaginary Part

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

1
0.75

0.5

P
ro

ba
bi

lit
y

0.25
0

–0.25

Fig. 4 The density matrices of the COCNN outputs. The results are obtained by measuring the quantities Tr Eoutj Þ Eoutð jf g, Tr X Eoutj Þ Eoutð jf g,
Tr Y Eoutj Þ Eoutð jf g, and Tr Z Eoutj Þ Eoutð jf g. The input beam states of (a–j) are analog to the qubit states 000j i, 100j i, 110j i, j111i, þ�þj i, �þ�j i,
LRLj i, RLRj i, GHZj i, and Wj i respectively. The heights of the colored inertia are the experimental data, and the heights of the black frame of the
cuboids are the theoretical data. The theoretical expression of the results can be found in S5 of the Supplementary Information
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corresponding ten quantum states are 000j i, 100j i, 110j i,
j111i, þ�þj i, �þ�j i, LRLj i, RLRj i, GHZj i ¼
000j i þ 111j ið Þ= ffiffiffi

2
p

and Wj i ¼ 001j i þ 010j i þ 100j ið Þ
=

ffiffiffi
3

p
, where ±j i denotes 0j i± 1j ið Þ= ffiffiffi

2
p

, and Rj i ( Lj i)
denotes 0j i þ i 1j ið Þ= ffiffiffi

2
p

( 0j i � i 1j ið Þ= ffiffiffi
2

p
). The theoretical

and experimental results of Eoutj Þ Eoutð j under different
inputs are shown from Figs. 4a to j, in the order of the
above ten states. The fidelities of the results are 0.997,
0.9998, 0.9995, 0.9996, 0.9985, 0.9840, 0.9986, 0.9989,
0.9853, and 0.9988, respectively. The theoretical calcula-
tion of the experimental output for the ten input states is
given in S5 of the Supplementary Information.

Next, we present the phase recognition results. The
input states here are set to be the analogies of the ground
states of the 3-site Haldane Hamiltonian. The basic
strategy to encode the ground states into the beams is
given in S6 of the Supplementary Information. The
ground states are calculated by the diagonalization. Here,
h1=J is set to be 0.4, 0.8, 1.2 and 1.6, and h2=J is taken
from -2.0 to 2.0 with an interval of 0.25. According to the
numerical simulation of the COCNN scheme, we measure
Tr Z Eoutj Þ Eoutð jf g in this case, which is equivalent to the
measurement of the QCNN phase recognition circuit due
to the basis transformation enabled by the four HWPs in
the red region. The results are marked by the red dots in
the left panel of Fig. 5, and the data for obtaining the
results is provided in S6 of the Supplementary Materials.
For comparison, we plot the standard phase recognition

results obtained by string-order parameters (SOP)37,
shown by the light blue curves in left panel of Fig. 5. In the
3-site case, the SOP is given by ZXZh i. From the left
panel, we can see that the experimental data fits well with
the SOP results, validating the effectiveness of the setup.
Besides, the phase boundaries can also be obtained by the

second order derivative of the experimental data, shown
by the dark blue curves in Fig. 5. Compared with the
numerical simulation in Fig. 2c, it can be found that the
dark blue curves match the boundaries obtained by the
numerical results. A direct illustration is shown by the
right panel of Fig. 5. It worth noticing that the original
SOP is a quantity that requires to measure the three-
particle correlations. Using the COCNN here, it is effec-
tively reduced to measuring the character of a single
particle. This phenomenon in the COCNN experiment
reveals the benefit of applying the QCNN for recognizing
Haldane phase proposed by ref. 37.
Additionally, it can be found that the 3-qubit phase

recognition QCNN functions as the fundamental building
block of the N -qubit phase recognition QCNN due to the
repeated structure of the network (as shown in Fig. S5 of
the Supplementary Information). This implies that the
experimental setup of the COCNN, which performs the
same operation as the 3-qubit phase recognition QCNN,
can also be viewed as the fundamental building block of
the phase recognition COCNN that utilizes N -beam
states. Moreover, for implementing other complicated
tasks, the parameters of our general COCNN explained in
the second section will be trained on the specific datasets
of the tasks. The setups for those tasks can also be given
by using the similar arrangements as in Fig. 3, according
to our general proposal and the first section of the
Materials and methods. Meanwhile, the simplification
strategy applied here can also be extended to those tasks
involving N beams. Thus, in principle, the N -beam
COCNNs for the task or others are also implementable.

Discussion
In summary, we have proposed to introduce the cor-

relation of the light fields for establishing a new ONN
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Fig. 5 The results when the input states encode the Haldane ground states. The red dots in the left panel are the experimental data. The X- and
Y-axis of the coordinates represent the ratios h1=J and h2=J. The Z-axis represent the expectation Tr Z Eoutj Þ Eoutð jf g in our basis, equivalent to the
measurements in the QCNN phase recognition circuit. The light blue curves are obtained by the SOP. The dark blue curves are the phase boundaries
obtained by the second-order derivative of the experimental data. The right panel display the comparison of the phase boundaries obtained by the
experimental data and those shown in Fig. 2(c)
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framework, which is called as the COCNN. Different from
the previous ONN, which only adopts the superposition
property of light, the COCNN can exhibit similar char-
acters of the quantum neural networks. We numerically
show that for the classification tasks we consider, the loss
function of a COCNN converges faster than that of a
CNN. Moreover, we have also shown the COCNN can be
applied to implement the function of the QCNNs, such as
the one for the recognition of the Haldane phase. Con-
sidering the fact that the COCNN we propose has a one-
to-one correspondence with the quantum circuit, the
speed-up here could be as effective as the speed-up of a
QCNN. Taking the COCNN analog to the 3-qubit phase
recognition QCNN as an example, we have explored the
experimental demonstration of the COCNN. The func-
tion of the setup has been firstly checked by setting the
input to be the analogy of ten quantum states, and sec-
ondly set to perform the phase recognition for the ground
states of the 3-site Haldane Hamiltonian. All the experi-
mental results are in good agreement with the theoretical
results of the QCNN, indicating that the function of the
QCNN can be realized by using our COCNN scheme in
principle.
As mentioned above, the main character of the COCNN

strategy is the modulation of the correlated beam states. It
is the major cause of the acceleration in the training
process. On the basis of the modulation, a convolutional
operation can be given, enabling a quite effective capture
of the data feature. More importantly, the pooling
operation in this manner can reduce the size of the pro-
cessed data faster than the traditional pooling of the CNN.
The two operations of the COCNN are equivalent to
those applied in the QCNN. Hence, we think that such a
scheme potentially advances the boundaries of optical
acceleration. Meanwhile, the results also indicate that the
COCNN allows for the realization of the properties of
quantum neural network in a more affordable way.
Despite the potential advantages of quantum neural net-
works, implementing them practically requires deep
quantum circuits with many multi-qubit gates and com-
plicated measurements. This necessitates significant
resources to stabilize the circuits and correct errors,
which is technically challenging due to the unavoidable
environmental disturbances. A potentially better alter-
native to implementing advantageous algorithms sug-
gested by quantum computing theory is to find a system
described by the same math as quantum theory and
interrupted less by the environment. The proposed
COCNN serves as an example of such a system, as evi-
denced by the ease of element arrangements and low
requirements on the circumstances in our experiments. In
all, given the exponential growth of data and the scarcity
of resources for high-quality computation, the COCNN
we propose presents a cost-effective and high-

performance solution that could have widespread appli-
cations in various data science research fields.

Materials and methods
The correspondence between beam states and
qubit states
The array of the beams we consider has been introduced

in ref. 40. Here we briefly review the basic setup. Consider
the 2-beam state 2Ej Þ ¼ ch1h2 h1j Þ h2j Þ þ ch1v2 h1j Þ v2j Þ þ
cv1h2 v1j Þ h2j Þ þ cv1v2 v1j Þ v2j Þ as an example. The state can be
given by two beams

E1¼
XM
k¼1

f kp1;k ; E2 ¼
XM
k¼1

f kp2;k ð5Þ

As we mentioned in the main text, the LO beam for
measuring E1 and E2 are expressed by ELO

1 ¼ Fe1 and
ELO
2 ¼ Fe2. F represents the mode coherent with all fks,

such that F � f k / f k . Using the homodyne detection, one
obtains the real part of the projection of E1

Re D1f g ¼ E1 þ ELO
1

�� ��2 � E1 � ELO
1

�� ��2 ¼ 2Re ELO�
1 � E1

� �
ð6Þ

as well as that of E2 denoted by Re D2f g. Ref g means
taking the real part. The imaginary part can be obtained
by shifting the phase of ELO

1 and ELO
2 by π=4. Then, one

can obtain the correlation by multiplying Di and Diþ1 and
integrating the product in the domain where the ortho-
normal condition of f k holds. This is given byR
D1D2dΩ / R

e�1 � E1
� �

e�2 �E2
� �

dΩ. Considering Eq. (5),
one has

R
e�1 � E1
� �

e�2 �E2
� �

dΩ¼ PM
k¼1

e�1 � p1;k

� �
e�2 � p2;k

� � ¼ e�1e
�
2

	 
 � PM
k¼1

p1;kp2;k

	 

¼ e�1e

�
2

	 

ch1h2 h1h2½ � þ ch1h2 h1v2½ � þ ch1h2 v1h2½ � þ ch1h2 v2v2½ �ð Þ

ð7Þ

where,

ch1h2 ¼
PM
k¼1

pH1;kp
H
2;k ; ch1v2 ¼

PM
k¼1

pH1;kp
V
2;k ; cv1h2 ¼

PM
k¼1

pV1;kp
H
2;k ; cv1v2

¼ PM
k¼1

pV1;kp
V
2;k

ð8Þ

In Eq. (7), e�1e
�
2

	 

denotes dyadic vector generated by e�1

and e�2, and those applied for other vectors are similar. By
using the compact notation | ) in the main text, one can
reform Eq. (7) into e1ð j e2ð j½ � 2Ej Þ, which is of the same
form with the projection of the 2-qubit state. More gen-
erally, one can obtain the state given by Eq. (1) with N
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correlated beams, analog to the N-qubit state

X1
j1;j2;¼ ;jN¼0

qj1j2 ¼ jN
j1j2 ¼ jN
�� �

ð9Þ

As mentioned in the main text, each of the beams is
expressed by

PM
k¼1 f kpi;k , such that the general

expressions of the ch1h2 ¼ hN ; ¼ ; cv1v2 ¼ vN in Eq. (1) are
given by,

ch1h2 ¼ hN ¼ PM
k¼1

pH1;kp
H
2;k ¼ pHN ;k

ch1h2 ¼ vN ¼ PM
k¼1

pH1;kp
H
2;k ¼ pVN ;k

..

. ..
.

cv1v2 ¼ vN ¼ PM
k¼1

pV1;kp
V
2;k ¼ pVN ;k

ð10Þ

In the main text, we point out that ch1h2 ¼
hN ; ¼ ; cv1v2 ¼ vN in Eq. (1) have a one-to-one relationship
with q00¼ 0; ¼ ; q11¼ 1 in Eq. (9). The underlying condi-
tions for the one-to-one relationship are precisely char-
acterized by Eq. (10). In fact, the coefficients
ch1h2 ¼ hN ; ¼ ; cv1v2 ¼ vN in Eq. (1) can be viewed as the
components of a vector in the Hilbert space40. More
generally, any other physical system that can be described
by the similar mathematics would be also characterized by
the Hilbert space.

The details of the numerical simulation shown by Fig. 2
The specific models of the numerical simulation in Fig.

2 are instructed below. In Fig. 2a, we compare the con-
vergence of the loss function of the two networks in a
binary classification task. The task we consider is to learn
the labels of the eight-dimensional 0-1 vectors. The labels
of the vectors are either “0” or “1”. In our consideration,
the labels of the vectors are generated randomly. The
results shown in Fig. 2(a) are averaged over the data
obtained by 12 times of training. In each training, the
vector set is re-labeled randomly.
To accomplish the task, we set the COCNN by adopting

one C-layer and one P-layer on three input beams, such
as eE1, eE2 and eE3. The state of the beams can be given
by 3Ej Þ ¼ ch1h2h3 h1j Þ h2j Þ h3j Þ þ ch1h2v3 h1j Þ h2j Þ v3j Þ þ ¼ þ
cv1v2v3 v1j Þ v2j Þ v3j Þ. The C-layer here contains two 2-beam
operations shown in the dashed blue box of Fig. 1.
Because the task is not so complicated, each 2-beam
operation only has six trainable parameters. The 2-beam
operation can be given in a matrix multiplication form,

UZ θ1ð Þ � UY θ2ð Þ½ � � UCX � UY θ3ð Þ � UZ θ4ð Þ½ � � U 0
CX�

UY θ5ð Þ � I½ � � UCX � UZ θ6ð Þ � H½ � ð11Þ

whose basis is h1j Þ h2j Þ; h1j Þ v2j Þ; v1j Þ h2ð Þ; v1ð Þ v2ð Þf g (or
h2j Þ h3j Þ; h2j Þ v3j Þ; v2j Þ h3j Þ; v2j Þ v3j Þf g). The notation in Eq.

(11) is defined by,

UZ θð Þ ¼ expð�iZθ=2Þ;UY θð Þ ¼ expð�iYθ=2Þ

UCX ¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0
BBB@

1
CCCA;U 0

CX ¼

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

0
BBB@

1
CCCA
ð12Þ

In fact, UY θð Þ and UZ θð Þ are the Pauli-Y and Pauli-Z
rotations in the group theory. UCX and U 0

CX are the same
with the matrix form of the quantum CNOT gates. The two
2-beam operations act on the states encoded by the first
pair of beams (eE1, eE2) and the second pair of beams (eE2, eE3)
individually, while the parameters of the two operations are
independently trained. After the C-layer, a P-layer is applied
such that only one beam (such as eE2Þ of the three is left,
which contains the correlation information of the others.
The specific formula can be given by applying Eq. (2) twice,

3Ej Þ 3Eð j ! h1ð j � I � h3ð j½ � 3Ej Þ 3Eð j h1j Þ � I � h3j Þ½ �
þ h1ð j � I � v3ð j½ � 3Ej Þ 3Eð j h1j Þ � I � v3j Þ½ �
þ v1ð j � I � h3ð j½ � 3Ej Þ 3Eð j v1j Þ � I � h3j Þ½ �
þ v1ð j � I � v3ð j½ � 3Ej Þ 3Eð j v1j Þ � I � v3j Þ½ �

ð13Þ

Notice that Eq. (13) is an analogy of looking into the
second qubit of a 3-qubit system. The final output of the
COCNN here is given by projecting the polarization state of
beam eE2 onto a direction and taking its modular square.
The direction is parameterized by 3 real variables, corre-
sponding to the horizontal and vertical components and
their difference in phases respectively. In summary, the
COCNN here has 15 trainable parameters. During the
training process, the three parameters of the final projection
are normalized after being updated in each iteration. In a
real experimental setup, the 15 trainable parameters can be
tuned by adjusting the fast-axis angles of the waveplates.
Particularly, because the two 2-beam operations defined by
Eq. (11) are implemented by the setup in the blue dashed
box of Fig. 1, the 12 parameters of them can be tuned by the
corresponding waveplates in the setup. Also, because the
projection is implemented by an interferometer with an LO
input whose polarization is at the direction of projection,
the three parameters of projection are tuned by the corre-
sponding waveplates for modulating the polarization of the
LO input, as illustrated in the detection part of Fig. 1.
In order to perform a fair comparison, the CNN we

employ also has one layer for traditional convolution and
one layer for traditional pooling, with 15 parameters in
total. Because the input is an 8 × 1 vector, the convolution
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kernel is set to be a 3 × 1 vector, the elements of which are
trainable. We apply three independent kernels in the layer
for convolution, so the parameter number of the layer is 9.
After the convolution, one input vector is transformed
into three 6 × 1 vectors. Then, the data is fed into the layer
for pooling. We apply max pooling here, and the strip is
set to be 3. Then, three 4 × 1 vectors are obtained. The
final output is given by the weighted sum of the three
vectors modulated by the sigmoid function. In specific,
the elements of each vector are firstly summed up so that
three values in total are obtained. Then, each of the three
numbers are multiplied by one parameter and added by
one bias respectively, so three new values are obtained. In
the end, the three new values are substituted into the
sigmoid function, and the average of the sigmoid function
outputs is used as the final output of the network.
In Fig. 2b, we compare the convergence of the loss func-

tion of the two networks in a more complicated task, the
multiclass classification task. The task we consider is to learn
the labels of the sixteen-dimensional 0-1 vectors. The labels
of the vectors are “0”, “1”, “2” or “3”. In our consideration,
the labels of the vectors are generated randomly. The results
shown in Fig. 2b are averaged over the data obtained by 12
times of training trials. In each trail, the vector set is also re-
labeled randomly. The fundamental setups of the COCNN
and the reference CNN are similar to those applied for the
cases of Fig. 2a. The COCNN in this case also adopts one
C-layer and one P-layer, acting on four input beams. The
C-layer contains three 2-beam operations defined by Eq.
(11). They operate on the 1st-2nd, the 2nd-3rd, and the 3rd-4th

beams respectively, and all the parameters are trained
independently. The P-layer contains two combiners, acting
on the 1st-2nd and the 3rd-4th beams. Therefore, only two
beams are left. The correlated measurement of the two
beams is parameterized by 6 real variables in total. Each local
projection is parameterized by 3 real variables as the above
case. Adding them all, the whole COCNN here has 24
trainable parameters. During the training process, the three
parameters of the final projection are also normalized after
being updated in each iteration. The CNN here also has one
layer for traditional convolution and one layer for traditional
pooling, with 24 parameters in total. With the 16 × 1 input,
the convolution kernel is set to be 5 × 1 and 6 × 1 vectors,
the elements of which are trainable. We apply two 5 × 1
kernels and one 6 × 1 kernel, which are independently
trained. After the convolution, one input vector is trans-
formed into two 12 × 1 vectors and one 11 × 1 vector. Then,
the data is fed into the layer for pooling. We apply average
pooling here, and the strip is set to be 4. Then, two 9 × 1
vectors and one 8 × 1 vector are obtained. The final output
is given by the weighted sum of the three vectors modulated
by the sigmoid function. In specific, the elements of the
three vectors are combined to a 26 × 1 vector, and then
divided into four sets. Three of the sets have six elements,

one has eight elements. Then, sum up the values of each set,
and multiply the outcomes by four parameters with four
biases being added respectively. Hence, four new values are
obtained. In the end, the four new values are substituted into
the sigmoid function, and the average of the sigmoid func-
tion outputs is used as the final output of the network.
In summary of the setup for Fig. 2a, b, the COCNN

model for the task contains one C-layer and one P-layer,
with 15 and 24 parameters respectively. As the reference,
the CNN model for the same task contains one layer for
convolution and one layer for pooling, with the same
number of parameters correspondingly as well. Therefore, a
faster convergence of the loss function of the COCNN than
that of the CNN is observed. As mentioned in the main text,
it is comparable with the results in ref. 39.
In Fig. 2c, we further show the connection of the COCNN

with the QCNN by simulating the phase recognition circuit
in ref. 37. The task in this case is to identify the phase of the
input states, which are the ground states of the different
Haldane models. The Hamiltonian of the Haldane model is
given by Eq. (4). We numerically simulate the Hamiltonian
when the number of sites is 12, which is sufficient to show
the phase boundary according to our results in Fig. 2(c).
Based on Eqs. (1) and (10), the ground states can be
encoded by the 12 correlated beams discussed above. Then,
the beams are modulated by the COCNN analogy to the
QCNN shown in the Fig. 2b of ref. 37. In the main text, we
mentioned that the C-layer is composed of a series of
2-beam operations. Each operation can generate any type of
correlated states of the two beams, so it can realize the
analogy of all the quantum gates in the QCNN. The
essential gates of the QCNN in Fig. 2b of ref. 37 are CZ
gates, Toffoli gates, SWAP gates, and measurement-based
phase-flip gates. The corresponding operations of our
COCNN scheme are thoroughly discussed in S3 of the
Supplementary Information which specifies the connections
of two networks. After being modulated by the composite
of one C-layer, one P-layer, and an additional fully con-
nected layer, only four beams are left and measured on their

X-basis. If the four output beams are denoted by eE4, eE5, eE6,

and eE7 and the state of them is denoted by 4eE��� �
4eE� ���, the

result of the measurement on the X basis can be expressed

by Tr X1�X2�X3�X4 4eE� �
4eE� ���n o

. The correlation form

of the measurement is given by

Xpþ
e4;e5;e6;e7¼p�

�1ð ÞC e4;e5;e6;e7ð Þ
Z

e4 � eE4

� �
e5 � eE5

� �
e6 � eE6

� �
e7 � eE7

� �
dΩ

����
����
2

ð14Þ
where ea (a ¼ 4; ¼ ; 7) here are restricted to be either
p� ¼ h� vð Þ= ffiffiffi

2
p

or pþ¼ hþ vð Þ= ffiffiffi
2

p
, and C e4; e5; e6; e7ð Þ

returns the number of p� among the eas. By changing the
coefficient ratios h1/J and h2/J, one can calculate the
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different ground states and encode them by the 12 beams
as mentioned above. Then, using Eq. (14) to do the
measurements, a two-dimensional surface can be
obtained by plotting the results. The red dots in Fig. 2c
are plotted by marking the turning point of the surface in
accordance with its second order derivative. The colors of
background are determined by the ground-state energy
density, whose boundaries are identified by the derivative
of the energy density function. Notice that identifying the
phase of the ground state usually requires to measure the
string order parameter of all the particles. The motivation
for proposing the QCNN is to decrease the number of the
particles needed to measure. In our simulated example,
the ground state of the 12-site Haldane Hamiltonian is
mapped to the correlation of the 12 beams, and a
corresponding phase graph can be obtained by measuring
the four output beams. Therefore, the results can be
viewed as an illustration of the QCNN spirit, showing a
good match with the results in ref. 37.

The strict explanation of the simplification strategy used in
our experiments
We perform the experiment to show a feasible COCNN

analog to the 3-qubit QCNN. In general, an arbitrary
three-qubit state can be denoted by

ψ3

�� � ¼ q000 000j i þ q001 001j i þ q010 010j i þ q011 011j i
þ q100 100j i þ q101 101j i þ q110 110j i þ q111 111j i

ð15Þ

Using the strategy in the first section of Materials and
methods and the main text, we adopt three beams to

encode Eq. (15). The number of modes is required to
support the solvability of Eq. (10). For example, if the
mode number M ¼ 2, one has

eEr ¼ pHr;1hþ pVr;1v
� �

f 1 þ pHr;2hþ pVr;2v
� �

f 2

eEs ¼ pHs;1hþ pVs;1v
� �

f 1 þ pHs;2hþ pVs;2v
� �

f 2

eEt ¼ pHt;1hþ qVt;1v
� �

f 1 þ qHt;2hþ qVt;2v
� �

f 2

ð16Þ

Notice that, there are 12 unknown variables (pH and
pV ) in Eq. (16). According to Eq. (10), the conditions of
the 12 variables for mimicking state (15) can be char-
acterized by 8 equations. So, the equation set has a
solution in principle. However, if more modes are
introduced, the experimental realization of the mod-
ulations can be further simplified. Consider the case
when M ¼ 4, one has

Because the equation set is under determined, we can
fix several unknown variables while keeping the solvability
of the equation set. In our experiment, we consider to set
prs and pts as follows,

pHr;1 ¼ 1; pVr;1 ¼ 0; pHr;2 ¼ 1; pVr;2 ¼ 0; pHr;3

¼ 0; pVr;3 ¼ 1; pHr;4 ¼ 0; pVr;4 ¼ 1

pHt;1 ¼ 1; pVt;1 ¼ 0; pHt;2 ¼ 0; pVt;2 ¼ 1; pHt;3

¼ 1; pVt;3 ¼ 0; pHt;4 ¼ 0; pVt;4 ¼ 1

ð19Þ

Er ¼ pHr;1hþ pVr;1v
� �

f 1 þ pHr;2hþ pVr;2v
� �

f 2 þ pHr;3hþ pVr;3v
� �

f 3 þ pHr;4hþ pVr;4v
� �

f 4

Es ¼ pHs;1hþ pVs;1v
� �

f 1 þ pHs;2hþ pVs;2v
� �

f 2 þ pHs;3hþ pVs;3v
� �

f 3 þ pHs;4hþ pVs;4v
� �

f 4

Et ¼ pHt;1hþ qVt;1v
� �

f 1 þ qHt;2hþ qVt;2v
� �

f 2 þ pHt;3hþ pVr;3v
� �

f 3 þ pHt;4hþ pVt;4v
� �

f 4

ð17Þ

The equation set can be expressed in a matrix form,

pHr;1p
H
t;1 pHr;2p

H
t;2 pHr;3p

H
t;3 pHr;4p

H
t;4 0 0 0 0

pHr;1p
V
t;1 pHr;2p

V
t;2 pHr;3p

V
t;3 pHr;4p

V
t;4 0 0 0 0

0 0 0 0 pHr;1p
H
t;1 pHr;2p

H
t;2 pHr;3p

V
t;3 pHr;4p

V
t;4

0 0 0 0 pHr;1p
V
t;1 pHr;2p

V
t;2 pHr;3p

V
t;3 pHr;4p

V
t;4

pVr;1p
H
t;1 pVr;2p

H
t;2 pVr;3p

H
t;3 pVr;4p

H
t;4 0 0 0 0

pVr;1p
V
t;1 pVr;2p

V
t;2 pVr;3p

V
t;3 pVr;4p

V
t;4 0 0 0 0

0 0 0 0 pVr;1p
H
t;1 pVr;2p

H
t;2 pVr;3p

H
t;3 pVr;4p

H
t;4

0 0 0 0 pVr;1p
V
t;1 pVr;2p

V
t;2 pVr;3p

V
t;3 pVr;4p

V
t;4

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

pHs;1
pHs;2
pHs;3
pHs;4
pVs;1
pVs;2
pVs;3
pVs;4

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

¼

q000
q001
q010
q011
q100
q101
q110
q111

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð18Þ

Sun et al. Light: Science & Applications           (2024) 13:36 Page 12 of 14



Then, the coefficient matrix in reference of pss changes
to

Ms ¼

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð20Þ

Notice that Ms is a symmetric and sparse matrix. Given
a unitary operator U3 on ψ3

�� �
, the matrix form of U3 is

denoted by MU . Hence, the corresponding modulation on
the beams that generates the analogy of U3 ψ3

�� �
can be

deduced by following relations,

qubit state : ψ3

�� � ¼

q000
q001
q010
q011
q100
q101
q110
q111

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

!U3 U3 ψ3

�� �¼MU

q000
q001
q010
q011
q100
q101
q110
q111

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

q0000
q0001
q0010
q0011
q0100
q0101
q0110
q0111

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

beam state : Ms

pHs;1
pHs;2
pHs;3
pHs;4
pVs;1
pVs;2
pVs;3
pVs;4

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

!MU MUMs

pHs;1
pHs;2
pHs;3
pHs;4
pVs;1
pVs;2
pVs;3
pVs;4

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

¼ MsM0
U

pHs;1
pHs;2
pHs;3
pHs;4
pVs;1
pVs;2
pVs;3
pVs;4

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

¼ Ms

p0Hs;1
p0Hs;2
p0Hs;3
p0Hs;4
p0Vs;1
p0Vs;2
p0Vs;3
p0Vs;4

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

ð21Þ

where M0
U ¼ M�1

s MUMs. The meaning of Eq. (21) is that
applying the operation M0

U on Es is equivalent to
performing U3 on ψ3

�� �
. In our experiment, we use Eq.

(21) to map all the gates of the 3-qubit QCNN to the
operations on Es. The optical setup in Fig. 3 is the
implementation of the operations. A step-by-step calcula-
tion of the circuit is provided in S4 of the Supplementary
Information.
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