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Radiative loss of coherence in free electrons:
a long-range quantum phenomenon
Cruz I. Velasco 1, Valerio Di Giulio 1 and F. Javier García de Abajo 1,2✉

Abstract
Quantum physics rules the dynamics of small objects as they interact over microscopic length scales. Nevertheless,
quantum correlations involving macroscopic distances can be observed between entangled photons as well as in
atomic gases and matter waves at low temperatures. The long-range nature of the electromagnetic coupling between
charged particles and extended objects could also trigger quantum phenomena over large distances. Here, we reveal
a manifestation of quantum mechanics that involves macroscopic distances and results in a nearly complete depletion
of coherence associated with which-way free-electron interference produced by electron–radiation coupling in the
presence of distant extended objects. This is a ubiquitous effect that we illustrate through a rigorous theoretical
analysis of a two-path electron beam interacting with a semi-infinite metallic plate and find the inter-path coherence
to vanish proportionally to the path separation at zero temperature and exponentially at finite temperature. The
investigated regime of large distances originates in the coupling of the electron to radiative modes assisted by
diffraction at material structures but without any involvement of material excitations. Besides the fundamental interest
of this macroscopic quantum phenomenon, our results suggest an approach to measuring the vacuum temperature
and nondestructively sensing the presence of distant objects.

Introduction
The wave nature of electrons allows us to image

materials with atomic resolution in transmission electron
microscopy1,2 (TEM) and resolve the atomic structure
and dynamics of molecules and crystal surfaces through
low-energy3,4, photoemission5, and ultrafast6,7 electron
diffraction. In these techniques, wave interference takes
place between elastically scattered components, while
inelastic collisions are typically regarded as a source of
decoherence that destroys interference through the
addition of a stochastic phase.
Decoherence can be produced by coupling to material

excitations. In particular, an electron split into two paths
and moving parallel to a lossy planar surface was

proposed8, extensively studied from a theoretical view-
point8–14, and experimentally confirmed15–19 to be a
suitable configuration to observe electron decoherence. In
a related scenario, inelastic electron scattering generated
by coupling to thermally populated low-energy material
excitations was shown to render an observable loss of
electron coherence that limits spatial resolution in
TEM20,21. An extension to decoherence of charged par-
ticles trapped near a lossy surface has recently been
made22.
Electron decoherence is equally produced by inelastic

excitations associated with photon emission and electro-
magnetic vacuum fluctuations, as predicted for an elec-
tron prepared in a prescribed two-path configuration23,24,
including the effect of neighboring perfect-conductor
boundaries9,11,23. Likewise, radiative electron decoherence
is anticipated to take place due to bremsstrahlung emis-
sion25, interaction with time-varying fields26, and the
Smith-Purcell effect27. Intriguingly, recoherence can
occur for electrons moving in a squeezed vacuum28.
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Decoherence can be intuitively understood through the
following analysis for an incident electron whose wave
function ψinc ¼ ψinc

A þ ψinc
B is split into two non-overlapping

paths A and B (Fig. 1a, b). Scattering by a structure produces
an overall post-interaction state

P
nðjψA;ni þ jψB;niÞ � jni,

where n runs over excitations of the involved materials and
the radiation field, while ψA,n and ψB,n denote the electron
wave functions in paths A and B resulting after an excitation
n is generated. In an interference experiment, electron
fringes are formed at a detection plane where the electron
paths overlap (Fig. 1c). The amplitude of such fringes /P

nRefhψA;njψB;nig is contributed by wave function com-
ponents in which the same mode n is excited by both paths.
A certain degree of coherence is then preserved if paths A
and B can both excite a given mode n with similar ampli-
tudes, just like in a quantum eraser29,30 that produces a loss
of which-way information. This is essentially the principle
behind inelastic electron holography31–33, where inter-
ference fringes are observed in energy-filtered inelastically
scattered electrons (e.g., after they excite a delocalized
plasmon that overlaps both electron paths).
In this analysis, the incident electron is prepared in a pure

state characterized by a density matrix ψincj i ψinch j, while
after the interaction, we have a mixed state with a density
matrix

P
nðjψA;ni þ jψB;niÞðhψA;nj þ hψB;njÞ obtained by

tracing out material and radiation degrees of freedom, and

the resulting loss of visibility in the interference fringes relates
to the creation of such inelastic excitations nj i. This is con-
ceptually different from diffraction produced after blocking
part of the wave function (e.g., in a two-slit experiment), in
which the interference fringes are controlled by the shape of
the scattering object, but the electron is transmitted in a pure
state of wave function ψtr and density matrix ψtrj i ψtrh j
without the involvement of any excitations. Interestingly,
information theory has been invoked to quantitatively sepa-
rate actual decoherence from elastic diffraction34.
In another conceptually different scenario, one can

consider electron interactions with classical fields such as
those induced by a laser in the context of photon-induced
near-field electron microscopy35 (PINEM). Here, the
electron follows a coherent evolution36,37, and therefore, it
is characterized by a pure state ψPINEM

�� �
, even if the

electron experiences energy changes (e.g., sidebands in
PINEM) and those changes are path-dependent. Conse-
quently, the electron density matrix ψPINEM

�� �
ψPINEM

� ��
remains pure, and different paths can still interfere (e.g.,
to achieve spatiotemporal electron compression38).
In the present work, we are interested in the deco-

herence produced by the creation of inelastic excitations,
and more precisely, radiative modes. Consequently, we
consider configurations in which the electron paths do
not physically intersect any material (Fig. 1a, b), and the

Free radiation

Infinite
sample Macroscopic

distance
Microscopic

distance

Infinite
sample

Infinite PEC
half-plane

Macroscopic
distance

100 �m D

a

c

b

T = 300 K
2

1

0
�x

�x

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

D = 50 �m
D = 5mm

Macroscopic
distance

Coherent beamFree radiation Coherent beam

Incoherent beam

A BA B

Coherent beam

Fig. 1 Electron-beam decoherence due to radiative coupling assisted by extended scatterers. a An electron split into two paths A and B separated by a large
(macroscopic) distance undergoes strong decoherence through coupling to radiation assisted by a distant extended scatterer. b For small (microscopic)
inter-path separations, coherence is however preserved. c We show a specific geometry in which one can substantially vary the degree of decoherence by
modifying the inter-path separation for a fixed distance to a perfect-electric-conductor (PEC) half-plane at a temperature of 300 K (see also Fig. S2 in SI),
translating into a radical change in the visibility of interference fringes as a function of transverse position Δx at an electron detector (see Fig. S1 in SI)
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electron–boundary distances are sufficiently large to
neglect inelastic excitations created inside the material
(see below). This is conceptually different from previous
investigations for an aloof electron moving parallel to a
planar interface, which leads to decoherence by generat-
ing material excitations8–14 as well as an elastic phase due
to image interactions even for perfect conductors23,39.
Because the loss of coherence relates to the different

excitation amplitudes associated with each of the electron
paths, it is pertinent to recall that the probability that a
moving electron undergoes inelastic energy exchanges when
passing near an extended material structure presents an
infrared divergence due to the contribution of radiative
modes40, although we anticipate that such a divergence does
not lead to any relevant physical pathology as the total
energy loss and the degree of coherence remain both finite
[see Supplementary Section S5 in the Supplementary
Information (SI)]. The results summarized in Table 1 show
that divergences are found when free electrons couple to
extended material structures, for which the loss probability
scales as Γ(ω)∝ 1/ω and∝ 1/ω2 with the energy loss ℏω at
zero and finite temperatures, respectively. We show in this
work that these divergences produce a radical depletion of
coherence for electron paths separated by large distances
(i.e., when one of the paths is more exposed to the noted
divergences), but a finite degree of coherence is always
preserved, and full coherence is recovered as the path
separation is reduced. Such preservation of coherence is a
key element in off-axis electron holography41,42, which relies
on interference between electrons passing either through or
outside a material to reconstruct its atomic structure.

A two-path electron in which one of the paths is close to
an extended structure should be a good example to observe
a large degree of electron decoherence produced by
radiative coupling. We thus consider the configurations
depicted in Fig. 1a, b, and indeed, based on the rigorous
theory presented below, we obtain a substantial increase in
decoherence at room temperature when one of the paths is
placed 100 μm away from the edge of a perfect-electric-
conductor (PEC) half-plane and the other path is separated
by a distance of either 50 μm or 5 mm. This effect can be
visualized through the interference fringes formed when
the two paths are recombined (see Fig. S1 in SI), as we show
in Fig. 1c. A similar effect is observed while maintaining a
large inter-path distance (a few mm) by placing a half-plane
close (e.g., 1 μm) or far (10 mm) from the nearest electron
path (see Fig. S2 in SI). These are situations in which
quantum-mechanical effects (decoherence) take place over
large distances, a territory that was so far reserved to the
lossless propagation of photons in free space43,44 or
superpositions of matter states at low temperatures45,46.
Here, we theoretically demonstrate that the presence of an

extended material structure can produce strong electron
decoherence on electron beams (e-beams) placed at an
arbitrarily large distance from the material. We consider
radiative modes of commensurably large wavelengths, for
which the materials behave either as real-permittivity
dielectrics or lossless perfect electric conductors (PECs),
such that material excitations can be ignored. Specifically, we
consider a thin PEC half-plane and a two-path e-beam pas-
sing perpendicularly to it (Fig. 2a). Because the half-plane in
the zero-thickness limit is a scale-invariant structure and the
PEC response eliminates any absolute length scale from the
problem at zero temperature, we find that the decoherence
between the two paths only depends on the ratio of their
distances to the half-plane, and consequently, decoherence is
predicted to take place for arbitrarily large macroscopic
electron–half-plane distances, provided the inter-path
separation is sufficiently large. At finite vacuum tempera-
ture T, the thermal wavelength λT= 2πℏc/kBT plays a role by
imposing an absolute length scale that is inversely propor-
tional to T (e.g., λT~ 14 mm at 1 K and 50 μm at room
temperature). We find that decoherence is then boosted for
large inter-path separations compared with λT, provided one
of the paths passes near the half-plane. In a more practical
scenario, we consider a finite-width ribbon and show that the
half-plane limit is recovered for large width compared with
the electron–edge distance. Our results support the use of
electron decoherence to sense the presence of distant objects
and measure the vacuum temperature.

Results
General theory of electron-beam decoherence
We are interested in investigating the loss of coherence

among different spatial regions of a single electron prepared

Table 1 Divergence in the spectrally resolved electron
energy-loss probability

Finite object Infinite object

= 0 ∝
3

∝ ∝
−1

≠ 0 ∝
2

∝
0

∝
−2

Rad. Rad.Nonrad.

For finite objects (left), the loss probability Γ(ω) vanishes at low frequencies as they
become increasingly small compared to the light wavelength. We have Γ(ω)∝ω3

and∝ω contributions arising from radiative and nonradiative losses at zero
temperature, while an additional factor of 1/ω appears at finite temperature T
because of the scaling of the inelastic-scattering probability as 2nT(ω)+ 1 ≈ 2kBT/
ℏω+ 1, where nT(ω) is the Bose-Einstein distribution function. The interaction with
a structure that is infinitely extended in a transverse direction with respect to the
e-beam (right) produces a divergence as Γ(ω)∝ 1/ω at T= 0 and∝ 1/ω2 at finite T
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in a beam moving along z with velocity v. The electron state
can change due to the interaction with the environment (i.e.,
any material structure and the radiation field), giving rise to
inelastic components that are position-dependent and, thus,
decreasing the degree of coherence between separate spatial
regions of the beam. As a practical manifestation of this
effect, after propagation from those regions to an electron
detector, the loss of coherence produces a reduction in the
visibility of the resulting interference fringes, which we
investigate here in a rigorous quantitative manner.
Describing an incident electron through its interaction-

picture density matrix ρieðr; r0Þ, scattering by a structure
produces a final density matrix given by

ρfeðr; r0Þ ¼ e�Pðr;r0Þþiχðr;r0Þρieðr; r0Þ ð1Þ
where

PðR;R0Þ ¼ 1
2

Z 1

0
dω 2nT ðωÞ þ 1½ �

´ ΓðR;R;ωÞ þ ΓðR0;R0;ωÞ � 2ΓðR;R0;ωÞ½ �
ð2Þ

is the decoherence probability, which is in turn expressed
as a frequency integral of the generalized loss probability

ΓðR;R0;ωÞ ¼ 4e2

�h

Z 1

�1
dz

Z 1

�1
dz0 cos

ω

v
ðz � z0Þ

h i
´ Imf�Gzzðr; r0;ωÞg

ð3Þ
(a self-contained derivation of these expressions is
presented in Supplementary Sections S1 and S2). Here, the
temperature T enters through the Bose-Einstein distribution

function nT ðωÞ ¼ e�hω=kBT � 1
� ��1

, while the scattering
structure is accounted for through the electromagnetic
Green tensor Gðr; r0;ωÞ, which can be calculated by solving
the macroscopic electromagnetic response according to
∇ ´∇ ´Gðr; r0;ωÞ � ðω2=c2Þϵðr;ωÞGðr; r0;ωÞ ¼ ð�1=c2Þ
δðr� r0Þ for any structure defined by a local, frequency-
dependent permittivity ϵ(r,ω). The real phase χðr; r0Þ in
Eq. (1) is also expressed in terms of the Green function (see
Supplementary Section S2), adding a rigid shift to the fringes
observed in two-path interference. Following pioneering
studies of decoherence in free-space electrons23, explicit
results analogous to these expressions have been obtained by
using macroscopic quantum electrodynamics14,39, but the
derivation that we present in the SI is self-contained and
formulated in more general terms. Incidentally, the
decoherence probability P can take values larger than 1
since it must be understood as a depletion of coherence
given by e−P according to Eq. (1). Analogously, the classical
EELS probability can also exceed unity and must be
understood as the mean of a Poissonian distribution of
multiple losses47.

Electron decoherence by a half-plane
The application of Eqs. (2) and (3) to an e-beam passing

outside and perpendicularly to a PEC half-plane produces
analytical expressions for the decoherence probability, as
shown in the self-contained derivation offered in the
Supplementary Section S3. More precisely, referring to
the geometry depicted in Fig. 2a, involving two paths with
transverse coordinates R1= (d1, 0) and R2= (d2, d⊥), we
find
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Fig. 2 Two-path decoherence by a half-plane at zero temperature. a System under consideration, consisting of a single electron split into a two-path
spatial superposition and passing outside and perpendicularly to a perfectly conducting half-plane at distances d1 and d2 from the edge [beam path
positions R1= ( d1,0) and R2= (d2, d⊥ )]. b Universal plot of the spectrally resolved decoherence probability for various d2/d1 ratios (colored curves) with
d⊥= 0, approaching a divergent profile in the d2≫ d1 limit (black curve). We consider an electron velocity v= 0.7 c and normalize the frequency and the
probability using the smallest distance d1. c Decoherence probability as a function of d2/d1 for d⊥= 0 and different electron velocities (see color scale)

PðR1;R2Þ ¼ α

2π

Z 1

0
dμ

2μ2 þ η2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p
μ2 þ η2ð Þ3=2

Z 1

0

dθ
θ

cothðθ=4πÞ

´ e�2θðd1=λT Þ
ffiffiffiffiffiffiffiffiffiffi
μ2þη2

p
þ e�2θðd2=λT Þ

ffiffiffiffiffiffiffiffiffiffi
μ2þη2

p
� 2 cos μθ d?=λTð Þ e�θ½ðd1þd2Þ=λT �

ffiffiffiffiffiffiffiffiffiffi
μ2þη2

ph i ð4Þ
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where α= e2/ℏc ≈ 1/137 is the fine structure constant and
η= c/vγ is a velocity-dependent parameter that uses the

relativistic Lorentz factor γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
. The inte-

gration variable θ= 2πℏω/kBT in Eq. (4) encapsulates the
exchanged energy ℏω, and we have rewritten the thermal
factor as

2nT ðωÞ þ 1 ¼ cothðθ=4πÞ ð5Þ
As we argue above, this factor and ΓðR;R0;ωÞ are both
diverging as 1/ω in the ω→ 0 limit. However, the
divergence is canceled because the expression inside square
brackets in Eq. (4) behaves as∝ θ2 ~ω2 for small ω: the first
two terms inside the square brackets represent the
contributions arising from the two separate electron paths
passing by R1 and R2, respectively, whereas the rightmost
term stands for path interference, and while the integral of
each of these three terms diverges, their sum is finite.
Consequently, the decoherence probability P(R1,R2)
remains finite. We note that this quantity vanishes for
R1=R2, as expected from Eq. (2), and it depends on R1,R2,
and T only through the ratios d1/λT, d2/λT, and d⊥/λT.

Zero-temperature limit
In the zero-temperature limit, we have nT(ω)→ 0, so we

can approximate cothðθ=4πÞ � 1 in Eq. (4) [see Eq. (5)].
The θ integral can then be performed analytically by first

absorbing the ð1=λT Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ η2

p
factor of the exponentials

into the integration variable, and then considering the

identity
R1
0 dθ e�a

ffiffiffiffiffiffiffiffiffi
θ2þg2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2 þ g2

q
¼ K0ðgaÞ (see Eq.

3.914-4 in Ref. 48) together with the expansion K0ðgaÞ ¼
logð2Þ � logðgaÞ � C þ O½ðgaÞ2 logðgaÞ� for ga≪ 1, where
C is the Euler constant. Applying this result to the three
terms inside the square brackets of Eq. (4), setting d⊥= 0,
and taking the g→ 0 limit, we find

PT¼0ðd1; d2; d? ¼ 0Þ ¼ α

2π
f ðv=cÞ log ðd1 þ d2Þ2

4d1d2

" #
ð6Þ

where f ðv=cÞ ¼ R 1
0 dμ 2μ2 þ η2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� μ2
p

μ2 þ η2ð Þ�3=2

encapsulates the dependence on electron velocity via the
variable η= c/vγ. Incidentally, this function admits the
closed-form expression f ðβÞ ¼ ðβγÞ�1 ð2γ2 þ 1Þf
Kð�β2γ2Þ � 3Eð�β2γ2Þg in terms of the elliptical inte-
grals K and E. Interestingly, the dependences on path
positions and electron velocity are factorized in Eq. (6).
The distance dependence of the decoherence probability
exhibits a logarithmic divergence as Pðd1; d2Þ �
ðα=2πÞ f ðv=cÞ j logðd2=d1Þj in the d2/d1→ 0,∞ limits,
while it vanishes for d1= d2. In addition, P(d1, d2)
vanishes at v= 0 and diverges as / log γ as the electron
velocity approaches the speed of light.

It is instructive to examine the frequency integral of
Eq. (4) in the T= 0 limit. For d⊥= 0 and d2 > d1, Fig. 2b
shows that low frequencies become increasingly relevant
as we increase d2, eventually converging to a profile that
diverges as∝ 1/ω at low frequencies in the d2/d1→∞
limit, for which the frequency integral is consequently
infinite (i.e., we have full decoherence preventing any
interference when mixing the two paths). We remark that
an arbitrarily large loss of coherence can take place even
when d1 is made arbitrarily large, provided d2/d1≫ 1, as
the electron can always couple to long-wavelength
excitations.
Universal curves for the decoherence probability are

obtained from Eq. (6) for d⊥= 0 as a function of d2/d1
(Fig. 2c) for different electron velocities. Despite the
logarithmic divergence with d2/d1 and the / log γ diver-
gence as v approaches c, the decoherence probability takes
relatively small values at T= 0 within the wide range of
distances and velocities explored in Fig. 2c. This conclu-
sion is however dramatically changed at finite tempera-
tures, as we show below.
Similar results as those presented in Fig. 2b, c are

obtained for the zero-temperature decoherence probability
when varying the inter-path distance d⊥ along the direc-
tion parallel to the half-plane edge while setting d1= d2
(see Fig. S3 in SI), which we calculate by numerically
integrating Eq. (4) after setting cothðθ=4πÞ ¼ 1.

Decoherence at finite temperature
We examine the full dependence of the decoherence

probability P [Eq. (4)] on d1/λT and d2/λT for d⊥= 0 in
Fig. 3a–c, setting v/c= 0.5 as an illustrative example since
the dependence on velocity is relatively mild (see Fig. S4
in SI). The diagonal of the plot in Fig. 3a is dominated by a
substantial reduction in the decoherence probability when
∣d1− d2∣ ≲ λT (see also Fig. 3b; we note that P= 0 for
d1= d2). However, P quickly rises to large values when the
distance difference is a few times the thermal wavelength
(Fig. 3c).
It is interesting to analytically examine the high-

temperature limit, in which the integral in Eq. (4) is domi-
nated by regions where nT(ω) ≈ kBT/ℏω≫ 1, so we can
approximate cothðθ=4πÞ � 4π=θ [see Eq. (5)]. Setting again
d⊥= 0, and changing the θ variable of integration to absorb
the ð1=λT Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ η2

p
factor, the θ integral can be analytically

performed by using the identity
R1
0 dθ e�aθ=ðθ2 þ g2Þ ¼

ð1=gÞ½CiðgaÞ sinðgaÞ � SiðgaÞ cosðgaÞ� (see Eq. 3.354-1 in
Ref. 48), where Ci and Si are the cosine and sine integral
functions, respectively. We then expand CiðgaÞ ¼
C þ logðgaÞ þ OðgaÞ2 and SiðgaÞ ¼ �π=2þ gaþOðgaÞ2
for ga≪ 1, and from here, we find

R1
0 dθ e�aθ=ðθ2 þ g2Þ �

a log aþ � � � , where the eliminated terms are linear in a,
independent of a, or vanishing in the g→ 0 limit, so they do
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not contribute to the θ integral when summing the three
exponential terms in Eq. (4). The μ integral of the remaining
a log a contribution can also be performed in closed form,
leading to the final result

Pd1;d2�λT ðd1; d2; d? ¼ 0Þ ¼ α

2
ð1� 1=γÞ
ðv=cÞ2

´
d1

λT
log

2d1

d1 þ d2

� 	
þ d2

λT
log

2d2

d1 þ d2

� 	
 �
ð7Þ

where we again observe a factorization of the depen-
dences on electron–half-plane distances and electron
velocity. The decoherence probability P exhibits a linear
divergence with d1 and d2 for a constant ratio d2/d1 in the
d1, d2≫ λT limit. In addition, the temperature enters
through an overall factor 1/λT= kBT/2πℏc∝ T, so that P
also scales linearly with T.
In the high-temperature limit [Eq. (7)], the scaled

probability λTP/d1 only depends on the ratios d2/d1 and v/
c, and in particular, it exhibits a roughly linear increase
with d2/d1, as shown in Fig. 3d. We further observe the
noted linear scaling with T, directly reflecting the linear
increase with temperature in the photon population at
long photon wavelengths (i.e., those that are commensu-
rate with the electron–edge distances, which are large
compared with λT in the limit under examination). In
addition, the dependence on electron velocity is fully
contained in the prefactor 0.5 ≤ (1− 1/γ)/(v/c)2 < 1 in
Eq. (7), which takes finite values over a broad range of
velocities typically used in electron microscopes, down to
v= 0 (Fig. 3e). This is in contrast to the T= 0 behavior, in
which, although P also depends on velocity through a
prefactor f(v/c) [see Eq. (6)], the latter vanishes in the
small velocity limit and diverges when v approaches c.
We stress that the change in behavior from zero to finite

temperate is continuous but relatively steep, as shown in
Fig. S5 in SI.

Finite-size effects: decoherence by a metallic ribbon
While the assumption of a thin PEC screen is reasonable

for metallic films of small thickness compared with the
electron–edge distances, a finite extension of the half-plane
geometry can play a role because the aforementioned
infrared divergence requires that the structure responds at
arbitrarily low frequencies (see Table 1). We study finite-
size effects by limiting the extension of the half-plane in one
direction and considering instead a ribbon of finite width
W. The decoherence probability is then computed by
employing an ad hoc boundary-element method in which
the ribbon is discretized through a uniform set of points
along the transverse direction, as explained in the self-
contained Supplementary Section S4.
The resulting decoherence probability is plotted in Fig. 4

for a two-path configuration featuring an inter-path dis-
tance D and a shortest electron–ribbon distance d (see inset
and Fig. S6 in SI). Specifically, we show calculations for D/
W= 0.01 and 20, combined with different W/λT ratios
ranging from zero temperature to W=100 λT. At large
inter-path separations (D= 20W, solid curves), the infinite
half-plane limit is recovered for distances d≪W. The
condition d=W (vertical solid line) signals the transition
between the half-plane limit and a regime in which the
probability is exponentially attenuated when increasing d at
all temperatures. This behavior is produced by ribbon-
mediated coupling of the path that is closest to the edge to
radiative modes, while the distant path experiences a neg-
ligible degree of inelastic interaction.
For relatively small inter-path separations (D= 0.01W,

dashed curves in Fig. 4), both paths undergo a similar level
of inelastic interaction, and consequently, P is strongly
reduced compared to the results for large D. Under these
conditions, the half-plane limit is recovered at d~D=
0.01W (vertical dashed line) in both the low- and high-
temperature regimes (W/λT= 0 and≫ 1, respectively).
Similarly to the half-plane, a departure from the T= 0
regime is observed at large ribbon–electron separations, as
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indicated by color-coordinated vertical arrows in Fig. 4. At
large temperatures, this departure takes place over the entire
range of distances d considered in the figure, thus producing
an overall increase in the decoherence probability.

Discussion
In summary, inelastic radiative scattering of free electrons

passing near extended structures produces a divergence in
electron decoherence at high temperatures and/or large
inter-path separations for electrons prepared in a two-path
beam configuration. In essence, the extended material
structure acts as a coupler between the evanescent electron
field and long-wavelength free-space radiation. We exem-
plify this effect through an analytical treatment of the
interaction between free electrons and a metallic half-plane,
which is a self-scaling geometry such that, at zero tem-
perature, there are no absolute length scales in the system,
and therefore, the decoherence probability only depends on
the ratio of electron-path distances to the edge. For this
system, the probability that the electron interacts with
radiative modes receives a divergent contribution at low
frequencies and, although this yields an infinite frequency-
integrated probability, the loss of coherence remains finite
for finite electron inter-path separation. The decoherence
probability increases with temperature as we depart from
T= 0. Then, the thermal wavelength defines an absolute
length scale in the system. These results require the
involvement of low-frequency radiation, with wavelengths
that are commensurate with both the electron-path–edge
distances and the extension of the material, as confirmed by
the observation that the half-plane limit is recovered when
considering instead ribbons of large width compared with
the thermal wavelength and the electron–edge distance.
These results suggest the possibility of detecting the

presence of distant objects without perturbing them (i.e.,
without causing any inelastic excitation in the involved
materials, and relying instead on decoherence produced

by coupling to radiative modes). Indeed, at zero tem-
perature, the self-scaling nature of the half-plane geo-
metry implies that a large decoherence probability is
obtained for any arbitrarily large electron–edge distance,
provided the latter is small compared with the inter-path
separation. In addition, at finite temperatures, a high
degree of decoherence is observed when the inter-path
distance is large compared with the thermal wavelength.
The strong temperature dependence of the decoherence

probability could be exploited to perform vacuum thermo-
metry and measure the temperature of the free-space ther-
mal radiation bath. The required inter-path distances are a
few times the thermal wavelength. At room temperature, the
latter is λT ≈ 50 μm, so we need to consider distances of
hundreds of microns, which are typical separations between
e-beams and different structural components in electron
microscopes. Incidentally, some degree of undesired elec-
tron decoherence could be produced due to radiative cou-
pling assisted by elements placed close to the e-beam in
electron microscopes, an effect that deserves further exam-
ination in light of the results presented in this work.
Our predictions could therefore be tested in an electron

microscope by introducing a specimen consisting of a
wide ribbon (e.g., having width W= 20 λT ≈ 1 mm at
room temperature) and splitting the e-beam into two
paths (e.g., separated by a distance D=W). Then, inter-
ference between the two paths is significantly reduced
when bringing the ribbon within a distance d < 0.1W ≈ 0.1
mm from the nearest electron path (e.g., P > 0.2). We
further conceive a macroscopic version of this experiment
at cryogenic temperatures, for which the decoherence
probability is preserved if all lengths are scaled by the
thermal wavelength (e.g., multiplied by a factor of ~ 100
when moving from room temperature to outer-space
thermal-background conditions at 2.7 K). The far-field
interference arising when mixing electron paths that are
separated by a distance D results in interference fringes
with an angular spacing∝ 1/D, which becomes too small
to be experimentally resolved at macroscopic separations
D of hundreds of microns. Instead, an electron optics
system could be used to split an e-beam and separate the
electron paths to the desired distance D in the region of
interaction with the material structure, followed by a
second set of optical components that bring the electron
paths to interference at a post-selecting transmission
grating49,50 (see Fig. S1 in SI).
The 1/r distance dependence of the Coulomb field that

accompanies a moving charge (the electron) underscores
the observed divergences in electron decoherence. An
analogous divergence in decoherence could potentially be
produced by other types of excitations that share similar
long-range behavior. In particular, further investigation is
needed to explore the effect of coupling between massive
particle waves and gravitons, as well as the gravitational
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interaction with long-range modes in material structures
(e.g., sound and elastic waves).
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