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Abstract
Developing open-shell singlet (OS) diradicals with high luminescent properties and exceptional single-molecule
magnetoluminescence (ML) performance is extremely challenging. Herein, we propose a concept to enhance
luminescent efficiency by adjusting the donor conjugation of OS diradicals, thereby achieving a highly luminescent
diradical, DR1, with outstanding stability and making it a viable option for use in the emitting layer of organic light-
emitting diodes (OLEDs). More importantly, the 0.5 wt%-DR1 doped film demonstrates significant single-molecule
magnetoluminescence (ML) properties. A giant ML value of 210% is achieved at a magnetic field of 7 T, showing the
great potential of DR1 in magneto-optoelectronic devices.

Introduction
Open-shell singlet (OS) diradicals are important build-

ing blocks for functional molecular materials1–18, with a
large number of pioneering works by researchers advan-
cing their development and applications across various
fields19–40. Despite this progress, there remains a lack of
research regarding luminescent OS diradicals, hindering
their potential use in optoelectronic applications. In fact,
the luminescent diradicals are rare chemical species, there
are only a few reports to date41–44. Recently, we reported
the first luminescent Müller’s hydrocarbon with OS
ground state45, but unfortunately, its photoluminescence
quantum yield (PLQY) was found to be very low (0.4%),
rendering it suitable only for conceptual exploration and

hindering its practical applications in optoelectronic
devices.
Magnetic field effects (MFEs) on the luminescence, i.e.,

magnetoluminescence (ML) of radicals, hold great pro-
mise for developing novel exciton spin manipulation
methodologies that are unachievable by conventional
closed-shell luminescent molecules46–50. In 2018, Kusa-
moto and co-workers first reported MLs in organic radical
excimer species, which opened the gate to this field46.
Recently, Kusamoto and co-workers elegantly designed
and synthesized a spatially confined luminescent diradical
and observed its single-molecule ML properties50.
Nevertheless, the development of highly luminescent
diradicals and the achievement of their efficient single-
molecule ML properties continue to be a formidable
challenge.
Based on the first-principle calculations, we find that for

an OS diradical, the radiative decay of singlet excitons
corresponds to electronic transitions between the singly
occupied molecular orbital (SOMO) and the lowest
unoccupied molecular orbital (LUMO). However, due to
the electron correlation, the electron density distributions
of the SOMO and LUMO for α and β electrons located in
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the different fragments (all of which are located on the
two radical centers) are cross-distributed (Fig. S1). This
makes the transition out-of-phase with minimal oscillator
strength since, in the zero-order approximation, electro-
nic transitions can only occur between orbitals of the
same spin (Fig. 1a). In contrast, the radiative decay of
triplet excitons involves the highest occupied molecular
orbital (HOMO) of the donor part and the SOMO of
radical center (Fig. 1a and Fig. S1). Therefore, elegantly
adjusting the donor conjugation of the diradical can
improve its transition oscillator strength and enhance its
luminescence properties.
Following the theoretical framework above, we select

carbazole, a mild donor unit with a non-alternating
molecular structure and multiple active sites as the brid-
ging group, and tris(2,4,6-trichlorophenyl)methyl (TTM)
as the radical center to design four diradicals, DR1–DR4
(Fig. 1b, c). To identify the optimal candidate, we con-
ducted a series of theoretical investigations on the four
molecules. Using unrestricted density functional theory
(UDFT) and time-dependent UDFT at the B3LYP/6-
31 G(d,p) level, we obtain the ground-state and excited-
state properties. The calculated singlet-triplet energy gap
(ΔES-T) of DR1–DR4 is −0.022, −0.031, −0.008, and
0.004 kcal mol−1, respectively, indicating weak interac-
tions between the two TTM mono-radical centers and
revealing that DR1–DR3 are OS diradicals (Table S1). The
negligible differences observed in spin density distribu-
tions and the optimized geometries of OS and thermally
excited triplet (Tt) (Figs. S2–S5) are consistent with the
small ΔES-T. The diradical character index, y0, was widely
used to describe the degree of diradical character, ranging
from 0 for a closed-shell (CS) electronic structure to 1 for
a pure diradical8. DR1–DR4 show large y0 values of >0.90,
revealing excellent diradical features of the four molecules

(Table S1). However, the quantum chemical calculations
reveal that the different connection modes between the
bridging carbazole unit and the two TTM mono-radicals
largely affect their interaction strength, leading to differ-
ent photophysical properties for the four molecules. The
calculation results indicate that DR1 exhibits the most
efficient electron-hole separation and higher oscillator
strength for the first excited state transitions than the
other three diradicals (Figs. S7, S8 and Tables S2, S3).

Results
Synthesis and structure
According to the theoretical considerations described

above, we report herein a highly efficient OS luminescent
diradical DR1, which was prepared in four steps from
commercially available reagents (Scheme 1 and Support-
ing Information S2). To determine the molecular struc-
ture, a single crystal of the DR1 was obtained by slow
evaporation from a methanol/dichloromethane solution
at room temperature. The structure was then determined
by synchrotron radiation (Fig. 2). As can be seen, the two
triphenyl groups attached to N1 and C6 are propeller-
shaped due to the steric repulsion of the chlorine atoms,
while the sp2 hybridized carbon atoms C7 and C28 are the
two unpaired radicals. The magnetic property of DR1 was
investigated using a superconducting quantum inter-
ference device (SQUID). As shown in Fig. S9, the value of
χmT increases rapidly with increasing temperature from 2
to 100 K, which is typical for an open-shell singlet ground
state in thermal equilibrium with a triplet state51. Fitting
the χmT–T curve with the Bleany–Bowers equation52, we
obtain a ΔES-T of −0.051 kcal mol−1, which is consistent
with the theoretically calculated value. Moreover, DR1
exhibits a single-line electron paramagnetic resonance
(EPR) signal in the Δms= ±1 region, and a signal
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corresponding to the Δms= ±2 transitions is also
observed at 77 K (Fig. S10).

Photophysical and electroluminescent properties
To evaluate the luminescent properties of DR1, a series

of photophysical studies were conducted on it and its two
fragments (mono-radical TTM53 and ((4-(N-carbazolyl)-
2,6-dichlorophenyl) bis(2,4,6-trichlorophenyl) methyl
(TTM-1Cz)54,55; Fig. 3a) at room temperature. Figure 3b, c
shows the normalized UV/Vis absorption, photo-
luminescence (PL), and transient PL decay spectra of
mono-radicals and DR1 in cyclohexane. These three
radicals show strong absorption bands at 375 nm, attrib-
uted to the transition of electrons on α-SOMO to higher
energy levels. Compared to the weak absorption band of

TTM at long wavelength (~540 nm), there is a relatively
strong absorption band at ~600 nm in TTM-1Cz and
DR1, which is attributed to the transition of electrons on
β-HOMO to β-SOMO (Fig. 3d, see Supporting Informa-
tion for details). The emission band of DR1 (654 nm)
exhibits a significant red shift compared to TTM (564 nm)
and TTM-1Cz (628 nm). The PLQY of TTM, TTM-1Cz,
and DR1 are 2.0%, 53.0%, and 16.0%, respectively. Nota-
bly, the PLQY of DR1 is 40 times higher than that of the
firstly reported luminescent Müller hydrocarbon TTM-
PhTTM (0.4%)47. The PL decay lifetime (τ) of DR1
(10.6 ns) is between those of TTM (5.6 ns) and TTM-1Cz
(41.3 ns) (Fig. 3e). Then, the radiative and non-radiative
rate constant (kr and knr) of DR1 are estimated to be
1.51 × 107 and 7.92 × 107 s−1, respectively. Notably, the kr
of DR1 is higher than those of TTM (0.35 × 107 s−1) and
TTM-1Cz (1.28 × 107 s−1), which is due to the higher
transition oscillator strength of DR1 (Table S2). While the
knr of DR1 is lower than that of TTM (17.5 × 107 s−1) and
higher than that of TTM-1Cz (1.13 × 107 s−1). The larger
knr of DR1 than TTM-1Cz may be due to its smaller
energy gap and the intramolecular spin interaction, which
can accelerate the internal conversion to the ground state.
To investigate the ground and excited state character-

istics of DR1, we conducted measurements of UV/vis
absorption, PL, τ and PLQY in various solvents with dif-
ferent polarities (Fig. S11 and Table S5). As the solvent
polarity increases, the UV/vis absorptions of DR1 remain
largely constant, indicating minimal dipolar changes in
the ground state across different polar solvents. On the
contrary, the emission spectra exhibit an obvious
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bathochromic shift; the PLQY and τ start with a slight
increase followed by a decrease with increasing solvent
polarity, showing a parabolic trend. The highest PLQY
reaches 25% in toluene, while in high-polarity chloroform,
it remains 19%, four times higher than that of TTM-1Cz
(5%). Overall, these photophysical properties indicate that
the excited state of DR1 is a hybridized local and charge-
transfer (CT) state, as compared with the local excited
state of TTM and CT-dominated excited state of
TTM-1Cz56,57.
The DR1 doped (0.5 wt% in PMMA) film shows iden-

tical UV/Vis absorption to that in solution while exhi-
biting a deep-red emission (673 nm) with a PLQY of
14.1% (Fig. 3f). We found that at low doping concentra-
tions of DR1 (0.1–2 wt%), the emission does not exhibit
significant red shift or broadening, indicating that the
luminescence is primarily contributed by single mole-
cules. However, at higher concentrations (10–30 wt%), the
emission shows significant redshifts (to ~690 nm) and
broadening, while PLQYs decrease, suggesting the possi-
ble occurrence of aggregation and excimer formation (Fig.
S13 and Table S6). Fig. S14 shows the temperature-
dependent PL of the 0.5 wt%-DR1 doped film. As the
temperature decreases from 300 to 100 K (Fig. S14a),
intermolecular vibrations weaken, resulting in a decrease
in the rate of thermal radiation recombination and an
increase in the PL intensity. This behavior is similar to
that of the mono-radical TTM-1Cz (Fig. S15a). However,

as the temperature decreases further from 100 to 2 K
(Fig. S14b), the PL intensity decreases, revealing that
singlet excitons are less emissive than triplet excitons for
DR1, which is consistent with the quantum chemical
calculations (Table S2). When the temperature falls below
20 K, the PL rapidly weakens, indicating a much-increased
occupation of the OS ground state at low temperatures
due to its small ΔES-T. This is in contrast to the behavior
of TTM-1Cz, where the PL intensity slightly increases
with temperature from 100 to 2 K (Fig. S15b) because
TTM-1Cz is a doublet molecule, and the spin-statistics is
not temperature-dependent. The temperature-dependent
PL of 20 wt%-DR1 doped film (Fig. S16) is similar to that
of the 0.5 wt%-DR1. However, as the temperature
decreases from 40 to 2 K, the excimer emission band
(peaks at 820 nm) gradually becomes dominant, and the
intensity remains unchanged.
DR1 shows excellent thermal- and photo-stabilities. As

can be seen in Fig. S17a, the thermogravimetric analysis
(TGA) indicates that DR1 has a high thermal decom-
position temperature up to 346 °C in a nitrogen atmo-
sphere. The photo-stability of DR1 was measured in
cyclohexane and compared with mono-radicals TTM and
TTM-1Cz. The estimated half-lifetime of DR1
(3.7 × 104 s) is 1500 and 25 times higher than that of TTM
(2.4 × 101 s) and TTM-1Cz (1.5 × 103 s), respectively (Fig.
S17b). We also carried out a theoretical analysis of the
thermodynamic and kinetic stability58 of DR1 and
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compared it with mono-radicals (Table S7 and Fig. S18).
The calculated results are consistent with our experi-
mental observations.
The greatly enhanced PLQY and excellent stability of

DR1 inspired us to explore its potential as the emitting
layer in organic light-emitting diodes (OLEDs). Accord-
ingly, we fabricated solution-processed OLEDs utilizing
DR1 (0.5 wt%) as the emissive dopant (see details in
Supporting Information). The OLEDs exhibit deep-red
emission peaking at 680 nm with the maximum external
quantum efficiency (EQE)59 of ~1.0% (Fig. S19).

ML properties
It is interesting to find that DR1 shows quite strong ML

properties. Figure 4a shows that the PL intensity of DR1
single-molecule (0.5 wt.%) significantly enhances with the
increase in magnetic field (from 0 to 7 T) at 2 K, achieving a
giant ML value of 210% at 7 T (Fig. 4b). In contrast, the
mono-radical TTM-1Cz (0.5 wt%) exhibits almost no ML
effect (Fig. 4c). This indicates that the interaction between
two electrons within a single-molecule of DR1 plays a key
role for MLs. For the high concentration (20 wt%) doped
film, both the aggregation-induced red-shifted single-
molecule emission and excimer emission increase with
magnetic field, and the ML value of aggregated single-
molecule emission and excimer emission are 50% and 7.5%,
respectively (Figs. S23 and. S24), similar to the previously
reported ML in high concentration mono-radical (10 wt%)46.
To understand the ML properties of DR1, we carried

out transient PL measurements. As can be seen from

Fig. 4f, the decay processes of DR1 single-molecule (0.5 wt
%) emission do not change when the magnetic field is
applied, revealing that the magnetic field cannot influence
the transition processes of the excitons. It is likely to
change the statistics of excitons with different spin con-
figurations, i.e., changes in the spin states of electrons.
The transient PL with and without a magnetic field of 7 T
for high-concentration doped DR1 (20 wt%) are presented
in Fig. 4g, h. While the excimer decay process does not
change with the external magnetic field (Fig. 4h), the
decay process of aggregated single-molecular emission
does show a response to the magnetic field (Fig. 4g). This
indicates that the magnetic field can weaken the inter-
molecular interactions by control the spins of electrons
since frontier orbital electrons with same spins tend to
repel each other60–62. Therefore, the aggregation effects
decreased, leading to a decreased non-radiative recombi-
nation rate and increased lifetime for the emission of
aggregated single molecules. In addition, temperature-
dependent ML tests were conducted on two films, as
shown in Fig. 4b and Figs. S21 and S22. The MLs of both
0.5 wt% and 20 wt% doped DR1 decrease with tempera-
ture and vanish at ~100 K. This means that the magnetic
field is more likely to affect the electron spin rather than
the intersystem crossing as proposed previously46,48.
Otherwise, significant MLs can be observed at high
temperatures.
Based on these findings, we propose a possible

mechanism for ML in DR1 (Fig. 5) based on magnetic
field-induced spin polarization63. As shown in Fig. 5a, for
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DR1 single-molecular emission, the molecules tend to
occupy the OS ground states as the temperature decrea-
ses. Therefore, at low temperatures, the number of less-
emissive singlet excitons is significantly higher than that
of high-emissive triplet excitons generated by photo-
excitation. This is primarily due to the lower occupation
of the Tt ground state and the weak thermally forbidden
intersystem crossing from singlet excitons to triplet
excitons, leading to the decreased PL intensity as the
temperature decreases (Fig. S14b). When the magnetic
field is applied, electron spins tend to be aligned, leading
to the increased occupation of the Tt ground state and
triplet excitons and, thus, increased PL, i.e., the ML. We
note that this model is in line with temperature-
dependent MLs. The ML mechanism of high-
concentration doped DR1 is similar to that of single-
molecular emission. For the aggregated single-molecular
emission, we should point out that the aggregation of the
molecules plays an important role. Since the aggregation
can highly annihilate the PL emission (mostly from triplet
excitons), one can expect a decreased ML. For the exci-
mer emission, since the decay processes do not change
with the magnetic field, we can conclude that the mag-
netic field cannot influence the transition processes of the
excimers. A probable mechanism for the ML of DR1
excimer emission should come from the difference in PL
efficiencies between excimers formed by triplets and those
formed by singlets. Therefore, an increased number of
triplet excimers can lead to an increased total excimer
emission intensity. However, the significantly decreased
ML of the excimer emission than that of the single-
molecular emission indicates that the PL efficiency of
excimers formed by singlet excitons is close to that formed
by triplet excitons, which is consistent with the
temperature-insensitive excimer emission intensity (Fig.
S16b). We note that this model is different from the one

proposed by Kusamoto et al. 47–50, where the ML of single-
molecular and excimer emissions from mono-radicals
were clearly interpreted. Nevertheless, the underlying
mechanism is the magnetic field-induced spin polarization
(Fig. 5b), in line with that proposed by Kusamoto50.

Discussion
We have proposed a concept to enhance the lumines-

cence of OS diradicals, leading to the design of a new
luminescent diradical, DR1. Both theoretical and experi-
mental investigations confirm that DR1 is an OS in the
ground state, with the ability to be thermally excited to
the triplet state due to the small ΔES-T. DR1 exhibits
outstanding properties, including a PLQY that is 60 times
higher than that of the luminescent Müller hydrocarbon,
as well as excellent thermal- and photo-stability. Fur-
thermore, we have successfully fabricated deep-red
OLEDs based on DR1. Moreover, at 7 T and 2 K, a giant
single-molecule ML of 210% was achieved, highlighting
the strong magneto-optical properties of DR1. Our study
represents a significant step towards the application of OS
luminescent diradicals in magneto-optoelectronic fields.

Materials and methods
Materials
All chemical agents and solvents, unless otherwise sta-

ted, were purchased from commercial suppliers and used
directly without further purification. The intermediate
2(HTTM), mono-radical TTM, and TTM-1Cz were pre-
pared according to our previous reports54,56. DR1 was
prepared in four steps from commercially available
reagents (Supporting Information S2), and its crystal-
lographic data (CCDC 2252807) are provided free of
charge by the joint Cambridge Crystallographic Data
Center and Fachinformationszentrum Karlsruhe Access
Structures service.
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Fig. 5 Magnetoluminescence mechanism of DR1 at low temperature. a single-molecule. b Excimer molecule. (1R, 3R: singlet and triplet of single-
molecule in the ground state; 1R*, 3R*: singlet and triplet of single-molecule in the excited state; (R–R): excimer molecule; krsm : single-molecule
radiation transition; krexm : excimer molecule radiative transition)
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General characterization
The 1H nuclear magnetic resonance (NMR) spectra

were recorded in (Methyl sulfoxide)-d6 (d6-DMSO) on a
Bruker Avance-III 500 NMR spectrometer at ambient
temperature. GC–MS mass spectra were recorded on a
Thermo Fisher ITQ1100 mass spectrometer. MALDI-
TOF mass spectra were recorded on a Bruker Autoflex
speed TOF/TOF mass spectrometer with DCTB as a
matrix. EPR spectra were recorded on a Bruker ELEXSYS-
II E500 CW-EPR spectrometer. Thermal gravimetric
analysis (TGA) curves were obtained on the Pyris1 TGA
thermal analysis system at a heating rate of 20 °Cmin−1 in
a nitrogen atmosphere. Elemental analysis was conducted
by an Elementar vario MICRO cube instrument. Single
crystal X-ray diffraction data of DR1 was collected using a
synchrotron X-ray source at the Shanghai Synchrotron
Radiation Facility. The crystal structure was determined
by direct methods and further refined by the full matrix
least squares method of F2 using the SHELX-97 and
Olex-2. Magnetic measurements were performed on a
Quantum Design 6.5 Tesla SQUID-VSM system with a
temperature range of 2–300 K and an applied field of
1000 Oe. A powder sample of DR1 with a weight of
5–10mg was sealed in a plastic capsule. The magnetic
moment was measured in the temperature range of
2–300 K. After correction of diamagnetic contributions
from the sample, using tabulated constants, sample
holder, and paramagnetic contamination, the magnetic
data were fitted with Bleaney–Bowers equation52.

Theoretical calculations
All calculations were performed with the Gaussian 16

program package. The geometries of all compounds were
optimized as open-shell (OS) singlets by the spin-
unrestricted broken-symmetry (BS) approach at the
UB3LYP/6-31 G** theoretical level. This approach has
been shown to provide reliable geometries and energies
for singlet-state diradicals. Then these compounds were
optimized as closed-shell (CS) singlets and thermally
excited triplet (Tt) states at the (U)B3LYP/6-31 G** level,
respectively. All optimized geometries were confirmed to
be local minima by vibrational analysis. The OS structures
were shown to be stable structures. ΔE(OS-CS) and
ΔE(OS-Tt) were calculated as the energy differences
between OS structure and CS structure, Tt structure,
respectively.

Photo-physics
Ultraviolet-visible (UV–Vis) and photoluminescence

(PL) spectra of the radicals were recorded on a Shimadzu
UV-2550 spectrophotometer and a Shimadzu 5301PC
spectrophotometer. The intensity of luminescence at
654 nm (for DR1), 564 nm (for TTM), and 628 nm (for
TTM-1Cz) were monitored exciting at 370 nm light

(excitation slit was 20 nm, and shutter control was off).
The relative PLQYs were measured using a Shimadzu
UV-2550 spectrophotometer and Edinburgh fluorescence
spectrometer (FLS980). The fluorescence lifetimes were
measured with FLS980. The temperature-dependent PL
spectra of the radicals were measured using a spectro-
meter (Ocean Optics QE65 Pro), and a Spectromag PT
liquid helium-free superconducting magneto-optical sys-
tem (Oxford Instruments NanoScience) was used to
provide different temperatures with 2 ~ 300 K and mag-
netic fields from 0 to 7 T.
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