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Abstract
Several image-based biomedical diagnoses require high-resolution imaging capabilities at large spatial scales. However,
conventional microscopes exhibit an inherent trade-off between depth-of-field (DoF) and spatial resolution, and thus
require objects to be refocused at each lateral location, which is time consuming. Here, we present a computational
imaging platform, termed E2E-BPF microscope, which enables large-area, high-resolution imaging of large-scale objects
without serial refocusing. This method involves a physics-incorporated, deep-learned design of binary phase filter (BPF) and
jointly optimized deconvolution neural network, which altogether produces high-resolution, high-contrast images over
extended depth ranges. We demonstrate the method through numerical simulations and experiments with fluorescently
labeled beads, cells and tissue section, and present high-resolution imaging capability over a 15.5-fold larger DoF than the
conventional microscope. Our method provides highly effective and scalable strategy for DoF-extended optical imaging
system, and is expected to find numerous applications in rapid image-based diagnosis, optical vision, and metrology.

Introduction
Microscopic imaging systems can only produce a clear

image of an object within a limited depth range, known
as depth-of-field (DoF). The DoF defines the depth range
of an object that can be sharply imaged by a given optical
imaging system, and is determined by the operating
wavelength, effective focal length and aperture size of the
imaging lens. In many biomedical imaging applications,
such as in cytometry1,2, histology3, and endoscopy4–6,
high-resolution imaging over a large spatial scale is often
desired; for instance, a pathological examination is
typically performed with a high numerical-aperture (NA)
objective to visualize cellular and subcellular features of
tissue specimens, but it is accompanied by limited field-
of-view (FoV) and DoF. Therefore, to image large-area

pathological/cytology slides, either objects or imaging
optics should be scanned and refocused repetitively,
which is costly and labor-intensive. To enhance the DoF,
various strategies have been explored over the past few
decades. A simple solution would be to reduce the
aperture size of the detection system as the DoF
increases with 1=NA2; however, this inevitably causes a
loss of light throughput and information capacity.
Wavefront coding, combined with dedicated deconvo-
lution methods, provides a convenient and effective
route for enhancing DoF performance7. Various pupil
filters, such as the cubic phase mask (CPM)7, sinusoidal8,
logarithmic9, tangent10 phase filters and hybrid
refractive-diffractive structures have been introduced for
the DoF-extension and to correct for some forms of
aberrations11. However, implementing such complex and
continuous phase structures requires either expensive
phase-modulating devices (e.g., spatial light modulators)
or sophisticated manufacturing methods (e.g., e-beam or
multi-step lithography).

© The Author(s) 2023
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Chulmin Joo (cjoo@yonsei.ac.kr)
1Department of Mechanical Engineering, Yonsei University, Seoul 03722,
Republic of Korea
2The DABOM Inc, Seoul 03722, Republic of Korea
Full list of author information is available at the end of the article

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

www.nature.com/lsa
http://creativecommons.org/licenses/by/4.0/
mailto:cjoo@yonsei.ac.kr


Binary phase filters (BPF), composed of concentric
rings with phases of 0 and π (i.e., 1, −1 in amplitude),
have recently received considerable attention as DoF-
extension elements owing to their simple topology and
ease of manufacturing. As the object information travels
through a carefully designed BPF, the resulting images
can be tuned to be invariant over the desired depth
range, while maintaining a high lateral resolution. In
addition, owing to its discrete 0–π phase topology, BPF
allows relatively simple manufacturing processes such as
photolithography and thin-film deposition, making
them suitable for mass production. Consequently, var-
ious BPF design methods for focus- or DoF-extension
have been suggested in recent years, including exhaus-
tive search12–19, analytical solutions20–23, and various
types of optimization algorithms24–27. Despite these
efforts, the DoF-extension performance of BPFs has not
been fully explored. One of the main reasons is that,
while its performance improves with an increasing
number of rings28, developing BPF designs with more
than five concentric rings is extremely challenging and
computationally expensive due to the complexity of the
non-linear equations involved. For multi-annulus binary
filter designs involving exhaustive searching algorithms,
the processing time increases exponentially with the
number of concentric rings16. Particle swarm optimi-
zation (PSO) algorithms29, which are known to be
effective in solving non-linear multi-dimensional pro-
blems, have been employed to design BPF by exploring
the vast design space in multi-annulus binary optical
elements28,30–33. However, PSO-based algorithms
require a number of preset design parameters, and for a
design task involving many parameters, the solution
space is expected to grow exponentially. Moreover, PSO
tends easily to fall into local optimum in high-
dimensional space and has a low convergence rate in
the iterative process34.
Here, we present a DoF-extension computational

imaging platform enabled by an end-to-end optimized
BPF and image reconstruction (E2E-BPF microscope).
To develop BPF designs with no constraints on the
number of rings, we adopted a deep learning-based end-
to-end framework to jointly design the DoF-extension
BPF and optimize the relevant imaging reconstruction
network with a large number of datasets. The deep
learning-based BPF design is enabled by introducing a
penalization function in the network, which involves
differentiable design variables that converge to binary
states through epochs. The learned BPF was inserted
into an optical microscope to produce a depth-invariant
point-spread function (PSF) over the extended DoF.
The resultant images were then fed into the jointly
learned deconvolution network to produce high-
resolution and high-contrast images over the extended

DoF. We demonstrate high-resolution, high-contrast
imaging capability over a >15.5× DoF of our E2E-BPF
platform through numerical simulations and experi-
ments with fluorescent beads. The biological viability of
our method was further demonstrated by imaging
cellular specimens and a large-scale mouse kidney tis-
sue section stained with fluorescent dyes with no
refocusing.

Results
E2E-BPF microscope: physics-informed, learning-based
BPF design and image deconvolution
DoF for an optical microscope with a circular aperture

is determined as35:

DoFclear ¼ nmedium � λ
NA2 þ nmedium

M � NAe ð1Þ

where nmedium is the refractive index of imaging medium,
λ is the wavelength of light, and NA is the numerical
aperture of the objective. M is the magnification factor
of the microscope, and e denotes the pixel pitch of
image sensor. The DoFclear in our experimental setup
(33×/0.75NA) was estimated to be 1.19 μm. Our goal is
to obtain high-resolution images over the extended DoF
with jointly optimized front-end binary-phase optics
and the back-end reconstruction algorithm (Fig. 1). We
achieved this using end-to-end training of the BPF
design and neural network as a joint optimization
problem. The design process involves an evolution of
both the phase filter design (i.e., the phase of each ring
in the BPF parameterized by ϕ) and the post-processing
algorithm Nð�Þ (i.e., trainable hyperparameters in Nð�Þ
parameterized by Wnet ). Our proposed architecture
accomplishes supervised learning using a set of ground-
truth images IT to educate and evolve hardware/
software variable parameters. This design pipeline and
backpropagation procedure are shown in Fig. 2. The
architecture consists of two major components: (1) a
differentiable imaging model with a BPF to be designed,
which takes in input ground-truth image and corre-
sponding depth information ψ (see Eq. 7 for the
definition of ψ) and outputs an intermediate image I
predicted by the forward imaging model, and (2) a
deconvolution neural network to produce a high-
resolution, high-contrast image from the intermediate
image. The optical layer simulated the image formation
of a microscope with a phase filter in its pupil plane.
Given a phase filter and an object with a certain defocus
distance, we obtain an intermediate image (I) by
convolving the ground-truth object information (IT )
and the corresponding PSF. We defined the design
variables as the phase values of K concentric annular
regions, parameterized by K phase values ϕ ¼
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ðϕ1;ϕ2; ¼ ;ϕK Þ. In our analysis, it was set to K = 64 for
a desired DoF of 16× that of clear aperture, as it
provided a numerically accurate system response while
minimizing computational cost. The same BPF design
was derived for a larger K (e.g., K = 128) when using the
same initial conditions. Detailed analysis on the number
of rings for a desired DoF is provided in Sec. 1 in
Supplementary. To induce the phase value to the binary
states during the learning stage, a differentiable pena-
lization function Pð�Þ was introduced within the end-to-
end optimization framework (Fig. 2). The penalization
function was designed to have saddle points on (-π, 0, π)
to facilitate the convergence of the phase value to those
values at the end of training. Finally, the BPF was
obtained by taking the absolute value and threshold of
the phase values. Note that the proposed penalization
function accepts and produces continuous values in the
range [-π, π], and the phase filter can be initialized with
a generalized pupil function (e.g., Zernike functions). In
our ablation study, we found that the use of phase
axicon and spherical aberration as the initial conditions
markedly improved optimization performance (See Sec.
2 of Supplementary). The forward imaging model
performs imaging in a wide-field fluorescence micro-
scope with a phase filter in its pupil plane to obtain the
intermediate image (I). Then, U-Net, a widely used
neural network for solving such deconvolution

problems36, was trained to obtain the final image, which
is compared against the ground-truth image (IT ). Both
the reconstruction network and phase values of the BPF
are updated to minimize the end-to-end loss function
LE2E through a gradient-descent method. Our optimiza-
tion problem is stated as:

argmin
ϕ;Wnet

LE2E

LE2E ¼ LRMSE N I ϕ;ψ
� �

;Wnet
� �

; IT
� �þ αLBPF ϕ

� �

ð2Þ
where the first term LRMSEð�Þ evaluates the difference
between the post-processed image N I ϕ;ψ

� �
;Wnet

� �
and

the ground-truth IT , and the second term LBPFð�Þ is a BPF
feature loss that enforces the phase values of BPF rings to
the binary states. α is a penalty parameter that controls the
relative weight of the two terms, and it is updated through
the epochs. Details of the algorithm and definitions of the
loss functions are provided in the “Methods” section.

Numerical experiments and validation
First, we validated the DoF-extension performance of

the E2E-BPF microscope through numerical experiments
under the same conditions as those of our experimental
setup. To this end, we define the DoF of a microscope
with a phase filter A (DoFA), as the axial range over which
the structural similarity index measures (SSIMs) of the
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Fig. 1 Operating principle of E2E-BPF microscopy. An axi-symmetric BPF and image reconstruction network are jointly learned through the
physics-informed neural network. The numerical phantom of an Arabidopsis thaliana in three-dimension space was considered. The learned BPF is
fabricated and inserted in a pupil plane in an optical microscope, which produces projected volumetric image over the extended depth range. The
acquired image is subsequently fed into the jointly learned reconstruction network to generate high-resolution, high-contrast image over the
extended DoF. OBJ microscope objective; NA numerical aperture; TL tube lens; CAM camera
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resultant images satisfy the following condition:

SSIM IT ; Îðz 2 DoFAÞ
� � � SSIMthr ð3Þ

Here, IT and Î are the ground-truth information and the
reconstructed image for the object defocused by z,
respectively, and DoFA denotes the DoF obtainable with
pupil A and the corresponding reconstruction U-Net.
SSIMthr is the threshold SSIM value, which can be set by
the user. In our implementation, we set SSIMthr to be the
SSIM value at DoFclear = 1.19 μm for the clear aperture,
which is SSIMthr ¼ 0.900 for our test dataset37. Having
defined the DoF, we examined and compared the
performance of the E2E-BPF microscope against those
from microscopes with a clear aperture and CPM. The
effective NAs were identical for all three configurations.
For evaluation, images of Lenna and fluorescent tissue
sections38 were used as ground truths, which were imaged
using a microscope with a given pupil filter. We then
trained the reconstruction U-Nets for each imaging
condition, except for the images with the clear aperture.
Figure 3 presents representative images at various

defocus distances obtained by microscopes with clear,
E2E-BPF and CPM filters in the pupil plane. Note that the
defocus distances were normalized with DoFclear=2. One
can easily observe that E2E-BPF and CPM provide high-
contrast, high-resolution images over much larger depth
ranges, whereas the image quality for the clear aperture
degrades rapidly for defocus distances exceeding DoFclear
(1.19 μm). We evaluated the root mean square error
(RMSE) and SSIM values as a function of the normalized

axial defocus distance (see Methods for the definition of
image evaluation metrics) with 820 image patches from
independent datasets (Fig. 3d). Consistent with the qua-
litative observation in Fig. 3a–c, E2E-BPF and CPM
microscopes offered much higher SSIM and smaller
RMSE values over a much larger DoF (19.93 μm), as
compared with those of the microscope with clear aper-
ture (1.19 μm). Compared to CPM, E2E-BPF provided
higher SSIM and smaller RMSE values over the entire
defocus range. In specific, as shown in Fig. 3d, SSIM
values above SSIMthr(0.900) could be obtained up to z=
±9.96 μm for E2E-BPF (16.74× larger DoF based on Eq. 3),
while those were limited to z= ±7.57 μm for CPM. The
mean SSIM values of E2E-BPF and CPM over the entire
DoF range were found to be 0.947 and 0.904, respectively.
One can also note that the in-focus SSIM value of CPM
(0.894) was smaller than SSIMthr, while those for clear
aperture and E2E-BPF were found to be 0.922 and 0.944,
respectively. We further examined the DoF-extension
performance of E2E-BPF against other prior pupil designs
(Table 1). We used the same datasets in Fig. 3 (i.e., images
of Lenna and fluorescent tissue section as the ground-
truths), and trained the reconstruction U-Nets for each
imaging condition. RMSEs and SSIMs were computed for
the resultant images, and the average RMSE and SSIM
were evaluated for all the images in the test dataset within
20 μm DoF. The DoF-extension ratio was calculated as
the ratio of DoFA to DoFclear. As shown in Table 1 and Fig.
S3, E2E-BPF outperforms all the reference pupil designs
in terms of RMSE, SSIM, and DoF-extension ability. Note
that E2E-BPF jointly optimizes DoF-extension BPF and
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deconvolution network based on the loss function set
with image metrics over a large number of images. While
BPFs combined with various deconvolution algo-
rithms30,39 and reconstruction networks40 have been

proposed, E2E-BPF utilizes a significantly larger number
of design variables, and thus the algorithm can explore
vast spaces to obtain optimal BPF designs that produce
depth-invariant PSFs over the desired DoF range. The

Table 1 DoF-extension performance comparisons of E2E-BPF against reference pupil designs

Pupil design Post-processing Scene 1 (Lenna) Scene 2 (Mouse intestine section) 820 images from test dataset37 DoFA/DoFclear

RMSE/SSIM RMSE/SSIM RMSE/SSIM (mean ± s.d.)

Clear aperture - 0.100/0.570 0.092/0.634 0.056 ± 0.034/0.766 ± 0.127 1.00

Roper et al.27 U-Net 0.065/0.679 0.047/0.820 0.023 ± 0.012/0.917 ± 0.059 3.64

Ryu et al.24 U-Net 0.084/0.648 0.078/0.742 0.036 ± 0.022/0.890 ± 0.088 4.50

Elmalem et al.40 U-Net 0.088/0.630 0.070/0.735 0.033 ± 0.021/0.889 ± 0.098 4.50

Milgrom et al.18 U-Net 0.073/0.660 0.050/0.801 0.027 ± 0.018/0.903 ± 0.088 5.58

Fontbonne et al.30 U-Net 0.062/0.691 0.038/0.852 0.021 ± 0.014/0.920 ± 0.077 7.83

Ren et al.58 U-Net 0.052/0.730 0.022/0.910 0.015 ± 0.009/0.920 ± 0.073 8.63

Ben-Eliezer et al.15 U-Net 0.071/0.656 0.048/0.795 0.023 ± 0.018/0.916 ± 0.080 9.14

Dowski et al.7 U-Net 0.068/0.672 0.046/0.831 0.028 ± 0.015/0.904 ± 0.070 13.32

E2E-BPF U-Net 0.051/0.743 0.022/0.912 0.015 ± 0.006/0.942 ± 0.020 16.74

In-focus z/(DoFclear /2)=1

z/(DoFclear /2)

z/(DoFclear /2)=4 z/ (DoFclear /2)=8 z/(DoFclear /2)=16
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E2E-BPF
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0.045/0.751 0.025/0.893 0.045/0.759 0.016/0.912 0.051/0.743 0.023/0.908 0.057/0.711 0.023/0.905 0.062/0.693 0.028/0.884

0.074/0.658 0.056/0.804 0.074/0.660 0.056/0.804 0.070/0.668 0.050/0.822 0.060/0.689 0.036/0.855 0.095/0.598 0.075/0.729
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Fig. 3 Numerical performance evaluation of E2E-BPF against clear and CPM pupil filters. The pictures of Lenna and mouse intestine tissue
section were used as the reference, and numerically imaged by a microscope equipped with the filters. a–c Imaging results with clear, E2E-BPF, and
CPM filters for the objects at various depth positions. Note that the results from E2E-BPF microscope and CPM were post-processed via the
corresponding U-Nets optimized for each imaging condition. d RMSE and SSIM responses of each pupil filter as a function of defocus distance. The
responses represent the mean RMSE and SSIM values evaluated over a randomly permuted test dataset. The solid lines represent the mean RMSE and
SSIM values and the shaded areas represent standard error of the mean evaluated over randomly permuted test dataset (N= 820)
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jointly optimized deconvolution network further denoises
and processes the acquired images to yield high-resolu-
tion, high-contrast images.

Experimental performance evaluation: fluorescence
microspheres
We then experimentally validated the DoF-extension

performance of the E2E-BPF microscope by imaging
green fluorescent beads (PS-Speck Microscope point
source kit 7220, Molecular Probes, USA). An E2E-BPF
designed with a phase axicon as the initial condition was
fabricated using photolithography, and inserted into the
pupil plane of a custom-built fluorescence microscope
(see Methods). The fluorescence beads were sufficiently
smaller than the diffraction-limited resolution of the
microscope (0.75NA); thus, the image of a single bead
could be considered as the PSF. We acquired images of
the beads with and without the E2E-BPF in the micro-
scope, as the monolayered beads were scanned along the
optical axis in steps of 0.1 μm in the range of -12 μm to

12 μm. At each depth, we acquired 10 frames with a
100ms exposure time, and averaged and subtracted the
background to reduce noise. The images were recon-
structed using the U-Net jointly optimized by the
numerical simulation. Figure 4a, b shows representative
images of a fluorescent bead acquired at various defocus
distances with standard and E2E-BPF microscopes. For
visual clarity, all the images were normalized by the peak
value of the image at z= 0 μm for each case. In the case of
the images from the standard microscope (i.e., microscope
with a clear aperture), the beads became immediately
blurred as they were displaced by 0.6 μm from the focal
plane of the objective lens. In contrast, the E2E-BPF
microscope produced high-resolution, high-contrast
images of the beads over the depth range of −9.5 μm to
9.5 μm. We evaluated the full widths at half-maximum
(FWHMs) of the PSFs at various depths (Fig. 4c). We
performed Gaussian fitting on the intensity profiles of the
bead images, and computed the FWHMs. The in-focus
FWHM of the standard microscope was measured to be
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Fig. 4 Imaging results of a fluorescent bead using standard and E2E-BPF microscopes. The top rows of a and b show the images of the
fluorescent bead placed at various axial positions, and the bottom rows are the corresponding intensity profiles of the bead images, respectively. The
red dots represent the raw data, and the solid curves are the results of Gaussian fitting. Scale bar in the images denotes 1 μm. c The graph shows the
measured FWHMs of the PSFs for the standard and E2E-BPF microscopes. Each data point represents mean FWHM value, calculated from the
measurements of 20 beads at 0.1 µm intervals along the depth axis. The error bars indicate standard deviation. For visual clarity, only every tenth data
point is shown. It is evident that the E2E-BPF microscope provides an extended DoF while maintaining a PSF with the FWHM of 0.48 μm
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0.45 μm, and it became 0.54 μm at the defocus distance of
0.6 μm. On the other hand, the PSF of the E2E-BPF
microscope featured a FWHM of 0.54 μm at a defocus
distance of 9.5 μm, and the mean FWHM of 0.48 μm over
the range of −9.5 μm to 9.5 μm. These results indicate
that the E2E-BPF microscope provides a significantly
larger DoF of 19 μm, which is consistent with the esti-
mated value of 19.93 μm in the numerical simulation.

Experimental result of E2E-BPF microscope: monochrome
fluorescent imaging
Next, we performed E2E-BPF fluorescence imaging of

bovine pulmonary artery endothelial (BPAE) cells, in which
mitochondria were labeled with a red fluorescent dye
(MitoTracker® Red CMXRos, Life Technologies, USA).
Imaging experiments were carried out using the same
standard and E2E-BPF microscopes as described in the
previous section. Figure 5a presents an image of the BPAE
cells captured by the E2E-BPF microscope. Two regions in
the imaging FoV, marked with orange and green dotted
boxes were examined at various defocus distances (Fig. 5b,
c). One can see that for the defocused images from the
standard microscope (with clear aperture), both the image
quality and the SSIM values decreased dramatically. By
contrast, the E2E-BPF microscope produced the high-
contrast images with high SSIM scores at all depths. Spe-
cifically, all the images from the E2E-BPF microscope fea-
tured SSIM values larger than 0.9 in the range from −9 μm
to 9 μm, and the mean SSIM value was found to be 0.95. In
contrast, the mean SSIM values from the standard micro-
scopy images were measured to be 0.54.
The insets in Fig. 5b, c show the intensity profiles along

the solid lines in Fig. 5a. Notably, the images from E2E-BPF
microscope feature high-contrast (or high modulation
depth) over the extended DoF, while the standard micro-
scope provides high-contrast images only in the focal plane
(z= 0 μm). Specifically, in Fig. 5b, c, the contrasts of the
images from standard microscope were 0.99 and 0.98 at the
focal plane, but decreased to 0.75 and 0.83 at the defocus
distance of 9 µm, respectively. The mean contrast values of
the images from the standard microscope over the range of
−9 µm to 9 µm were found to be 0.83 and 0.88, while the
mean contrast values of images from E2E-BPF microscope
were 0.97 and 0.96, respectively.

Experimental result of E2E-BPF microscope: multicolor
fluorescent imaging
We further imaged a 16-μm thick mouse kidney tissue

section stained with multiple fluorescent markers (Fluo-
Cells® prepared slide #3 (F24630)) to demonstrate the utility
of the E2E-BPF microscope for large-area, high-throughput
imaging applications. Mouse kidney tissue was stained using
a combination of three fluorescent dyes: DAPI (blue) to stain
the DNA, AF488 (green) to label the tubules, and AF568

(red) to visualize the F-actin filaments. Imaging experiments
were performed using the same standard and E2E-BPF
microscopes as in the previous section, and we employed the
same image reconstruction networks for all images obtained.
Figure 6a presents a whole slide image of the mouse

kidney tissue captured using the E2E-BPF microscope
without serial refocusing. The image was produced by
integrating 589 individual frames, each with dimensions
of 2048 × 2048 pixels. The frames were stitched together
with a standard image stitching algorithm41 with an
overlap of 10% to ensure seamless integration of the
frames. After the whole image was constructed, it was
divided into small patches of 576 × 576 pixels, which
were then inputted to the reconstruction U-Net network
(See Sec. 4 of Supplementary for detailed information on
U-Net). The output of the U-Net network was then
reassembled into the whole slide image through a mosaic
algorithm. The U-Net was capable of post-processing at
a speed of 0.01 s/576 × 576 pixel patches. The total image
acquisition and processing time of the E2E-BPF micro-
scope was measured to be 30 min, which is more than
15.5 times shorter than that of a standard microscope
with serial refocusing. The two regions in the image,
marked with yellow dotted boxes, are shown in greater
detail in Fig. 6b, d for the standard microscope and Fig.
6c, e for the E2E-BPF, respectively. Comparing the
images obtained with the E2E-BPF and standard
microscope, the images from standard microscope in Fig.
6b, d appear partially defocused and blurred due to its
limited DoF (1.19 μm), which is much smaller than the
thickness of the mouse kidney tissue section (~16 μm).
In contrast, the E2E-BPF microscope provided all-in-
focus images, as demonstrated in Fig. 6c, e. This differ-
ence was even more pronounced when comparing the
enlarged images indicated by the white dotted box in Fig.
6b–e. Enlarged images in Fig. 6b1, c1 are glomerular
regions where tubules are intricately entangled, and
Fig. 6d1, e1 indicate a glomerular region with relatively
low density. Due to the three-dimensional arrangement
of the glomerulus at various depths, the microscope with
the limited DoF produced diffuse and low-contrast
images, whereas the E2E-BPF microscope could clearly
image tubular and nuclei structures indicated in green
and blue, respectively. Figure 6b2, c2, d2, e2 show the
enlarged images of the tubule and duct regions, respec-
tively. The nuclear and cytoplasmic fluorescence signals
at various depths led to a diffuse background in the
standard microscope, while the E2E-BPF microscope
could clearly image structures across various depths. To
validate E2E-BPF imaging on mouse kidney sections, we
conducted axial scanning and quantified the local image
contrast for enlarged images shown in Fig. 6b1–e1,
b2–e2 (Sec. 5, Supplementary). The E2E-BPF micro-
scope could resolve nuclei, tubules, and duct structures
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with a mean contrast of 0.95 for the defocus ranges
considered. In contrast, the standard microscope pro-
duced partially focused images in the defocus range of
0 μm to 3 μm with a mean contrast of 0.83.

We further performed E2E-BPF imaging of 3D tumor
spheroid of nominal thickness of 50 μm and compared its
imaging performance against standard microscope. Details
of tumor spheroid formation and imaging results are
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Fig. 5 Experimental imaging results of BPAE cells labeled with red fluorescent dyes at various depth locations using standard (clear
aperture) and E2E-BPF microscopes. a E2E-BPF microscopy image of the BPAE cells at z= 0 μm. b, c Magnified images of the regions marked in (a)
at various defocus distances, along with their SSIM values
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provided in Sec. 6 in Supplementary. Note that thickness of
the tumor spheroid is much larger than the DoF of our E2E-
BPF platform. Even for this thick specimen exceeding the
DoF of the E2E-BPF microscope, E2E-BPF microscope
produced the images with high contrast (>0.91), while the
images from the standard microscope suffered from blurs
from out-of-focus background and exhibited low image
contrast (<0.71).

Discussion
We presented a computational microscopy platform

capable of high-resolution imaging of large-scale

specimens over 15.5× larger DoF. We developed a data-
driven, physics-informed, deep-learning architecture to
jointly design and optimize a binary phase structure and
image reconstruction network. We compared the imaging
performance of our platform with previously reported
phase filter designs and demonstrated its superior imaging
performance. Experimental validations were also per-
formed by imaging fluorescently labeled beads and tissue
sections to demonstrate its validity in visualizing detailed
structures across specimens without serial refocusing.
Compared to prior studies, several distinctive features

should be noted in our platform: (1) Our method aims to

d1
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b2

b1

100 �m 20 �m

Standard microscope E2E-BPF microscope
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d2 e2 e1

e2

c2

c1

Fig. 6 E2E-BPF microscope for multicolor fluorescent imaging. a Whole slide image of the mouse kidney tissue section captured with the E2E-
BPF microscope. Magnified images from the standard (b, d) and E2E-BPF (c, e) microscopes of the regions are marked with yellow dashed lines in (a).
The E2E-BPF microscope could clearly visualize the structures across various depths, without serial refocusing
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obtain BPF designs rather than continuous phase filters.
The phase filters with continuous and complex functions
are often found to be challenging to fabricate. Conse-
quently, most relevant studies have used sophisticated
fabrication methods, such as e-beam lithography and multi-
step photolithography, or employed active wavefront
modulation devices (e.g., spatial light modulators), which
are expensive and make the system bulky. In contrast, BPF
is a transparent, two-state phase element; therefore, it is
relatively easy to fabricate and offers amenability to mass
production. Simple one-step photolithography or nanoim-
printing can readily produce the designed BPF on a large
scale. (2) To the best of our knowledge, our method
represents the first end-to-end deep learning-based imple-
mentation of BPF and image deconvolution. The design of
binary structures in a DNN framework is challenging, as it
is associated with the gradient computation of binary
functions. Some BPF design studies detoured this problem
by approximating a binary function with some continuous
functions40. We tackled this problem by introducing a dif-
ferentiable penalization function and BPF loss term in our
network, which resolves the discontinuity problem, while
facilitating convergence to binary states in the final BPF
design. We believe that our method is a viable design
methodology for deep-learning-based binary structures in
various optical applications. (3) We experimentally
demonstrate the large-DoF imaging performance of E2E-
BPF microscope over a broad range of the visible spectrum.
Jin et al. demonstrated 5× extended DoF performance on
single-color fluorescence imaging3 using a phase filter of
continuous phase functions. Our method, on the other
hand, provides much larger DoF-extension performance
(15.5× compared with a clear aperture) with a binary phase
filter, and demonstrated its imaging capability for both
single- and multiple-color fluorescence imaging. Although
the BPF was optimally designed for a single wavelength and
aberration-free optical system, we demonstrated the
robustness of E2E-BPF in DoF-extension to multicolor
imaging. These features altogether suggest a great promise
of our method in a wider range of applications in biome-
dical diagnosis and color vision, for example.
Our design was performed in an aberration-free

microscope using a single wavelength (center wave-
length of the operating spectrum), and thus any dis-
crepancies between our model and experimental settings
may contribute to the degradation of DoF. Our experi-
mental results for the mouse kidney section stained with
three fluorophores demonstrated robustness of multi-
color imaging in E2E-BPF platform. However, if the
fluorescent molecules exhibit emission spectra far distant
from the design wavelength, the imaging performance is
expected to degrade (See Sec. 7 of Supplementary). We
numerically performed E2E-BPF imaging of 820 objects
labeled with various fluorescent dyes (i.e., DAPI (blue),

FITC (green), TRITC (red), and Cy7 (far-red)), which
exhibit different emission wavelengths. The results indi-
cate that E2E-BPF designed at 525 nm is robust to var-
iations in emission wavelength of <110 nm, but if the
spectral shift from the design wavelength exceeds 250 nm,
the performance of the E2E-BPF microscope decreases.
One can consider the extension of our platform in various

directions. For instance, one might incorporate the system
aberration into our design framework to further enhance
the image quality. The measurements of the system aber-
ration can be performed, for example, by imaging isolated
fluorescent particles across the 3D space of interest42. The
PSFs can then be incorporated into the physical model to
jointly optimize filter structure and deconvolution network.
To demonstrate the viability of this aberration-informed
E2E-BPF design, we performed numerical experiments (Sec.
8, Supplementary), and found that the aberration-informed
E2E-BPF design outperformed aberration-ignorant BPF
design in terms of both DoF and image quality. Further, this
aberration-informed design strategy can be extended to
handle spatially-varying aberration in 3D microscopes. In
this case, an axi-symmetric BPF may not be suitable for
handling spatially-varying aberrations, and one may thus
need to explore more design spaces and configurations (e.g.,
binary or continuous phase functions). In addition, aber-
rations derived from possible mismatch between nominal
immersion liquid and samples of imaging, which is a major
source of image degradation in high-NA (i.e., NA > 1)
imaging systems, can be considered. This can potentially be
addressed by incorporating more accurate scalar or vector
beam propagation models (e.g., the Gibson & Lanni scalar
model43) that better describe these imaging characteristics
into the proposed framework.
In our study, we set our desired imaging depth to be 16×

that of clear aperture, and performed the design using 64
design variables. It should be noted that our method is
capable of generating E2E-BPF platform with further
DoF-extension. To achieve this, however, the number of
design variables (i.e., the number of rings in BPF in our
case) should be increased, which would markedly increase
the computation and training times for the BPF design
and deconvolution network. We indeed performed BPF
design for 24× DoF-extension with 128 design variables,
and obtained the BPF design with 22.08× DoF-extension
(Sec. 9, Supplementary). The design, however, required
2.5× longer computation time compared with the original
64-ring design. Moreover, the reduction of fluorescence
intensity in the detector plane should be taken into
account. Since BPF generates elongated PSFs in the
detector region, the energy is distributed over the depth,
which results in the decrease in the measured fluores-
cence signal. This feature has been noted by prior pub-
lications24,44. Depth-resolved, high-resolution imaging
over extended 3D space can also be considered as a
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potential extension of our platform. The design frame-
work can be tailored to produce PSFs that vary dis-
tinctively with emitter locations, and jointly optimized
neural network generates high-resolution images over the
entire 3D space45,46. Implementation of such microscopes
may involve the exploration of various forms of ampli-
tude47,48, phase49,50 or hybrid filter structures with con-
tinuous and multi-step phase functions.
In terms of applications, one of the potential applications

is its utility in light sheet fluorescence microscopy, which
calls for large-DoF and high light efficiency. A BPF can be
designed to generate sharp and elongated excitation light
sheet or focus on the illumination path51. The resultant
fluorescence emission from a large 3D sample can be
detected though our E2E-BPF platform, allowing for high
light-throughput, high-resolution volumetric imaging of
fluorophores without re-focusing. In our experiments, we
did not observe any notable photodamage and photo-
bleaching in longitudinal E2E-BPF imaging (Sec. 10 of
Supplementary). The E2E-BPF platform is also robust in
terms of axial drift because of its elongated PSF. These
features are highly desirable in imaging studies that require
long-term examination of dynamic features of biological
specimens. Other 3D imaging modalities can also benefit
from the E2E-BPF platform. For examples, optical coher-
ence tomography4,6,52,53 and photoacoustic54 microscopy
require high-resolution imaging over an extended DoF. Our
BPF is expected to find its utility in enhancing the imaging
performance and broadening its applications.

Methods
E2E-BPF design
The E2E-BPF is composed of K concentric rings, with

their phase values parameterized by the vector, ϕ ¼
ðϕ1;ϕ2; ¼ ;ϕK Þ. Each element of the vector ϕ can be
initialized to an arbitrary value in the range of [−π, π], but
is designed to converge to the binary states, i.e., 0 or π at
the end of learning. To achieve this, a differentiable
penalization function Pð�Þ was applied to ϕ. We con-
ceived a penalization function given as:

Φ ¼ P ϕ
� � ¼ 1

7
ϕ
7 � 2π2

5
ϕ
5 þ π4

3
ϕ
3 ð4Þ

which exhibits the saddling points at (−π, 0, π). Note that
this penalization function is the anti-derivative of the
triple-well-potential function defined in55. With the
penalized vector Φ, the E2E-BPF phase in the pupil plane
can be expressed as:

ΦBPF ρð Þ ¼ Φk for ρk�1 � ρ< ρk k ¼ 1; 2; ¼ ;Kð Þ
ð5Þ

where ρ is the radial coordinate in the pupil plane that is
normalized with NA=λ (0 � ρ � 1).

Imaging model
Consider a planar object IT , placed at a distance z from

the focal plane of an imaging lens. The intermediate
image Iðx0; y0Þ obtained by the E2E-BPF microscope can
be evaluated as the convolution of the object information
with the depth-dependent PSF as:

I x0; y0ð Þ ¼ IT x; yð Þ � h x0; y0;Φ;ψ
� �þ η ð6Þ

where � denotes the convolution operation, and
h x0; y0;Φ;ψ
� �

is the PSF that results from BPF defined
by Φ and defocus parameter ψ. The defocus parameter is
related to the axial defocus distance z as56:

ψ ¼ z
λ

NA2

2nmedium
ð7Þ

where nmedium denotes the refractive index of the medium.
η is the noise, which is assumed to be additive Gaussian.
In our simulation, Gaussian noise with a standard
deviation σ = 0.05 was applied to the normalized blurred
image in the range of [0, 1].
The depth-dependent PSF in an E2E-BPF microscope

can be modeled as the squared magnitude of the Fourier
transform of its pupil function:

h x0; y0;Φ;ψ
� � ¼ F P ρð Þ � exp �i2πψρ2

� �� ��� ��2 ð8Þ

where F denotes the Fourier transform operator,
exp �i2πψρ2ð Þ is the phase term from defocus, and the
pupil function P ρð Þ is expressed as:

P ρð Þ ¼ circ ρð Þ � exp iΦBPF ρð Þð Þ ð9Þ

Here, circðρÞ denotes a circular pupil with its radius
normalized to NA=λ.

Loss function
The end-to-end loss (LE2E) consists of the RMSE loss

LRMSE and the BPF feature loss LBPF . First, the RMSE
between two images is evaluated as:

LRMSE ¼ 1
ffiffiffiffiffiffiffi
NP

p jjIT � Îjj2 ð10Þ

where NP is the number of pixels.
To enforce the phase values of BPF to the binary states

during the learning stage, BPF feature loss LBPF and
penalty factor α are introduced (see Eq. 2). The BPF
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feature loss function is given as:

LBPF ¼
���
∂P ϕ

� �

∂ϕ

���
2

ð11aÞ

with

∂P ϕ
� �

∂ϕ
¼ ϕ

2 � ϕ� π
� �2 � ϕþ π

� �2 ð11bÞ

where the multiplication operator in Eq. 11-b is an
element-wise multiplication. Note that starting from a
small positive value for the penalty parameter α, a
gradient descent method was taken to minimize the loss
function. Then, the penalty parameter was increased, and
the process was repeated. Observe that, in the limit α !
1, when the loss function is minimized, the penalty term
converges to 0 for 10 epochs and the loss function is
thereby minimized. Each epoch took ~1 h on a computer
equipped with an Intel Xeon Gold 6226 R CPU and an
NVIDIA RTX A6000 GPU. Over 10 epochs, the loss
function progressively minimized. See Supplementary
Section 4 for detailed information on the algorithm and
the hyperparameters of the end-to-end network.

Image evaluation metric
The imaging performance of the E2E-BPF microscope

was evaluated by computing its SSIM. SSIM is a well-
known quality metric used to measure the similarity
between two images. The SSIM is defined as:

SSIM IT ; Î
� � ¼ ð2μITμÎ þ C1Þð2σ IT Î

þ C2Þ
ðμ2IT þ μ2

Î
þ C1Þðσ2

IT þ σ2
Î
þ C2Þ

ð12Þ
where the μ and σ denote the mean intensity and standard
deviation of an image, respectively. Note that σ IT Î

is the
covariance between IT and Î . The positive values of the
SSIM index are in [0,1]. A value of 0 indicates no
correlation between the images, and 1 indicates that IT =
Î . The regularization constants C1 and C2 are used to
avoid a null denominator, and we set C1 = 10�4 and C2 =
9 � 10�4 as used in [57].

Dataset
For the ground-truth datasets for training, histo-

pathology images from the dataset37 taken under a 60×/
0.9NA microscope were used. The high-frequency fea-
tures in the ground-truth image allowed physically accu-
rate image degradation through a simulation of the E2E-
BPF microscope (with or without BPF), primarily due to
PSF convolution, defocus blur, and added noise. A total of
25,000 images were randomly assigned to the training,
validation, and testing sets, which contained 22,000, 2200,
and 820 images, respectively. During training, the images

were scaled to fit the pixel size of the E2E-BPF microscope
and augmented by rotation and flipping.

Experiment setup
The E2E-BPF microscope was built on an epi-fluorescence

microscope composed of an objective lens (CFI Plan
Apochromat Lambda 20×/0.75NA, Nikon, Japan) and a tube
lens (TTL200, Thorlabs, USA). A 4-f optical setup (ACT508-
180 & ACT508-300, Thorlabs, USA) relayed the image from
the microscope onto the detector plane to achieve an
effective magnification of 33. The E2E-BPF was placed in the
conjugate plane of the back aperture of the objective lens.
For excitation, light from a high-power broadband LED
(SOLIC-3C, Thorlabs, USA) passed through an excitation
filter (89013, Chroma, USA), and illuminated the specimen
under the Köhler illumination condition. The fluorescence
signal was collected by the objective lens, transmitted
through a dichroic mirror, and imaged by a camera (Zyla 4.2,
4.2 MB format, 6.5 µm pixel size, Andor, U.K.) behind an
emission filter. To enable imaging of a large specimen, lateral
scanning was enabled by a pair of linear motorized stages
(LNR502E/M, Thorlabs, USA), which featured a maximum
travel range of 50mm× 50mm. Each image frame covered a
FoV of 0.4mm×0.4mm.

BPF fabrication
BPFs were fabricated on N-BK7 substrates using pho-

tolithography. This process enabled us to easily etch rings
with lateral and depth uncertainties of a few micrometers
and tens of nanometers, respectively. Under a mono-
chromatic illumination at wavelength λ0, the desired
etching depth was determined as:

d ¼ λ0
2ðnsubstrate � nairÞ ð13Þ

where nsubstrate is the refractive index of the material (in
our case, SCHOTT N-BK7®) at λ0. For example, at λ0
= 525 nm, d is obtained as 509 nm. In contrast, under
multicolor illumination, the etching depth was deter-
mined at the center wavelength of emission. See
Supplementary Section 11 for detailed information on
the experimental set-up and fabricated E2E-BPF.

Sample preparation
Fluorescence microspheres (PS-Speck Microscope point

source kit 7220, Molecular Probes, USA) with excitation/
emission wavelengths of 505/515 nm (green) were used to
evaluate the imaging performance. The diameter of the
microspheres was estimated as 0.175 ± 0.005 µm. A small
drop of the microsphere solution was placed on a
microscope slide and allowed to dry. After the sample was
completely dried, a small drop of mounting medium was
added, and a coverslip was placed on top of the medium.
The edges of the coverslip were sealed.

Seong et al. Light: Science & Applications          (2023) 12:269 Page 12 of 14



We used a prepared slide of BPAE cells (FluoCells®
prepared slide #1 (F36924) for single-color fluorescence
imaging. The mitochondria of the cells were labeled with
MitoTracker™ Red CMXRos. The stained cells were fixed
and mounted on a glass slide using mounting medium.
A cryostat section of mouse kidney (FluoCells® pre-

pared slide #3 (F24630), Molecular probes, USA) with a
nominal thickness of 16 µm was used for large-scale tissue
imaging. The tissue specimen was stained with a combi-
nation of fluorescent dyes. Alexa Fluor® 488 wheat germ
agglutinin was used to label elements of the glomeruli and
convoluted tubules. Filamentous actin prevalent in glo-
meruli and brush border was stained with red-fluorescent
Alexa Fluor® 568 phalloidin. Nuclei were counterstained
with the blue-fluorescent DNA stain DAPI.
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