
Hu et al. Light: Science & Applications          (2023) 12:270 Official journal of the CIOMP 2047-7538
https://doi.org/10.1038/s41377-023-01297-x www.nature.com/lsa

ART ICLE Open Ac ce s s

Universal adaptive optics for microscopy through
embedded neural network control
Qi Hu 1, Martin Hailstone2, Jingyu Wang1, Matthew Wincott1, Danail Stoychev2, Huriye Atilgan3, Dalia Gala2,
Tai Chaiamarit2, Richard M. Parton2, Jacopo Antonello 1, Adam M. Packer3, Ilan Davis2 and Martin J. Booth 1✉

Abstract
The resolution and contrast of microscope imaging is often affected by aberrations introduced by imperfect optical
systems and inhomogeneous refractive structures in specimens. Adaptive optics (AO) compensates these aberrations
and restores diffraction limited performance. A wide range of AO solutions have been introduced, often tailored to a
specific microscope type or application. Until now, a universal AO solution – one that can be readily transferred
between microscope modalities – has not been deployed. We propose versatile and fast aberration correction using a
physics-based machine learning assisted wavefront-sensorless AO control (MLAO) method. Unlike previous ML
methods, we used a specially constructed neural network (NN) architecture, designed using physical understanding of
the general microscope image formation, that was embedded in the control loop of different microscope systems.
The approach means that not only is the resulting NN orders of magnitude simpler than previous NN methods, but
the concept is translatable across microscope modalities. We demonstrated the method on a two-photon, a three-
photon and a widefield three-dimensional (3D) structured illumination microscope. Results showed that the method
outperformed commonly-used modal-based sensorless AO methods. We also showed that our ML-based method was
robust in a range of challenging imaging conditions, such as 3D sample structures, specimen motion, low signal to
noise ratio and activity-induced fluorescence fluctuations. Moreover, as the bespoke architecture encapsulated
physical understanding of the imaging process, the internal NN configuration was no-longer a “black box”, but
provided physical insights on internal workings, which could influence future designs.

Introduction
The imaging quality of high-resolution optical micro-

scopes is often detrimentally affected by aberrations
which result in compromised scientific information in the
images. These aberrations can arise from imperfections in
the optical design of the microscope, but are most com-
monly due to inhomogeneous refractive index structures
within the specimen. Adaptive optics (AO) has been built
into many microscopes, restoring image quality through
aberration correction by reconfigurable elements, such as
deformable mirrors (DMs) or liquid crystal spatial light
modulators (LC-SLMs)1–6. Applications of AO-enabled

microscopes have ranged from deep tissue imaging in
multiphoton microscopy through to the ultra-high reso-
lution required for optical nanoscopy. This range of
applications has led to a wide variety of AO solutions that
have invariably been tailored to a specific microscope
modality or application.
There are two main classes AO operation: in one case, a

wavefront sensor measures aberrations; in the other case,
aberrations are inferred from images – so called “wave-
front sensorless AO”, or “sensorless AO” for short. For
operations with a wavefront sensor, phase aberrations are
measured directly by wavefront sensors such as a Shack-
Hartmann sensor7,8 or an interferometer9,10. Such
operations are direct and fast but also have intrinsic dis-
advantages such as requiring a complex optical design and
suffering from non-common path errors. Furthermore,
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such wavefront sensors often have limitations and are less
versatile. For example, an interferometer requires a
coherent source and all such methods suffer from pro-
blems due to out-of-focus light. On the other hand, sen-
sorless AO methods normally function with a simpler
optical design and thus are more easily adaptable for a
wide range of imaging applications. However, sensorless
AO methods are based on iterative deductions of phase
aberrations and thus tend to be more time consuming;
this is coupled with repeated and prolonged sample
exposures, which inevitably lead to photo-damage or
motion related errors.
There have been many developments in AO technology,

and in particular sensorless AO methods. Conventionally,
sensorless AO operates based on the principle that the
optimal image quality corresponds to the best aberration
correction11,12. A suitably defined metric, such as the total
signal intensity13–23 or a spatial frequency based sharp-
ness metric24–28, is used to quantify the image quality.
Phase is modulated by the AO while this quality metric
reading is measured and optimised. There have been
discussions on how the phase should be modulated11,29,30

and how the optimisation algorithm should be
designed19,31–33. However, as mentioned before, such
“conventional” sensorless AO methods depend on itera-
tive optimisation of a scalar metric, where all
image information is condensed into a single value, and
the optimisation process is usually through mode by
mode adjustment. Such methods were thus not the most
efficient approach to solving this multi-dimensional
optimisation problem and the effective range of correc-
tion was limited. While a higher dimensional metric was
considered to extract more information from images34,
the optimisation of such a vector metric was not
straightforward.
While the utility of each of these conventional sensor-

less AO methods has been demonstrated separately, each
method had been defined for a particular microscope type
and application. Until now, no such AO solution has been
introduced that can be universally transferred between
microscope modalities and applications.
We propose in this article a new approach to sensorless

AO (named as MLAO) that addresses the limitations of
previous methods and provides a route to a universal AO
solution that is applicable to any form of microscopy. This
solution is constructed around a physics-based machine
learning (ML) framework that incorporates novel neural
network (NN) architectures with carefully crafted training
procedures, in addition to data pre-processing that is
informed by knowledge of the image formation process of
the microscope. The resulting NN is embedded into the
control of the microscope, improving the efficiency and
range of sensorless AO estimation beyond that possible
with conventional methods. This approach delivers

versatile aberration measurement and correction that can
be adapted to the application, such as the correction of
different types of aberration, over an increased range of
aberration size, across different microscope modalities
and specimens.
In recent years, machine learning (ML) has been trialed

in AO for its great computational capability to extract and
process information. However, many of these approaches
required access to point spread functions (PSFs) or
experimentally acquired bead images;35–41 these require-
ments limited the translatability of these methods to a
wider range of applications. Reinforcement learning was
applied to correct for phase aberrations when imaging
non point-like objects;42 however, the method still
involved iterative corrections and was not advantageous
in terms of its correction efficiency, accuracy and cor-
rection working range compared to conventional sen-
sorless AO algorithms. Untrained neural networks (NN)
were used to determine wavefront phase and were
demonstrated on non point-like objects;43,44 however,
such methods were reported to normally require a few
minutes of network convergence, which limits their
potential in live imaging applications.
Our new approach differs considerably from previous

ML assisted aberration estimation, as previous methods
mostly employed standard deep NN architectures that
used raw images as the input data. Our method builds
upon physical knowledge of the imaging process and is
designed around the abilities of the AO to introduce
aberration biases, which improve the information content
of the NN input data. This approach means that the
resulting NN is orders of magnitude simpler, in terms of
trainable parameters, than previous NN methods (See
Table S1 in supplemental document). Furthermore, our
method is readily translatable across microscope mod-
alities. As NN training is carried out on a synthetic data
set, adaptation for a different modality simply requires
regeneration of the image data using a new imaging
model. The NN architecture and training process are
otherwise similar.
To illustrate the versatility of this concept, we have

demonstrated the method on three different types of
fluorescence microscopes with different forms of AO
corrector: a two-photon (2-P) microscope using a SLM, a
three-photon (3-P) intravital microscope using a DM, and
a widefield three dimensional (3-D) structured illumina-
tion microscope (SIM) using a DM. In all cases, we
showed that the new method outperformed commonly
used conventional sensorless AO methods. The results
further showed that the ML-based method was robust in a
range of challenging imaging conditions, such as speci-
men motion, low signal to noise ratio (SNR), and fluor-
escence fluctuations. Moreover, as the bespoke
architecture encapsulated into its design physical
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understanding of the imaging process, there was a link
between the weights in the trained NN and physical
properties of the imaging process. This means that the
internal NN configuration needs no-longer to be con-
sidered as a “black box”, but can be used to provide
physical insights on internal workings and how informa-
tion about aberrations is encoded into images.

Concept and implementation
The overall MLAO concept is illustrated in Fig. 1. The

experimental application follows closely the concept of
modal sensorless AO, whereby a sequence of images are
taken, each with a different bias aberration applied using
the adaptive element. The bias aberrations are a set of
pre-defined phase modulation intentionally introduced
into the system for phase diversity11. The set of images
are then used as the input to the ML-enabled estimator,
which replaces the previous conventional method of
optimisation of an image quality metric. The estimated
correction aberration is then applied to the adaptive
element. If necessary, the process can be iterated for
refined correction. The significant advantage of the new
method is the way in which the estimator can more
efficiently use image information to determine the aber-
ration correction.
The concept has been designed in order to achieve

particular capabilities that extends beyond those of con-
ventional sensorless AO. The new method should ideally
achieve more efficient aberration estimation from fewer
images, to reduce time and exposure of measurement. It
should operate over a larger range of aberration ampli-
tudes, compared to previous methods. A particular esti-
mator should be robust to variations between similar
microscopes and the concept should be translatable
across different microscope types and applications. From
a practical perspective, it is also important that training
can be performed on synthetic data, as it would be
impractical to obtain the vast data set necessary for
training from experimentally obtained images.
An essential step towards efficient use of image data is

the image pre-processing before they are presented to the
NN. Rather than taking raw image data as the inputs, the
NN receives pre-processed data calculated from pairs of
biased images, which we term a “pseudo-PSF”, as shown
in Fig. 1 and explained in the methods section. This
pseudo-PSF contains information about the input aber-
ration and is mostly independent of the unknown speci-
men structure. By removing the specimen information at
this stage, we can reduce the demands on the subsequent
NN, hence vastly simplifying the architecture required to
retrieve the aberration information. In all cases used in
this paper, each pseudo-PSF was calculated from a pair of
images obtained with equal magnitude, but opposite sign,
bias aberration.

As most of the useful information related to aberrations
was contained within the central pixels of the pseudo-PSF,
a region of 32 × 32 pixels was extracted as the input to the
NN. The first section of the NN was a bespoke convolu-
tional layer that was designed to extract information from
the inputs at different spatial scales. The outputs from the
convolutional layer were then provided to a fully con-
nected layer, which was connected to the output layer.
Full details of the NN design are provided in the methods
and the supplementary document. This architecture—
rather unusually—provided a link between the physical
effects of aberrations on the imaging process and the
mechanisms within the NN, specifically through the
weights at the output of the first fully connected layer.
NN training was performed using a diverse set of syn-

thesised training data. These images were calculated using
an appropriate model of the microscope imaging process
in the presence of aberrations. Images were synthesised by
convolutions of specimen structures with a PSF, incor-
porating various likely experimental uncertainties and
noise sources. The specimens consisted of a range of
artificial and realistic objects. Full details of training data
synthesis and data augmentation are provided in the
methods and section 2 of supplemental information.
This versatile concept could accommodate different

aberration biasing strategies. Conventional modal sen-
sorless AO methods typically required a minimum of
2N+ 1 biased images to estimate N aberration modes19.
However, the MLAO method has the ability to extract
more information out of the images, such that aberrations
could be estimated with as few as two images, although
more biased images could provide better-conditioned
information. In general, we defined methods that used M
differently biased images to estimate N Zernike modes for
aberration correction. The input layer of the NN was
adjusted to accommodate the M image inputs for each
method. Out of the many possibilities, we chose to illus-
trate the performance using two biasing schemes: one
using a single bias mode (astigmatism, Noll index45 i= 5)
and one using all N modes that were being corrected. In
the first case, we used either two or four images (M= 2 or
4) each with different astigmatism bias amplitude. We
refer to these methods as ast2 MLAO or ast4 MLAO.
Astigmatism was chosen as the most effective bias mode
(see supplementary document, section 7). In the second
case, biased images were obtained for all modes being
estimated (M= 2N or 4N); this type is referred to in this
paper as 2 N MLAO or 4 N MLAO. For a complete list of
the settings for each demonstration, please refer to Table
S2 in the supplemental document.

Results
In order to show its broad application, the MLAO

method was demonstrated in three different forms of
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Fig. 1 The MLAO concept. a Overview of the AO correction process. A minimum of two bias aberrations were introduced by the adaptive
element; corresponding images of the same field were captured. The images were passed to the MLAO estimator, which determined the
Zernike coefficients for correction. The correction speed was limited only by the speed of image acquisition, not by computation. Further
correction could optionally be implemented through iteration. b Image pre-processing and NN architecture. Images were pre-processed to
compute pseudo-PSFs, which were predominantly independent of specimen structure. F and F -1 represent the forward and inverse Fourier
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model a wide range of realistic specimen structures. Images were created through convolution of specimen structures with an appropriate PSF,
generated for the specific microscope modality, incorporating aberrations. Details of the training data synthesis and data augmentation can be
found in section 2 of the supplemental document
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microscopy: 2-P and 3-P scanning microscopy and
widefield 3-D SIM. This enabled testing in different
applications to examine its performance coping with dif-
ferent realistic imaging scenarios.
The MLAOmethods were compared to two widely used

conventional modal based sensorless AO methods
(labelled as 2 N+ 1 conv and 3 N conv). The 2 N+ 1 conv
method used two biased images per modulation mode
and an additional zero biased image to determine phase
correction consisting N modes simultaneously. The 3 N
conv method used three images per modulation mode
(two biased and one unbiased images) and determined the
coefficients of the modes sequentially. For both methods,
the bias size was chosen to be ±1 rad for each mode. A
suitable metric was selected to quantify the image quality.
For each mode, the coefficients were optimised by

maximising the quality metric of the corresponding
images using a parabolic fitting algorithm. When used in
2-P and 3-P demonstrations, the total fluorescence
intensity metric was optimised. For the widefield 3-D SIM
microscope, a Fourier based metric was optimised46. For
the details of the two conventional methods, please refer
to19,31.
Different functions were defined as optimisation metrics

for the conventional AO methods, and also to assist
quantifiable comparisons of image quality improvement
for the MLAO methods. These were defined as an
intensity based metric yI, a Fourier based metric yF, a
sharpness metric yS and a Fourier threshold based metric
yT. Details are provided in the methods section.

Two-photon microscopy
A range of method validations were performed on a 2-P

microscope that incorporated a SLM as the adaptive
correction element, including imaging bead ensembles
and extended specimen structures. The experimental set-
up of the 2-P system was included in Figure S9a in the
supplemental document. In order to obtain controlled
and quantitative comparisons between different AO
methods, the SLM was used to both introduce and correct
aberrations. This enabled statistical analysis of MLAO
performance with known input aberrations. System
aberrations were first corrected using a beads sample
before carrying out further experiments.
We performed a statistical analysis to assess how

MLAO algorithms (ast2 MLAO and 2 N MLAO) per-
formed in various experimental conditions compared to
conventional algorithms (2 N+ 1 conv and 3 N conv).
Experiments were conducted on fixed beads samples (Fig.
2a, b), and Bovine Pulmonary Artery Endothelial (BPAE)
cells (FluoCellsTM Prepared Slide #1) (Fig. 2c–f). Depen-
dent on the experiment, either N= 5 or N= 9 Zernike
modes were estimated (see Table S2 in Supplemental
document for details).

Statistical performance analysis
Figure 2a, b showed statistical comparisons of the different

correction methods. Figure 2a displayed the residual aber-
rations gathered from twenty experiments, each consisting
of one correction cycle from random initial aberrations
including five Zernike modes. If the remaining aberration is
below the pre-correction value, then the method provides
effective aberration correction. A wide shaded area indicated
inconsistent and less reliable correction. The results show
that when correcting small aberrations with root mean
square (RMS)= 0.63 to 1.19 rad, 2N MLAO performed
similarly to 2N+ 1 conv. Between RMS = 1.19 to 1.92 rad,
2N MLAO corrected more accurately (lower mean aberra-
tion) and also more reliably (smaller error range). For large
aberrations above RMS= 2.12 rad, 2N+ 1 conv completely
failed, whereas the MLAO methods still improved aberra-
tion correction. ast2 MLAO had poor performance at small
aberrations (RMS= 0.63 to 0.84 rad) but provided reason-
able correction for large aberrations (RMS= 1.92 to
2.12 rad). However, it is important to note that ast2 MLAO
required only two images for each correction cycle, far fewer
that the ten and eleven images required respectively for 2N
MLAO and 2N+ 1 conv.
Figure 2b displayed the mean value of metric yI from ten

experiments against the number of images acquired during
multiple iterations of the different correction methods. The
corrected aberrations consisted of nine Zernike modes. It
was shown that ast2 MLAO corrects the fastest initially
when the input aberration is large but converges to a
moderate signal level, which indicates only partial correction
of the aberration. 2N MLAO corrects more quickly and to a
higher level than the conventional algorithms. The narrower
error bars for both MLAO algorithms at the end of the
correction process indicate that they are more reliable than
the two conventional methods.

Correction on extended specimen structures
Figure 2c–f showed experimental results when imaging

microtubules of BPAE cells. Specimen regions were cho-
sen to illustrate performance on different structures: (c)
contained mainly aligned fine fibrous structures; (d)
contained some large scale structures (bottom right); (e)
contained fine and sparse features. For (f) we intentionally
reduced illumination laser power and increased detector
gain to simulate an imaging scenario with very low SNR.
The images showed structured noise at the background,
which could pose a challenge to estimation performance.
A large randomly generated aberration (RMS= 2.12 to
2.23 rad) consisting of five (c and f) or nine (d and e)
Zernike modes was used as the input aberration.
In (c), (d) and (e), ast2 MLAO corrected the fastest

initially when the aberration was large but converged to a
moderate level of correction. 2 N MLAO corrected faster
in general than the conventional methods and converged
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to a higher level of correction. In (f) when SNR was poor
and structured noise was present, ast2 MLAO failed to
correct while 2 N MLAO continued to perform
consistently.

Three-photon intravital microscopy
Three-photon microscopy of neural tissue imaging is a

particular challenge for sensorless AO, due to the

inherently low fluorescence signal levels. While this could
be alleviated by averaging over time, problems are created
due to specimen motion. Further challenges are posed for
functional imaging, due to the time dependence of
emission from ion or voltage sensitive dyes. The
demonstrations here show the robustness of the new
MLAO methods in experimental scenarios where the
conventional methods were not effective. Importantly, the
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MLAO methods were able to perform effective correction
based on a small number of low SNR image frames
without averaging.
The experimental set-up of the 3-P system is shown in

Figure S9b in the supplemental document. The micro-
scope used an electromagnetic DM for aberration
biasing and correction. Two MLAO methods, ast4
MLAO and 4 N MLAO, were used to correct aberrations
by using single frame images as inputs. In each case,
more input frames were chosen than in the 2-P
demonstrations, in order to cope with the lower SNR.
The NNs were trained to estimate N= 7 Zernike
modes. Two types of mice were used to perform live
brain imaging of green fluorescent protein (GFP)
labelled cells (Fig. 3a) and functional imaging in
GCaMP-expressing neurons (Fig. 3b). In Fig. 3a, results
were collected at 450 µm depth and power at sample
was 32 mW. In Fig. 3b, imaging was at 250 µm depth
and power at sample was 19 mW. Further 3-P results
were included in the section 9 of supplemental docu-
ment. For the details of the sample preparation, please
refer to section 10B in supplemental document.
Figure 3a-iii shows plots of the metrics yI and yF as

proxies for correction quality when imaging GFP labelled
cells. Both ast4 MLAO and 4 N MLAO networks suc-
cessfully improved the imaging quality. Similar to the ast2
MLAO results in the 2-P demonstrations, ast4 MLAO
corrected more quickly at first, but converged to a lower
correction level. In contrast, 4 N MLAO performed better
overall correction, but required more images. Panel (a-ii)
show averaged images in which blurry processes pre-
viously hidden below the noise level are revealed and get
clearer through MLAO correction (as highlighted in the
white rectangles). The example biased images shown in
the left panel (a-i) provide an indication of the low raw-
data SNR that the MLAO method can successfully use.
Figure 3b shows results from imaging calcium activity in

a live mouse. Panel (b-iii)showed that the ast4 MLAO
method successfully improved image quality despite the
low SNR and fluorescence fluctuations of the sample.
From both (b-ii) time traces of line 1 and (b-iv) cells A-H,
it could be clearly seen that after corrections, signals were
increased. The 4 N MLAO method failed to correct in this
experimental scenario (results not shown). We will dis-
cuss the likely hypotheses for this in the discussion
section.
The fluctuating fluorescence levels due to neural activity

mean that conventional metrics would not be effective in
sensorless AO optimisation processes. This is illustrated
in Fig. 3b-iii, where it can be seen that no single metric
can accurately reflect the image quality during the process
of ast4 MLAO correction. These observations illustrate
the advantages of MLAO methods, as their optimisation
process did not rely on any single scalar metric.

Widefield 3-D structured illumination microscopy
The architecture of the NN was conceived so that it

would be translatable to different forms of microscopy. In
order to illustrate this versatility, and to complement to
the previously shown 2-P and 3-P laser scanning systems,
we applied MLAO to a widefield method. The 3D SIM
microscope included multiple lasers and fluorescence
detection channels and an electromagnetic DM as
the correction element. Structured illumination patterns
were introduced using a focal plane SLM. The detailed
experimental set-up was included in Fig. S9c in the sup-
plemental document. Further widefield results were
included in the section 9 of supplemental document.
Without AO, 3D SIM reconstruction suffers artefacts

caused by aberrations. Since typical specimens contain 3D
structures, the lack of optical sectioning in widefield
imaging means that the aberration correction process can
be affected by out of focus light. As total intensity metrics
are not suitable for conventional AO algorithms in
widefield imaging, Fourier based sharpness metrics have
often been used. However, such metrics depend on the
frequency components of the specimen structure34. In
particular, emission from out of focus planes can also
affect the sensitivity and accuracy of correction. However,
the NN based MLAO methods were designed and trained
to mitigate against the effects of the sample structures and
out of focus light.
Figure 4 shows results from two NN-based methods

ast2 MLAO and 2 N MLAO compared to the conventional
algorithm 3 N conv, which used the yS metric. Sensorless
AO was implemented using widefield images as the input
(Fig. 4a, b). Previous work showed that aberration cor-
rection within the passband of conventional widefield
images is sufficient for correcting high frequency com-
ponents of SIM reconstruction47. The correction settings
thus obtained by the 2 N MLAO method were then
applied to super-resolution 3D SIM operation (Fig. 4c, d).
N= 8 Zernike modes were involved in the aberration
determination. The specimen was a multiple labelled
Drosophila larval neuromuscular junction (NMJ). For the
details of the sample preparation, please refer to section
10B in supplemental document.
Figure 4b showed that ast2 MLAO corrected most quickly;

2N MLAO corrected similarly as 3N MLAO and were less
effective. Figure 4a showed the effectiveness of correction on
raw and deconvolved widefield images. The third column
showed the changes in image spectrum of the widefield
images after correction. The dashed line shows a threshold
where signal falls below the noise level. It can be seen that all
three methods increased high frequency content compared
to (A) before AO correction. Figure 4c, d showed the images
after 3D SIM reconstruction. It can be clearly seen that
when by-passing AO (left hand side), there were strong
artefacts due to aberrations. After correcting using five
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iterations of 2N MLAO, artefacts were suppressed and
z-resolution was improved (see sections through line 1 and 2
in Fig. 4d) Comparing the widefield images in (a) and SIM
reconstructed images in (c), it is notable that the difference
before and after correction of the widefield images is not
large. The reason for this is that small amounts of aberration
that have little effect on widefield images can have sig-
nificant effects on super-resolution images.

Discussion
The power and simplicity of the MLAO method arise

mainly from a combination of three aspects: the pre-

processing of image data, the bespoke NN architecture,
and the definition of the training data set. All of these
aspects are informed by physical and mathematical prin-
ciples of image formation. This forms a contrast with
many other data-driven deep learning approaches, where
complex NNs are trained using vast amount of acquired
data.
The calculation of the pseudo-PSF from pair of biased

images (as shown in Fig. 1c and elaborated in the
“Methods”) acts to remove most of the effects of unknown
specimen structure from the input data. The information
contained within the pseudo-PSF encodes indirectly how
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common scale for each set of results is indicated by the grayscale bars in (a) and (b). a–i Shows on the left example single-frame images used in
correction with the corresponding bias modes as insets; these were the image inputs to ast4 MLAO. For 4 N MLAO, six more bias modes and thus 24
more images were also used in each iteration. Three images at the central (a-ii) are shown averaged from 20 frames after motion correction. The
rectangular boxes highlight regions of interest for comparison. The plots on the right (a-iii) show the intensity metric (yI) and the Fourier metric (yF),
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collected before and after ast4 MLAO corrections. The pixel values were normalised between 0 and 1
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aberrations affect the imaging PSF (see Fig. S2 in the
supplemental document for more details). There is a
spatial correspondence between a pixel in the pseudo-PSF
and the PSF itself. Hence, spatial correlations across the
pseudo-PSF relate to spatial effects of aberrations on the
images.
The set of pseudo-PSFs forms the input to the con-

volutional layers of the NN. The masks in each convolu-
tional layer probe, in effect, different scales across the
pseudo-PSF. Hence, one can attribute a correspondence
between the output of these layers and the effects aber-
rations have over different physical scales in the image.
Such phenomena are heuristically demonstrated in sec-
tion 3 of the supplementary information. By extracting
relevant weight connections from inside the NN, we can
observe embedded physical interpretations of how the
machine learned to process aberration information con-
tained in images.
To illustrate this, we extracted from the trained NN the

weights between the layer embedding physical inter-
pretations and the next fully connected layer (marked by
the red arrows in Fig. 1a and the red arrow enclosed by
the dashed square in Fig. S1 in the supplemental docu-
ment). Going down the convolutional layers, the scale of
probed features increases from a single pixel, through
small scale features, up to large scale features (as
explained in section 4 of the supplemental document).
The RMS values of the weights from each convolutional
layer are shown in Table 1, where the data are shown for
the ensembles of the two classes of MLAO networks used
in this paper, astX MLAO and XN MLAO (where X= 2 or
4). A full breakdown is provided in the Figure S4 of the
supplementary document.
The largest weight variation was in the first layer in the

XN MLAO NN, which indicates that this algorithm
extracts more information from the single pixel detail
than from larger scale correlations. In contrast, astX
MLAO assigns weights more evenly across all layers. As
explained in the supplementary document, the single pixel
extraction from the pseudo-PSF is related to the Strehl
ratio of the PSF and the intensity information of the
images in non-linear systems. Hence, it is expected that
the XN MLAO NN, which uses as similar set of bias
aberrations to the conventional method, would learn as
part of its operation similar behaviour to the conventional
algorithm. The same phenomena can also explain why in
3-P GCaMP imaging of neural activity astX MLAO was
less affected by the fluorescence fluctuations than XN
MLAO, as astX MLAO relies less on overall fluorescence
intensity changes. Similarly, in widefield imaging astX
MLAO was more effective at extracting PSF variations
than XN MLAO as the overall fluorescence intensity did
not change with aberrations in single-photon imaging.
Conversely, astX MLAO generally performed worse than

XN MLAO in 2-P imaging when structured noise present,
as astX MLAO used fewer images and hence had access to
less detectable intensity variations than XN MLAO. The
fact that astX MLAO had access to less well-conditioned
image information may also explain why in general it was
able to correct aberrations to a lower final level than XN
MLAO.

Conclusion
The MLAO methods achieved the aims explained at the

outset. They provided more efficient aberration correction
with fewer images over a larger range, reducing time
required and specimen exposure. The training procedure,
which was based on synthesised data, ensured that the AO
correction was robust to uncertainty in microscope
properties, the presence of noise, and variations in spe-
cimen structure. The concept was translatable across
different microscope modalities, simply requiring training
using a revised imaging model.
The new methods used NN architectures that are orders

of magnitude simpler, in terms of trainable parameters,
than in previous similar work (see supplementary infor-
mation, section 6). This vast simplification was achieved
through pre-processing of data to remove most of the
effects of unknown specimen structure. The physics-
informed design of the NN also meant that – unusually
for most NN applications – the learned weights inside the
network provided indications of the physical information
used by the network. This provides constructive feedback
that can inform future AO system designs and the basis
for extension of the MLAO concept to more demanding
tasks in microscopy and other imaging applications.

Methods
Image pre-processing
Image data were pre-processed before being used by the

NN, in order to remove effects of the unknown specimen
structure. The resulting “pseudo-PSFs” were better con-
ditioned for the extraction of aberration information,
independently of the specimen. The image formation can
be modelled as a convolution between specimen fluores-
cence distribution and an intensity PSF. The AO intro-
duced pre-chosen bias aberrations, so that multiple
images with different PSFs could be acquired over the
same FOV. Mathematically, this process can be expressed
as

I1 ¼ O � f 1 þ δ1

I2 ¼ O � f 2 þ δ2
ð1Þ

where I1 and I2 were the images acquired with two
different PSFs f1 and f2 for the same unknown specimen
structure O. δ1 and δ2 represent combined background
and noise in each image. In order to remove (or at least
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reduce) the effects of specimen structures, we defined the
pseudo-PSF as

pseudo� PSF ¼ F�1 F I1ð Þ
F I2ð Þ

� �
¼ F�1 F O � f 1 þ δ1ð Þ

F O � f 2 þ δ2ð Þ
� �

¼ F�1 F Oð Þ ´F f 1ð Þ þF δ1ð Þ
F Oð Þ ´F f 2ð Þ þF δ2ð Þ

� �

where F was the 2D Fourier transform and F -1 was its
inverse (see Fig. 1c). The term “pseudo-PSF” was chosen as
the function was defined in the same variable space as a
PSF, although it is not used directly in any imaging process.
A similar computational process was shown elsewhere for
different applications using defocussed images48. Assuming
the noise is small enough to be neglected

pseudo� PSF ¼ F�1 F I1ð Þ
F I2ð Þ

� �
� F�1 F f 1ð Þ

F f 2ð Þ
� �

ð2Þ

There is an implicit assumption here that there are no
zeroes in the object spectrum F (O) or the optical transfer
function F (f2). In practice, it was found that a small non-
zero value of F (δ2 mitigated against any problems caused
by this. Furthermore, although structured noise was pre-
sent in the pseudo-PSFs (see e.g. Fig. S1 in the supple-
mental document), it was found that this did not
detrimentally affect data extraction through the sub-
sequent NN. As a further mitigation, we calculated pairs
of pseudo-PSFs from pairs of biased input images by
swapping the order from (f1, f2) for the first pseudo-PSF to
(f2, f1) for the second.
Example pseudo-PSFs are shown in Fig. S1, S2 in the

Supplemental document. As most information was con-
tained within the central region, to ensure more efficient
computation, we cropped the central region (32 × 32
pixels) of the pseudo- PSFs to be used as the input to the
NN. Dependent upon the MLAO algorithm, the input to
the NN would consist of a single pair of cropped pseudo-
PSFs, or multiple pairs corresponding to the multiple
pairs of bias aberrations applied in different modes.

Neural network training
To estimate phase aberrations from pseudo-PSFs, a

convolutional based neural network was designed

incorporating physical understanding of the imaging
process and was trained through supervised learning.
Synthetic data were used for training and the trained
networks were then tested on real AO microscopes. For
each imaging modality (i.e. 2-P, 3-P and widefield), a
separate training dataset was generated, with the imaging
model and parameters adjusted for different applications.
For the details of neural network architecture and syn-
thetic training data generation, please see section 1 and 2
of the supplementary information.

Image quality metrics
Different image quality metrics were defined for use as

the basis for optimisation in conventional sensorless AO
methods and as proxies to quantify the level of aberration
correction. yI is an intensity based metric and can be used
in non-linear imaging systems. It is defined as

yI ¼
Xl

i

T ið Þ

where T (i) is a flattened array of image I(x) after sorting
pixel values in descending order (indexed i). yI is
computed to sum only the first l pixel values to provide
a fair quantitative intensity variation analysis when
imaging sparse samples. l was adjusted for different
experiments depending on the density of the sample
structures and was chosen to be always larger than 200.

yF is a Fourier based metric and provides an alternative
aspect to the intensity metric. It is defined as

yF ¼
Z Z jf j<0:6f max

jf j>0:1f min

F I xð Þ½ �j jd2f

where F [I(x)] is the 2D Fourier transform of image I(x)
from x domain to f domain; fmax is the maximum
frequency limit of the imaging system. The range 0.1
fmax < | f | < 0.6 fmax was selected such that most PSF
related frequency information was included in the range.

yS is a sharpness metric that can be used for optimisa-
tion in widefield systems, where the other metrics are not
practical, or applications with fluorescence fluctuations. It
is defined as

yS ¼
RR fj j<mf max

fj j>nf max
F I xð Þ½ �j jd2fRR fj j�nf max

fj j>0 F I xð Þ½ �j jd2f

where 1 > m > n > 0. This metric is defined as the ratio of
higher to lower spatial frequency content, which is
dependent upon aberration content, but independent of
changes in overall brightness. m and n can be adjusted for
different imaging sample structures such that the
frequency components 0 < | f | ≤ n fmax contain mainly

Table 1 The RMS of the weight distributions extracted
from different convolutional layers of the two classes of
trained CNNs, astX MLAO and XN MLAO

Layer 1 2 3 4 5

astX MLAO 0.23 0.19 0.17 0.18 0.23

XN MLAO 0.39 0.14 0.15 0.13 0.20

The values shown are calculated from the ensemble of corresponding layers
from all CNNs of the given class
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sample features and n fmax < | f | <m fmax captures mainly
PSF sharpness. In Fig. 3b, n was chosen to be 0.05 and m
was chosen to be 0.6.
yT is a frequency threshold metric that can be used to

analyse the image quality in widefield systems. It is
defined as

yT ¼
RR 2π

0 f T ðθÞdθRR 2π
0 dθ

where fT (θ) is the maximum frequency component for
each angular segment θ such that |FI (∀ f < fT (θ), θ)| ⩾ T.
FI (f, θ) = F [I(x)] is the Fourier transform of image I(x)
expressed in polar coordinates (f, θ). T is a threshold value
such that |FI (f, θ)| < T can be considered as noise.

Microscope implementations
Three microscopes were used to demonstrate and

examine the MLAO method. The microscope imple-
mentations are briefly described here and fully elaborated
in the supplementary document section 10 A.
In the home built 2-P system, a Newport-Spectra-

Physics DeepSee femtosecond laser was used as the illu-
mination with wavelength set at 850 nm. Light was
modulated by a Hamamatsu spatial light modulator
before passing through a water immersion objective lens
with NA equals to 1.15 and reaching the sample plane.
A commercial Scientifica microscope system was used

as the basis for our 3-P demonstration. In the 3-P system,
a femtosecond laser passed through a pair of compressors
and operated at 1300 nm. Light was modulated by a Mirao
52E deformable mirror before reaching a water dipping
objective lens with NA equals to 0.8.
In the home built widefield 3D SIM system, two con-

tinuous wave lasers with wavelengths equal to 488 and
561 nm were used as the illumination. Light was modu-
lated by a ALPAO 69 deformable mirror before reaching a
water dipping objective lens with NA of 1.1.

Image acquisition and processing
For 3-P imaging of live specimens, where motion was

present, averaging was performed after inter-frame
motion correction using TurboReg49. Time traces were
taken from 200 raw frames captured at 4 Hz consecutively
for each of the pre- and post-MLAO corrections.
For the widefield/SIM results, widefield images were

processed where indicated using the Fiji iterative decon-
volution 3-D plugin50. A PSF for deconvolution was first
generated using the Fiji plugin Diffraction PSF 3-D with
settings the same as the widefield microscope. For the
deconvolution, the following settings were applied:

Wiener filter gamma equals to 0; both x-y and z direction
low pass filter pixels equal to 1; maximum number of
iterations equals to 100; and the iteration terminates when
mean delta is smaller than 0.01%.
The thresholds shown on the widefield image spectra

were calculated by identifying the largest frequency in all
x, y directions with image spectrum components higher
than noise level. The noise level was identified by aver-
aging the components of the high spectral frequency, i.e.
at the four corners of the image spectrum. Starting from
the lowest frequency, each angular and radial fragment
was averaged and compared to the noise level. The largest
component which was still above the noise level was
traced on the image spectra by the dashed line and
identified as the threshold.
The 3D-SIM reconstructions were extracted from

image stacks where 15 image frames were collected per
focal position using the SoftWorx package (Applied Pre-
cision)51. The projected images were obtained by sum-
ming frames at different z depths into an extended focus
xy image.
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