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Abstract
Organoid models have provided a powerful platform for mechanistic investigations into fundamental biological
processes involved in the development and function of organs. Despite the potential for image-based phenotypic
quantification of organoids, their complex 3D structure, and the time-consuming and labor-intensive nature of
immunofluorescent staining present significant challenges. In this work, we developed a virtual painting system,
PhaseFIT (phase-fluorescent image transformation) utilizing customized and morphologically rich 2.5D intestinal
organoids, which generate virtual fluorescent images for phenotypic quantification via accessible and low-cost
organoid phase images. This system is driven by a novel segmentation-informed deep generative model that
specializes in segmenting overlap and proximity between objects. The model enables an annotation-free digital
transformation from phase-contrast to multi-channel fluorescent images. The virtual painting results of nuclei,
secretory cell markers, and stem cells demonstrate that PhaseFIT outperforms the existing deep learning-based stain
transformation models by generating fine-grained visual content. We further validated the efficiency and accuracy of
PhaseFIT to quantify the impacts of three compounds on crypt formation, cell population, and cell stemness. PhaseFIT
is the first deep learning-enabled virtual painting system focused on live organoids, enabling large-scale, informative,
and efficient organoid phenotypic quantification. PhaseFIT would enable the use of organoids in high-throughput
drug screening applications.

Introduction
Phase-contrast imaging is a low-cost and readily avail-

able technique commonly employed to observe the
spreading, growth, and morphology of cells in vitro. On
the other hand, immunofluorescent (IF) imaging remains
the gold standard for discerning high-contrast molecular
specificity (e.g., to distinguish specific cell types). How-
ever, IF-based imaging is time-consuming, labor-inten-
sive, and detrimental to cells, as it requires sample
preparation and staining with dyes and typically only

works for fixed, non-viable cells. Recently, quantitative
phase imaging (QPI) has emerged as a powerful, label-
free, and live cell-based approach to provide quantitative
information about cell number, morphology, and cell
cycles1–3. Moreover, deep neural networks (DNNs) have
been trained to facilitate digital staining on phase images,
such as, digital histological hematoxylin and eosin (H&E)
staining and Masson’s trichrome staining on the phase
images of tissue sections4, and digital fluorescent staining
of specific proteins, such as Tau/Map2, on the phase
images of neurons5. Yet, deep learning-enabled phase-
contrast imaging analysis has not been utilized to quantify
the phenotypes of organoid system, which contains high-
dimensional and complex cellular composition with het-
erogeneous distributions.
An organoid is a mini organ in in vitro culture, which

can mimic the diverse cell populations, complex anatomy,
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and physiological functions of in vivo organs. For exam-
ple, same with the native intestinal epithelium, intestinal
organoids exhibit distinguished crypt–villus structures
wherein stem cells and Paneth cells reside in the crypt
regions, and the absorptive cells (i.e., enterocytes), and the
secretory cells (e.g., goblet cells and enteroendocrine cells)
are in the villus regions6,7. Moreover, gut organoids have
been used to model specific gastrointestinal diseases, such
as colorectal carcinoma (CRC)8,9 and inflammatory bowel
diseases (IBD)10. While organoid culture is a rapidly
emerging platform with broad applications in both basic
science and translational medicine, due to the intractable
nature of the IF process for the complex 3D structures of
the organoid system, the image-based phenotypic quan-
tification of 3D organoids is usually limited to organoid
number, size, and viability based on phase/brightfield
imaging. Even though 2D and 2.5D organoid culture
models that have recently been developed are more
compatible with multiplex immunofluorescence
(mpIF)7,11,12, mpIF is still an expensive and time-
consuming process with large batch-to-batch hetero-
geneity. Thus, there is a significant need for the devel-
opment of strategies for affordable, efficient, and
informative organoid phenotypic quantification for large-
scale applications, such as organoid-based drug screening.
Previous applications in cross-modality image trans-

formations, such as phase-H&E virtual staining or H&E to
mpIF translation, typically leverage deep generative
adversarial networks and use one specific type of micro-
scopic image as an input to generate various other
staining types13. Recent investigations showed the feasi-
bility of using deep learning to bridge quantitative phase
imaging and fluorescent stains for understanding cell
viability14. However, fine-grained transformation of
complex and high-content organoid phase-contrast ima-
ges into multiplex fluorescent staining images remains
technically challenging, especially with no assistance of
manual annotations. This is because DNNs are required
to be trained for a high level of accuracy in simulating the
complex optical relationship, unclear morphological
boundaries, and high-content heterogeneities in organoid
phase images while locating the implicit and even sparse
protein expressions in the phase images to be able to
generate the virtual fluorescent painting.
In the present study, we developed phase-fluorescent

image transformation (PhaseFIT) for deep generative
model-enabled virtual multiplex fluorescent painting on
annotation-free phase-contrast live-organoid images.
PhaseFIT is specially designed based on the characteristics
of the image transformation task, taking into considera-
tion the challenges posed by the complexities associated
with a phase image (which is comprised of a broad
spectrum of black & white intensity associated with dif-
ferent cell types and intracellular organelles) and highly

heterogeneous composition of intestinal epithelial cells
(which include several different cell types with different
sizes and cellular densities). To overcome these chal-
lenges, PhaseFIT incorporates a segmentation algorithm
to perform the image translation task with precision. To
the best of our knowledge, this is the first algorithm that
applies a segmentation-informed model to the phase-
fluorescent image transformation task.
To enhance image generation, PhaseFIT incorporates

channel-wise attention to focus on the most influential
feature maps, as well as spatial-wise attention to suppress
redundant feature regions. These design choices ensure
that PhaseFIT effectively captures and utilizes the critical
information present in the images for improved cross-
modality image-to-image translation. This segmentation-
informed model reaches nearly real-time inference for
transforming images from live organoid phase images to
multiplex fluorescent staining. Moreover, the proposed
algorithm outperforms the state-of-the-art generative
adversarial networks-based stain transformation methods
when generating virtual painting from heterogeneous and
artifact-lean organoid phase images. To validate the sen-
sitivity and usefulness of PhaseFIT, we quantified the
effects of three compounds on the phenotypes of the
treated organoids, which exhibited that PhaseFIT is a
potent tool for image-based organoid phenotypic quan-
tification in biomedical and biopharmaceutical studies.

Results
PhaseFIT workflow
We developed a virtual painting system, PhaseFIT to

quantify the phenotypes of 2.5D intestinal organoids
(Fig. 1) from the phase images, such as the size of crypt
and villus regions, expression of stem cell markers, and
the proportions of different cell populations. The 2.5D
organoid model that we recently developed7 not only
accurately mimics the key features of in vivo gut epithe-
lium (such as the crypt-villus structure and the diverse
cell populations), but it also bypasses the tedious culture
and staining protocols that are required for the conven-
tional 3D organoids. Moreover, the 2.5D organoid model
is readily amenable to being integrated into high-
throughput screening platforms that would be necessary
for large-scale drug testing and validation. However, the
standard fluorescence imaging-based phenotypic analysis
is not conducive to high-throughput systems owing to
some of its limitations, including the time-consuming
staining process, high cost of antibodies, complex system
for multiplex imaging acquisition, and artificial variations
in both staining and imaging across different batches
(Fig. 1). PhaseFIT transforms the phase images of live
organoids to generate multiplex fluorescent images using
an AI-driven virtual painting algorithm. By bypassing the
conventional imaging acquisition, PhaseFIT can report
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organoid phenotypes based on the live-organoid phase
images in a real-time manner (Fig. 1).
The proposed segmentation-informed generative model

(Fig. 2a) was trained on pairs of fluorescent and phase-
contrast images of the organoids and was designed for
overcoming the challenges of sparse stains and artifacts.
To maintain the contextual granularity and objective
sensitivity of virtual painting, we incorporated the concept
of splitting each image into tiles with 50% overlapping
between each pair of adjacent tiles (Fig. 2b). These tiles
were used as separate inputs to generate corresponding
segmentation results. These predicted segmentation
results were then aggregated into an image and a color fill
operation was performed to obtain the transformed
image. We adopted an aggregated contextual

transformation (AOT) block optimized for context rea-
soning in high-resolution image inpainting15. AOT blocks
employ a split-transformation-merge strategy, allowing
the generator to predict each output pixel. AOT blocks do
not introduce additional parameters or computational
costs. The AOT block’s design enables it to capture rich
patterns of interest by learning aggregated contextual
transformations with various dilation rates, making it
highly effective for context reasoning in image inpainting
(Fig. 2c).

Virtual painting performance of PhaseFIT for generating
nuclei, stem cells, and secretory cells
The signals from the two immunofluorescence dyes (i.e.,

Hoechst and UEA-I) and the protein LGR5-EGFP were
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Fig. 1 Workflow of live-organoid phase-fluorescent image transformation (PhaseFIT). The mouse/human-derived 2.5D organoids recapitulate
the features of in vivo gut epithelium (such as the crypt-villus structure and the diverse cell populations) and are compatible with high-throughput
screening (HTS). The conventional image-based phenotypic analysis exhibits four shortcomings, including time-consuming immunofluorescent
staining, high cost for antibodies, complex system for multiplex image acquisition, and variations caused by staining and imaging between different
benches. To overcome those shortcomings, PhaseFIT can transform the live-organoid phase images to generate multiplex fluorescent images using
AI-driven virtual painting
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chosen to exhibit the high-physiologically relevant fea-
tures of the 2.5D organoids (Fig. 3a)7. Hoechst nucleus
staining with the super dense nucleus distribution in the
crypt regions (i.e., stem cell niche) can efficiently identify
the crypt-villus structure (Fig. 3b and c). Stem cells and
differentiated cells are located in the crypt and the villus
regions, respectively (Fig. 3a and b). Thus, we can use the
size and number of the crypts or villus surface areas cal-
culated based on nucleus staining as metrics to quantify
the dynamics of the crypt-villus structure. The 2.5D
organoids encompass the diverse cell populations found
in the in vivo gut epithelium, including intestinal stem
cells (ISCs), absorptive enterocytes, and secretory cells
(such as Paneth cells, goblet cells, and enteroendocrine
cells, Fig. 3a)7. LGR5-EGFP and UEA-I, a fluorescent
lectin stain, are respectively used to identify ISCs and the
secretory cell populations (Fig. 3c). UEA-I+ cells in the
crypt regions are Paneth cells16, and those in the villus
regions are other types of secretory cells17,18 (Fig. 3c). We
have previously demonstrated that different gastro-
intestinal pathological conditions can be accurately cap-
tured in the 2.5D organoid system by variations in the
villus-crypt structure and the proportions of different cell
populations. For example, decreased crypt size and loss of
ISC population are observed during inflammatory bowel
diseases (IBD)7, and conversely, increased crypt size and
gain of ISC number indicate tumorigenesis19.
We trained the PhaseFIT with ground truth images

from the real Hoechst and UEA-I staining (Figs. 4 and 5)
and from the LGR5-EGFP (Fig. 6) (see the “Materials and
methods” section). We compared PhaseFIT’s performance

with two previously reported generative adversarial net-
work (GAN)-based methods that demonstrated promising
image translation performances. More specifically,
Conditional-GAN was applied in DeepLIIF for deconvo-
luting H&E or IHC images of tissue section samples into
multiplex fluorescent stains with human-annotated
ground truth masks and supervised segmentation20,21.
By contrast, CycleGAN improved the robustness in
unsupervised learning and cross-domain translation for
transforming H&E staining images into special stains22–26.
We trained all three models and tested them using an
identical dataset (see the “Materials and methods” sec-
tion). Four quantitative measures of Dice, pixel-wise
Recall (sensitivity) scores, structural similarity index
(SSIM), and mean squared error27–29 were tested for
comparing the qualities of the generated images on both
local pixel level and global cell morphological level (see
the “Materials and methods” section).
Compared to the ground truth from real Hoechst

nucleus staining, the virtual nucleus staining images
generated by PhaseFIT showed superiority compared to
the GAN methods with respect to identifying the crypt-
villus structure. All the crypt regions identified from
ground truth images (white dashed lines in Fig. 4a) were
perfectly captured by PhaseFIT (Fig. 4b). The Cycle-GAN
model, however, missed multiple small crypt regions per
field of view (indicated by the yellow dashed lines in
Fig. 4c). The Conditional-GAN failed to reconstruct the
crypt regions (shown by the red dashed lines in Fig. 4d).
Notably, PhaseFIT provides the best contrast for quali-
tatively identifying the crypt regions among the three
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Fig. 3 Staining 2.5D gut organoids with Hoechst, LGR5-EGFP and UEA-I for phenotypic profiling. a Illustration for the 2.5D gut organoids
including the crypt-villus structure as well as the distribution of different cell populations. ISC, intestinal stem cells; EEC enteroendocrine cells. b A
representative live organoid phase image with visible features for crypt vs. villus regions and Paneth cells. P Paneth cells. c Live imaging for Hoechst
nucleus stain, LGR5-EGFP+ ISCs, and UEA-I+ secretory populations, corresponding to the live phase image in panel (b)
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models. PhaseFIT achieved high scores in all metrics,
significantly outperforming both Conditional-GAN and
Cycle-GAN, and demonstrating the superior performance
of PhaseFIT in generating virtual nucleus stain (Fig. 4e).
The accuracy of Lgr5 virtual painting depends on the

ability of a generative model to detect the outlines of
crypts in phase-contrast images during the training pro-
cess. This new approach differs from GAN-based meth-
ods by overlaying morphological patterns for the region-
of-interest (ROI) between phase-fluorescent pairs using
segmentation, delivering a more precise and efficient
virtual painting compared to the other two GAN models.
PhaseFIT accurately recapitulated the LGR5 signals in the
ground truth images (Fig. 5a and b). However, the two
GAN models (Fig. 5c and d) only captured the
LGR5 signals in very sparse positions (shown by the white
dashed lines in Fig. 5c and d) and even produced false
LGR5 signals (indicated by the yellow dashed lines in
Fig. 5c and d). Thus, the GAN models are unable to
generate the virtual LGR5-EGFP stain. The Dice, Recall
and SSIM scores confirmed that compared to the two
GAN methods, PhaseFIT can accurately generate the
LGR5 stain, which better recapitulates the real LGR5-
EGFP signals in the ground truth images (Fig. 5e).
PhaseFIT successfully captured the morphological fea-

tures of UEA-I+ cells in the live phase images (Fig. 6a).
Compared to the PhaseFIT (Fig. 6b), the other two GAN
models, particularly the Conditional-GAN model, did not
efficiently generate the UEA-I staining and frequently
missed real signals (as shown in the dashed boxes in
Fig. 6c and d). Consistently, all four measures suggest that
PhaseFIT is superior to Cycle-GAN and Conditional-
GAN. In summary, the segmentation-informed PhaseFIT
significantly outperforms the other GAN models and can
be applied to generating all three virtual stains.

PhaseFIT-based drug screening
As a proof-of-concept for the suitability of PhaseFIT for

drug screening applications, we applied it to assess the
impact of three previously described chemical compounds
on organoid phenotypes, DAPT, Valproic acid (VPA), and
Dorsomorphin (DOR). These compounds have been used
to manipulate the ISC differentiation in previous studies:

DAPT induces secretory cell differentiation by inhibiting
the Notch signaling pathway30. In contrast, VPA pro-
motes enterocyte differentiation by activating the Notch
signaling pathway31. DOR increases villus size by inhi-
biting the bone morphogenetic protein (BMP) signaling
pathway32. After administering these compounds, we
collected live organoid phase images as input for the
PhaseFIT workflow to generate virtual multiplex images
for DAPI, LGR5, and UEA-I (Fig. 1). The virtual PhaseFIT
painting images revealed that, compared to the vehicle
control group, DAPT expanded the crypt region area and
increased the population of Lgr5+ ISCs and UEA-I+

secretory cells. In contrast, both VPA and DOR inhibited
crypt formation and decreased the populations of Lgr5+

ISCs and UEA-I+ secretory cells (Fig. 7a). We confirmed
these phenotypes through the quantification of the area
ratio between crypt and villus regions and the proportion
of LGR5+ ISCs and UEA-I+ secretory cells (see the
“Materials and methods” section and Fig. 7b). We
observed no statistically significant differences in the cell
population quantification from virtual painting images
generated by PhaseFIT and those from the ground truth
(real painting) images (Fig. 7b), confirming the accuracy
of PhaseFIT virtual painting in analyzing organoid
phenotypes.

Discussion
As an emerging technique, in vitro organoid models,

which faithfully serve as surrogates of in vivo organs, are
the next generation of in vitro culture systems quickly
replacing the conventional cell culture models. Organoids
also provide a complementary alternative to animals as
in vitro models of disease and for toxicological testing.
Considering the labor-intensive and time-consuming
nature of acquiring fluorescent images, extracting cell-
level information using the standard phase contrast ima-
ges would significantly broaden the large-scale applica-
tions of organoids.
During the past 10 years, deep learning models have been

trained to recognize biological and clinical images for
biomedical and therapeutic applications33,34. Specifically,
the GAN-based methods, such as, Conditional-GAN20,21

and Cycle-GAN22–26, are used for transforming between

(see figure on previous page)
Fig. 4 Comparisons of PhaseFIT against state-of-the-art GAN methods for virtual nucleus painting. Compared to the ground truth from real
nucleus DAPI staining (a), the performance of PhaseFIT (b) is better than the GAN methods (c and d) with respect to identifying the crypt-villus
structure. The white dashed lines indicate that the virtual painting successfully captured the crypt regions. Otherwise, the yellow dashed lines indicate
that the crypt regions were missed in the virtual painting. e The performance of these three algorithms was compared by quantifying the similarity
between their vial painting results and the ground truth images using four different methods (Dice, Recall, SSIM, and MSE). PhaseFIT showed a Dice
score of 0.71 ± 0.044, a recall score of 0.80 ± 0.065, a structural similarity index measure (SSIM) of 0.47 ± 0.086 and a pixel-wise MSE of 0.17 ± 0.091,
outperforming Cycle-GAN (0.53 ± 0.083, 0.68 ± 0.085, 0.20 ± 0.038, and 0.40 ± 0.087), and Conditional-GAN (0.34 ± 0.063, 0.39 ± 0.158, 0.16 ± 0.075, and
0.60 ± 0.149). p < 0.001 (n= 889, paired Wilcoxon rank-sum test)
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and 0.79 ± 0.165. p < 0.001 (n= 889, paired Wilcoxon rank-sum test). 4.12e−147 is the smallest value

Zhao et al. Light: Science & Applications          (2023) 12:297 Page 9 of 15



different stains, such as H&E, IHC, or phase images of
tissue section samples. However, transferring phase-
contrast images to fluorescent images using deep learning
techniques presents several challenges that GAN-based
methods cannot easily overcome. That includes the sensi-
tivity to imperfections in the optical path, which may be a
result of misaligned mirrors or lenses and consequently
result in blurred images. Analyzing organoids using phase-
contrastive imaging are much more challenging than cells,
even with expert annotations. Meaningful unbiased analy-
sis, interpretation, and manipulation of these highly com-
plex images require even more complex levels of
computation, and this is where PhaseFIT excels.
PhaseFIT is specifically designed for live-organoid

phenotypic profiling via generating informative virtual
fluorescent stains based on phase images of live orga-
noids. PhaseFIT leverages the advancement of segmen-
tation by identifying and separating cells and structures
within a phase-contrast image, especially when there is
an overlap or close proximity between objects. We
applied PhaseFIT on 2.5D gut organoids7 and trained it
to generate virtual DAPI nuclear staining, LGR5-EGFP
signals, and UEA-I staining. These multiplex fluorescent

images provided comprehensive interpretable pheno-
typic profiling, including distinguishing crypt-villus
structure based on nuclear distribution and quantify-
ing the proportion of the LGR5+ stem cells and UEA-I+

secretory cells. These phenotypes are highly physiolo-
gically relevant. The changes in crypt structure and stem
cell populations are involved in the development of both
IBD and cancer7,19. We confirmed that PhaseFIT sig-
nificantly outperformed the two previously developed
GAN-based methods in generating fluorescent repre-
sentations of the crypt regions and stem cell popula-
tions. Our primary objective is to identify the overall
regions that are populated by the cells and accentuate
contrasts between different cell types. This aids in
facilitating scientific exploration and analysis and does
not necessitate the generation of realistic nucleus con-
tours. It is particularly challenging given the complex-
ities associated with a phase image, which is comprised
of a broad spectrum of black & white intensity asso-
ciated with different cell types and intracellular orga-
nelles and highly heterogeneous composition of
intestinal epithelial cells, which include several different
cell types with different sizes and cellular densities.
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Fig. 7 Quantification of drug impacts on the organoid phenotypes via PhaseFIT. a PhaseFIT generated virtual staining of nuclei, LGR5, and UEA-
I for four groups, control, DAPT, VPA, and DOR. b DAPT significantly increased the area ratio between crypt and villus regions, and the proportions of
LGR5+ ISCs and UEA-I+ secretory cells in total cell number. In contrast, VPA and DOR significantly decreased them. The quantification from PhaseFIT
virtual painting was consistent with the ground truth staining images. * vs. PhaseFIT control and # vs. ground truth control, p < 0.05 (n= 18, Student’s
t-test)
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Indeed, even an expert eye is unable to distinguish
between the different cell populations solely from a
phase image. It is notable that despite these challenges,
PhaseFIT, as underscored by both qualitative and
quantitative measures, exhibits at least a two-fold
improvement in sensitivity compared to the existing
state-of-the-art methodologies. Of note, PhaseFIT is not
limited to the three virtual stains that were developed
here. Following the same workflow, PhaseFIT can be
expanded to generate virtual painting for other signals
(e.g., for other specific cell sub-populations) once these
signals can be visualized to train the model.
PhaseFIT has been specifically designed to address the

challenges that are associated with background noise in
fluorescent images. The segmentation-informed module
included in PhaseFIT helps to overcome interference and
accurately distinguishes between genuine signals and
background noise. Additionally, PhaseFIT employs an
attention-based approach to tackle the challenges related
to staining variability between or within cells. This
approach is particularly beneficial when working with
multi-channel stains, as it ensures accurate alignment and
improves overall accuracy of virtual painting.
Label-free PhaseFIT provides an efficient, accurate, and

unbiased workflow for quantifying organoid phenotypes
by bypassing the time-consuming, expensive, and com-
plex processes of fixation, staining, and multiplex imaging
required for fluorescence imaging. In addition, the virtual
painting generated from PhaseFIT is based on the live
organoid phase images, which preserve the organoid
morphology in live status without any artificial pertur-
bation and can be processed in real-time (necessary for
assessing time-dependent responses).
As a proof-of-concept in the application of drug

screening, we demonstrated that PhaseFIT can reliably
quantify the impacts of three chemical compounds on the
organoid phenotypes, underscored by both qualitative and
quantitative measures, exemplifies the successful imple-
mentation of PhaseFIT and attests to its ability to fulfill
the requisite requirements. Specifically, DAPT increased
the crypt size and increased the populations of ISCs and
secretory cells. VPA and DOR showed impacts that were
opposite to DAPT. These phenotypes were confirmed
with the ground-truth images and are consistent with
previous reports30–32.
After the FDA announced the removal of the mandatory

animal testing requirement before commencing human
trials for all drugs, we envision the future of in vitro
research and acknowledge the immense scalability of
organoid cultures. Herein, we present PhaseFIT, the first
generative AI system designed to facilitate the transition
from phase-contrast images to multipixel Immuno-
fluorescence (IF) staining images. This development
addresses the rapidly growing need for organoids in high-

throughput analyses and enhances the utility of the
extensive repositories of phase-contrast images available
in the scientific community. The introduction of Phase-
FIT could amplify and accelerate the application of
organoids in the domain of drug discovery. Hence, it is
poised to significantly propel advancement in these cru-
cial research fields.

Materials and methods
Animals
We used Lgr5-EGFP-IRES-CreERT reporter mice35 for

isolation of the intestinal crypts (which contain the stem
cells and their niche, Paneth cells). In these mice, the
LGR5 knock-in allele has mosaic expression in the
intestine and expresses a fusion protein of EGFP and
CreERT2. Thus, this model allows for visualization of
ISCs and progenitor cells based on GFP expression.
Animal studies were conducted in accordance with the
National Institutes of Health “Guide for the Care and Use
of Laboratory Animals” (NIH Publication No. 85-23,
revised 1996) and approved by the Institutional Animal
Care and Use Committees (IACUC) of the Massachusetts
General Hospital.

Harvest of crypts
The proximal 12–15 cm small intestines were collected

from 10 to 14 weeks old mice from either sex. The
intestinal lumen was opened longitudinally. The mucous
was removed using the blunt side of the blades. Then, the
intestine was washed with ice-cold PBS without calcium
and magnesium (Corning, 21-040), and cut into
5 mm–1 cm fragments, and placed into 50ml conical
tubes that were filled with ice-cold 50ml of PBS/EDTA
(10mM, Thermo Fisher, 15575020). The fragments were
incubated and shaken on ice for 40min and washed with
ice-cold 50ml of PBS. Then, the fragments were vigor-
ously shaken in 25 ml PBS and filtered twice through a
70 μm mesh (BD Falcon) into a 50ml conical tube to
remove the villi and tissue pieces. The crypts were mainly
in the suspension which were centrifuged for 5 min at
100×g. The crypt pellets collected here were then used for
seeding on the hydrogel.

In vitro culture of 2.5D organoids
The crypt pellets were suspended in the seeding media

and counted using a cytometer to control the crypt den-
sity as 10,000/ml. 30 μl crypt suspension was added to a
96-well plate coated with a 2.4 kPa polyacrylamide (PA)
hydrogel matrix. PA hydrogel was fabricated as previously
described36. Briefly, the recipe for different Young’s
modulus was 7.5% acrylamide and 0.034% bisacrylamide
for 2.4 kPa. 0.1% ammonia persulfate (sigma, 09913) and
0.05% TEMED (Bio-Rad, 1610800) were added to start the
polymerization process. The polymerization required
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40min to 1 h. Then, sulfo-SANPAH (Proteochem, C1111)
was used to activate the gel surface under a 15W 365 nm
UV (VWR, 95-0042-07/36575-050) for 10 min. After the
activation, 0.1 mg/ml type I collagen (Advanced bioma-
trix, 5022) was added onto the gel overnight to covalently
attach to the gel surface for the organoid culture.
Four hours after seeding the crypts, the floating cells/

clusters were washed with PBS (Corning, 21-040-cv).
0.3 ml ENR (EGF, Noggin, and R-spondin) media/well
was added and changed every other day. To make the
ENR media, advanced DMEM/F12 (Gibco, 12634-028)
was supplemented with 50 ng/ml EGF (Peprotech, 315-
09), 100 ng/ml Noggin (Peprotech, 250-38), 10%
R-spondin conditional media (iLab in Harvard digestive
center), 1% Glutamax (Gibco, 35050-061), 1% HEPES
(Gibco, 15630-080), 0.2% Primocin (Invivogen, ant-pm-2),
0.2% Normocin (Invivogen, ant-nr-2), 1% B27 (Gibco,
12587010), 0.5% N2 (Gibco, 17502-048), and 1.25 mM N-
Acetyl-Cystein (Sigma, A8199). To make the seeding
media, the ENR media was supplemented with 3 μMChir-
99021 (Selleckchem, S1263) and 10 μM Y-27632 (Sigma,
Y0503). 10 µM DAPT in DMSO, 1mM Valproic acid
(Sigma, PHR1061), and 5 µM Dorsomorphin (Sigma,
P5499) in DMSO were supplied as needed.

Data acquisition and analysis
After 6 days of culture, the living cells were directly

stained with Hoechst 33342 (Thermofisher, 62249, 1 µM)
and Ulex Europaeus Agglutinin I (UEA-I, DyLight™ 594,
DL-1067-1, 1:500) for 30min. Immediately after the
staining, the living cells were imaged using ×20 objective of
EVOS M5000 with the phase channel and the DAPI, GFP,
and TexRed light cubes (for Hoechst, Lgr5, and UEA-I,
respectively). For training purposes, 50 wells (10 per
mouse) were prepared for each channel, and 889 images
(10 per well) were acquired. For the drug testing experi-
ments, six wells (three per mouse) were prepared, and 18
images (three per well) were acquired for each channel.
Crypt regions are featured with more dense nuclei than
villus regions (Fig. 4). Therefore, based on the nuclear
staining the areas of villus and crypt regions were quanti-
fied using Image-J to calculate the area ratio between crypt
and villus regions (Fig. 7b). In addition, to quantify the
proportion of LGR5+ ISCs, and UEA+ secretory cells
(Fig. 7b), Image-J was used to count the numbers of total
cells, LGR5+ ISCs, and UEA+ secretory cells, respectively,
based on the staining of nuclei, LGR5 and UEA-I.

Image pre-processing
To maintain precise segmentation, the original images

(source) and the corresponding masks (target) with a size
of 1536*1024 pixels are cropped into smaller patches
(256*256 pixels) with 50% overlapping (Fig. 2). These
obtained patches are independently used as the new

source and target images for the image segmentation task.
Since the segmentation model requires binary images as
the supervision signal for network training, these color
target images are converted into binary images by a
simple thresholding technique. These thresholds are
determined by the background pixel values of the three
types of color images.

Baseline stain transformation deep learning models
We used two state-of-the-art stain transformation (vir-

tual staining) deep generative models for comparisons
with the proposed method. The model families can be
represented as conditional-GAN-based DeepLIIF20 and
Cycle-GAN-based PhaseStain26. Both frameworks are
common image-generation methods that can be applied
in various applications. We used the original public codes
and the experimental setups as the authors listed.

Segmentation-informed deep generative network
Although deep generative networks have shown

remarkable success in generating high-quality data that is
difficult to distinguish from real data, one of their key
challenges is the ability to capture the complex structure
and patterns of the data in a compact and efficient
manner. Current deep generative networks can deal with
the tasks of translating one possible representation of a
scene into another. If the given scene contains additional
noise information, the network could generate undesired
output37. To address this issue, we designed a novel deep
generative network to output three individual modalities,
DAPI (in blue), Lgr5 (in green), and UEA-I (in red), given
a set of phase-contrast images (in grayscale) as inputs. As
seen in Fig. 2, the representations of the source inputs and
target outputs are only partially similar in texture and
morphology, thus this task cannot be simply regarded as
an image-to-image translation problem that has achieved
great success in the field of natural images based on
generative models (e.g., Cycle-GAN22). Additionally, the
challenges of the noises of artifacts and implicitly sparse
distributions of the stains, such as UEA-I, need to be
considered. Therefore, we deployed a semantic segmen-
tation strategy to operate the image-to-image generation
task, which helps localize these key cell-related regions
and generate the targets precisely.
This segmentation model is constructed using an

improved U-Net framework by adding channel-wise
attention to focus on these most contributing feature
maps and spatial-wise attention to suppress redundant
feature regions (e.g., excessive background). Specifi-
cally, the encoder part uses the SE-ResNeXt50, which is
obtained by incorporating the SE module into the
ResNeXt50 architecture, enabling the network to learn
adaptive channel-wise feature dependencies. The SE
module is inserted between two convolutional layers in
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each ResNeXt block. ResNeXt50 is an extension of
the ResNet architecture that utilizes grouped con-
volutions to enhance its representational capacity. SE-
ResNeXt50 comprises five down-sampling stages to
obtain hierarchical features, where each stage includes
three convolution operations, three batch normal-
ization modules, two ReLU operations, and a squeeze-
and-excitation (SE) module38. The SE model has two
main components: the squeeze operation and the
excitation operation. The squeeze operation applies a
global pooling layer to the input feature map, reducing
the spatial dimensions to a single value per channel.
This captures channel-wise statistics and provides a
global view of the feature distribution. In the excitation
operation, the output of the squeeze operation passes
through two fully connected layers. These layers learn a
set of channel-wise weighting coefficients that rescale
the original feature map. This amplifies the saliency of
the most informative channels while suppressing the
less relevant ones.
The encoder generates high-level features and increases

the feature diversity by reducing the spatial size of the
feature matrix and increasing the number of feature
channels/maps. These feature maps can be regarded as
different views obtained from different perspectives of
the image representation. The SE module is used to
impose more weight on the feature maps that contribute
the most. The decoder part consists of five up-sampling
stages to recover image resolution, where each network
block includes two sequential convolution, batch nor-
malization, and ReLU operations, as well as a concurrent
spatial and channel squeeze & excitation (scSE) mod-
ule38. The scSE module extends the SE module by
incorporating both channel-wise and spatial-wise feature
dependencies using two parallel branches. The first
branch performs the original SE module’s channel-wise
squeeze and excitation operations, while the second
branch performs spatial squeeze and excitation opera-
tions. In the spatial squeeze operation, a global average
pooling layer is applied along the channel axis to reduce
the channel-wise feature maps to a single spatial value.
This captures the spatial-wise statistics of the feature
map, providing a global view of the spatial distribution. In
the spatial excitation operation, weights are learned for
each spatial location by applying two fully connected
layers to the squeezed feature descriptor. These weights
are then used to rescale the original feature map,
emphasizing important spatial features and suppressing
less important ones.
At each decoder stage, it combines these features at the

corresponding encoder level using skip connection (fea-
ture concatenation). Then, the features eventually used
for prediction are concatenated from each decoder stage
to form the fused features as shown in Fig. 2. It is seen

that the number of feature maps in the decoder part is
much larger than that in the encoder part.
Therefore, a feature map selection strategy is also

necessary. In addition, the goal of the decoder is to gra-
dually increase the feature size to obtain the final seg-
mented image (target image). Thus, feature selection in
the spatial view is also an important strategy. Based on the
above considerations, we use the scSE module to combine
channel-wise and spatial-wise concerns to focus on these
regions with distinct appearances, which helps better
segment the details.
The segmentation loss function combines the focal loss

(1) and Dice loss (2), which have been shown to better
handle data imbalance problems39. The focal loss applies
larger weights to these hard-to-distinguish samples and
conversely, smaller weights to these easy-to-distinguish
samples. The Dice loss is used to measure the degree of
overlap between two sets/regions. The two loss functions
are calculated as follows:

LFL ¼ �
X

i
1� ŷið Þγyi log ŷi þ ŷið Þγ 1� yið Þ log 1� ŷið Þ½ �

ð1Þ
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i y

2
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i ŷ

2
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For the ith pixels in the training image, yi represents its
ground truth label and ŷi denotes the predicted prob-
ability for the category with label 1. γ > 0 is a hyperpara-
meter (focusing parameter), which is determined using an
ablation experiment.
The model predicts the probability for each pixel of the

tile image. These predicted tiles are then merged to
generate segmented images. To obtain the target color
images (DAPI nuclear staining, LGR5-EGFP signals, and
UEA-I staining), the segmented images are in-painted by
multiplying each pixel probability by 255. After the model
outputs the inferences on each tile image, a context-
aggregated image inpainting module is applied to smooth
the tile concatenation using a binary mask, where non-
zero pixels correspond to the division line between each
tile pair. We use the aggregated contextual transformation
(AOT) block to handle the spatial merging process15.

Experimental setups
All experiments in this study were constructed using a

5-fold cross-validation strategy, where four folds of the
data were used for model training and one held-out fold
was reserved for validation purposes. PhaseFIT model was
trained using the Adam optimizer with an initial learning
rate of 0.0003. The learning rate was then reduced by a
factor of 10 at the 10th and 20th epochs. To increase
sample diversity and mitigate overfitting, a data
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augmentation strategy was implemented. This strategy
included random cropping, horizontal flip, vertical flip,
random scaling, brightness change, contrast change, and
Gauss noise change. Furthermore, a dropout layer with a
probability of 0.5 was incorporated into the model
architecture. The mini-batch size and the number of
epochs were set to 24 and 30, respectively. All experi-
ments were implemented in PyTorch and performed on a
workstation equipped with four 32 GB NVIDIA Tesla
v100 GPU cards. It takes <1 s mm−1 with a GPU to
complete the virtual painting on a 96-well assay.
The Cycle-GAN and Conditional GAN (cGAN) used in

this study as a comparison, were trained using their offi-
cial implementations. Both the generator and dis-
criminator in the cGAN and Cycle-GAN models were
trained using the Adam optimizer with an initial learning
rate of 0.0002 for a total of 200 epochs. The mini-batch
size is set as 32. Unlike the PhaseFIT model, the GAN
model takes the entire images as inputs (without clipping)
to ensure better global image translation. To achieve this,
we filled the input images to make them square by using
the edge pixels. These filled edges were subsequently
removed in the final prediction results.

Comparison with GAN-based models, and evaluation metrics
To create a fair comparison, we adopted cross-

validation and partitioned the dataset into five folds. In
each repetition, four folds were used for training PhaseFIT
and the other two GAN models, and one fold served as
the held-out test set that was never seen by the models.
Four quantitative measures i.e., Dice, Recall (sensitivity),
SSIM scores, and pixel-wise mean squared error27–29 were
evaluated for comparing the similarity between the virtual
painting images and the ground truth images (see the
“Materials and methods” section). The score ‘1’ in the
Dice and Recall test means the highest similarity between
the ground truth group and the virtual stain group. The
lower is the score, the poorer is the similarity. Since most
of the pixels in single-channel IF images are in black,
these two metrics can robustly reflect both pixel-level and
microenvironment-level virtual painting fidelity. We
classified each pixel in the generated images into cate-
gories of true positive (TP), false positive (FP), and false
negative (FN) based on the overlap with the original
fluorescent image (GT). A pixel was considered TP if it
was present in the GT and its grayscale color intensity
differed by no more than 2 levels (0–255) from the GT. As
all three models were trained and tested on the same
dataset, we conducted a paired Wilcoxon rank-sum test to
calculate the p-value for the statistical analysis. All the
evaluations were implemented in the Python Program-
ming Language. We used scikit-image/skimage for SSIM,
SciPy for Dice coefficient, and scikit-learn/sklearn for
mean squared error, respectively.
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