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Mie scatterers bring a resonator to an exceptional
point
Kai Hong1 and Lin Chen 1✉

Abstract
Exceptional points have given rise to many intriguing optical phenomena that are of fundamental importance for a
variety of breakthrough technologies. The pre-defined Mie scatterers can bring a resonator to an exceptional point,
and result in enhanced quality factor through coherently suppressing the backward scattering.

Exceptional points (EPs) are degenerate points where
two or more eigenvalues and eigenvectors coincide
simultaneously in non-Hermitian systems1–3. Optical
platforms provide a powerful tool for investigating the EP-
related physics, such as coupled waveguides and micro-
cavities. EPs have led to many exotic phenomena such as
loss-induced suppression4, directional and mode-selective
lasing5–7, enhanced sensing sensitivity8,9, and chiral
switching10–12. There are several common methods to
bring an optical system to an exceptional point. One
approach involves tuning the coupling strength between
the coupled components with balanced optical gain and
loss, as well as adjusting the loss imbalance with a fixed
coupling strength. Another method involves controlling
the coupling between the modes of a physical system.
In the paper entitled “Chiral exceptional point and coher-

ent suppression of backscattering in silicon microring with
low-loss Mie scatterer” published in eLight13, Prof. Sahin K.
Özdemir’s group and Prof. Tingyi Gu’s group proposed a
new approach to bring an optical resonator using low-loss
Mie scatterers. They precisely control the location, size, and
geometry of the Mie scatterers in silicon microrings, thereby
manipulating the amplitude, phase, and direction of trans-
mission and reflection. Their theoretical analysis shows that
two embedded Mie scatterers, one symmetric and one
asymmetric, or two non-identical asymmetric Mie scatterers,

provide sufficient flexibility to tune the system toward or
away from an EP. Moreover, the Mie scatterers effectively
suppress the backward scattering caused by fabrication-
induced Rayleigh scattering. A silicon microring without Mie
scatterers supports both clockwise (CW) and counter-
clockwise (CCW) modes. The coupling and frequency
detuning between the CW and CCW modes result in a
reduced optical quality factor due to backward scattering14

(Fig. 1a). However, by introducing Mie scatterers to the sili-
con microring, it can operate at an EP, exhibiting mode
degeneracy and complete suppression of backward scattering.
The Mie scatterers enhance the quality factor measured on
the transmission port by coherently suppressing the back-
scattering from the waveguide surface roughness (Fig. 1b).
The researchers employed a Smith Chart-based “optical

impedance matching” approach to design a silicon
microring with Mie scatterers operating at an EP. To
experimentally demonstrate the high-quality factor and
suppression of backward scattering in the designed silicon
microring, they fabricated a series of silicon microrings
operating at or near the EP, all having the same surface
roughness levels. The experimental results are in line with
the expected outcomes. The measured quality factor Q
increased from 16,300 (for the silicon microring without
Mie scatterers) to 21,300 (for the silicon microring with
Mie scatterers operating at an EP). In addition, it was
observed that the silicon microring operating at an EP
exhibited minimal back-reflection. Furthermore, the
experimental results showed that the system is not sen-
sitive to dispersion and is robust to structural parameters.
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In contrast to whispering gallery mode resonators6, the
silicon microring with low-loss Mie scatterers replaces
fiber tapered coupling with on-chip silicon waveguides
with gratings. The completely on-chip controlled struc-
tures offer the advantage of higher integration density.
Compared to the microgear photonic crystal ring15, the
silicon microring with Mie scatterers can coherently
suppress backscattering from the waveguide surface
roughness and provides improved stability. The inclusion
of Mie scatterers in the silicon microring not only opens
up new avenues for studying chiral silicon photonics but
also contributes to advancing the understanding of EPs
and non-Hermitian physics.
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Fig. 1 Silicon microring. a A silicon microring without Mie scatterers
supports both CW and CCW modes. The CW mode is comparable to
CCW modes. b A silicon microring can support the CW mode only by
controlling the Mie scatterers to bring the system to an EP. The CCW
mode is highly suppressed and an infinitesimal, as opposed to the CW
mode
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