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Teleportation goes to Hertz rate

Zhihui Yan®' and Xiaojun Jia®'™

Abstract

Quantum teleportation has been developed to simultaneously realize the Hertz rate and the 64-km distance through
fiber channels, which is essential to real-world application of quantum network.

Quantum teleportation is one of the most important
protocols in quantum information science, and enables
the transfer of an unknown quantum state over long
distances by using quantum entanglement resource' >,
Thanks to its recent fast development, teleportation-
based quantum information science has become a
promising field that inspires many important applica-
tions. Quantum teleportation enables the remote
transfer of quantum state in quantum communication
network*® and the long-range interaction among
quantum states in distributed quantum computation’.
So far, great efforts have been made in quantum tele-
portation with a variety of quantum systems. Quantum
optics-based teleportation offers a promising avenue
towards quantum networks, where the quantum states
are key resources of quantum information science, and
not only coherent states®” but also nonclassical states'®
have been experimentally teleported. For practical
application, the high-rate quantum teleportation is
demanded for effectively transferring quantum
state''?. Meanwhile, it is also required to teleport
quantum state over remoter users. The transfer dis-
tances have been extended over 1400 km with a low-
Earth orbit satellite’®, and over 100 km through com-
mercial optical-fiber networks'®, respectively. There-
fore, it is required to simultaneously realize quantum
teleportation with the both long distance and high rate
in real-world scenario.
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For practical quantum teleportation network, in a
newly published paper in Light: Science & Applications,
the team led by Qiang Zhou from the Institute of
Fundamental and Frontier Sciences, University of
Electronic Science and Technology of China has
reported an experimental realization of a Hertz-rate
quantum teleportation system through a real-world
fiber network'®. The techniques of high-performance
time-bin entangled source with a periodically poled
lithium niobate (PPLN) waveguide and a fully running
feedback system for quantum states distribution are
employed, thus a weak coherent single photon with
decoy state is transferred at a rate of 7.1+0.4Hz
among different real-world buildings connected by
64-km-long fiber channel, as illustrated in Fig. 1. Fur-
thermore, the average single-photon fidelity of
290.6 + 2.6% is experimentally achieved.

It is foreseeable that the quantum teleportation can
give rise to exciting inspirations for both advanced
quantum technology and quantum network applica-
tions, as illustrated in Fig. 2 of the quantum tele-
portation sceneries. The high fidelity, high capacity and
quantum memory are demanded in quantum tele-
portation, besides high rate and long distance as dis-
cussed in this work. Quantum network consists of
quantum channels and quantum nodes'®'”. On quan-
tum channel, there are still improvement spaces for
high performance quantum teleportation. The rate of
quantum teleportation can be increased by improving
efficiency and repetition rates of generation, manip-
ulation and measurement. Besides improving indis-
tinguishability, the high-quality quantum light

source'®'? and entanglement enhancement®®! provide
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possibility of high-fidelity quantum teleportation. Con-
tinuous variable (CV) quantum information processing
system benefits from high efficiency generation and detec-
tion, as well as unambiguous state discrimination, although
its fidelity is limit due to the losses. Meanwhile, discrete
variable (DV) system can perform high fidelity quantum
information processing as a result of resisting the losses,
although it is restricted by probabilistic operations. Thus,
the hybrid architecture of both CV and DV approaches
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Fig. 1 Schematic view of the Hertz-rate metropolitan quantum
teleportation. All these three buildings are connected by fibers to
construct quantum channels. Alice prepares a weak coherent single-
photon state and sends it to Charlie through one quantum channel.
Bob generates a pair of entangled signal and idler photons and sends
the idler photon to Charlie via another quantum channel. Charlie
implements a joint Bell-state measurement and sent this result to Bob
via a classical channel. Bob reconstructs the initial state at Alice by a
unitary transformation on the entangled signal photon
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may have potential advantages on combination of two
approaches'’. By combining the complex quantum states,
such as multiple degrees of freedom and high-dimensional
quantum states, quantum teleportation can increase its
capacity”>**, Furthermore, the distance of teleportation can
be improved by integration techniques of free space
and fiber channel, and even quantum repeater®”. On the
quantum node, various platforms, including atomic
ensembles®®, single atoms®, trapped ions**?’, solid-state
quantum systemszg, and nuclear magnetic resonance”’,
enable quantum teleportation between matter nodes. In the
future, the hybrid approach of these above technologies
provides possible way to realize a high-performance quan-
tum teleportation network.

Looking forward, while the quantum teleportation
establishes an important foundation of quantum network,
it also fosters inspirations to future possible applications.
Quantum teleportation will play an essential role to rea-
lize quantum communication towards global scale'”'®,
Besides, quantum teleportation is potentially applied to
distributed quantum computation’. Quantum teleporta-
tion can distribute local gate operations between distant
users, and be used to link the distributed quantum com-
puting units. This work establishes an important step
from proof-of-principle demonstrations to real-world
applications of quantum teleportation.
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Fig. 2 Future vision of the quantum teleportation for quantum network application. The possible approaches for improving the performance
of quantum teleportation is on the top part, and the potential applications of quantum teleportation is on the bottom part
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