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Abstract
Structured illumination microscopy (SIM) has become the standard for next-generation wide-field microscopy, offering
ultrahigh imaging speed, superresolution, a large field-of-view, and long-term imaging. Over the past decade, SIM
hardware and software have flourished, leading to successful applications in various biological questions. However,
unlocking the full potential of SIM system hardware requires the development of advanced reconstruction algorithms.
Here, we introduce the basic theory of two SIM algorithms, namely, optical sectioning SIM (OS-SIM) and
superresolution SIM (SR-SIM), and summarize their implementation modalities. We then provide a brief overview of
existing OS-SIM processing algorithms and review the development of SR-SIM reconstruction algorithms, focusing
primarily on 2D-SIM, 3D-SIM, and blind-SIM. To showcase the state-of-the-art development of SIM systems and assist
users in selecting a commercial SIM system for a specific application, we compare the features of representative off-
the-shelf SIM systems. Finally, we provide perspectives on the potential future developments of SIM.

Introduction
Approximately 400 years ago, Antonie van Leeuwenhoek

invented the microscope, ushering in an era of visualizing
the biological world with unprecedented detail that sur-
pass the human eye’s resolution1. Later, Ernst Abbe the-
oretically derived the fundamental limit of an optical
microscope, stating that the resolution of a microscope is
limited by the numerical aperture of the objective and the
wavelength of the emitted light2. As a result, the lateral-
and axial-resolution limits of traditional microscopy are
approximately 200 and 500 nm, respectively, restricting its
broad applications in research on organelle interactions,
cell biology, biomedicine, and related fields. To meet the
increasing demand for studying the ultrastructure and
interaction of subcellular organelles, various super-
resolution imaging technologies that surpass the diffrac-
tion limit have been developed. These include single-

molecule localization microscopy (SMLM)3–7, stimulated
emission depletion microscopy (STED)8–10, and structured
illumination microscopy (SIM)11–14.
SIM was originally developed as a depth discrimination

method to eliminate out-of-focus contributions from
different vertical image planes, a method termed optical
sectioning SIM (OS-SIM)15–19. Subsequently, super-
resolution SIM (SR-SIM) was developed, which utilizes a
periodic interference pattern with a periodicity near the
optical diffraction limit20. Due to its ability to cover a
variety of wide-field imaging modes (from volumetric
imaging to laminar imaging, such as total internal
reflection fluorescence (TIRF), highly inclined and lami-
nated optical sheets, or conventional wide-field mode)
and its compatibility with conventional fluorescent probes
and protocols (shown in Fig. 1), SR-SIM has become the
de facto standard for live-cell superresolution microscopy.
Furthermore, as illustrated in Fig. 2, with the ongoing
development of SR-SIM hardware and software, it can
offer ultrahigh imaging speeds (>500 frames per second
(fps)), superresolution (<100 nm), a large field-of-view
(>200 µm), and long-term imaging (>1 h). The superior
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SR-SIM spatial-temporal bandwidth results outperform
other superresolution techniques, particularly for live-cell
superresolution imaging.
Recently, to further advance the development of SIM

technology towards deeper depth, higher resolution, bet-
ter quality, and faster speed, various methods have been
proposed, including improvements in system design and
reconstruction algorithms. Figure 3b shows that the
implementation modalities for SIM can be summarized in
three aspects: enhancing axial resolution (mainly referring
to OS-SIM), lateral resolution (2D-SIM, also called two-
beam SIM), and both lateral and axial resolution (i.e., the
3D-SIM family, also called three-beam SIM). Both 2D-
SIM and 3D-SIM belong to the SR-SIM category. Addi-
tionally, SIM can be classified into linear SIM and non-
linear SIM (NL-SIM) based on the harmonic order in the
excitation illumination patterns.
The traditional OS-SIM processing algorithm is based

on the standard root mean square (RMS), which is a
nonlinear reconstruction procedure. In contrast, the ori-
ginal SR-SIM algorithm is based on a linear generalized

Wiener filter. The more recently developed SR-SIM
algorithms can also provide optical section images by
combining notch filtering. As shown in Fig. 3a, we broadly
categorize existing SR-SIM reconstruction algorithms
into three categories: Fourier domain reconstruction
(FDR) algorithm methods, which include the generalized
Wiener filter reconstruction method (also known as the
direct method) and the regularization-based iterative
optimization method, spatial domain reconstruction
(SDR) algorithm methods, and blind-SIM reconstruction
methods.
Due to its advantages of simplicity and speed, the gen-

eralized Wiener filtering reconstruction algorithm is
widely used in practice. The regularization-based iterative
optimization algorithm proposed later is suitable for
various noise models (such as Gaussian or Poisson) and
optimization criteria (such as maximum likelihood or
maximum entropy), making it more robust to noise. The
SDR algorithm has the advantage of faster reconstruction
speed compared to the FDR algorithm because it does not
involve Fourier transform operations. However, both the

Wide-field SIM Wide-field SIM
ba

Fig. 1 Comparison of a wide-field image and SIM image obtained using the Airy Polar-SIM system200. a Two-color (561-PK mito RED labeled
mitochondria (cyan) and 640-SiR-tubulin kit—labelled tubulin (magenta)) imaging results of homemade sample COS7 cells. Please refer to Appendix
1 for the specific production process. b Four-color (DAPI-labelled nuclei, yellow; Alexa 647-labelled tubulin, magenta; Alexa 555-labelled actin, green;
Alexa 488-labelled mitochondria, blue) imaging results of fixed cells. The sample was purchased from Standard Imaging Co. Ltd
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Fig. 2 Timeline of landmark work in the SR-SIM field. This timeline highlights some key milestones and advancements in the SR-SIM field,
encompassing both hardware and software developments
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FDR and the SDR algorithms rely on sophisticated optical
system alignment and precise illumination pattern para-
meter estimation. To address this problem, the blind-SIM
reconstruction algorithm was proposed, which does not
require estimating illumination pattern parameters and
can improve reconstruction robustness. However, as an
iterative solution method, its calculation speed is orders of
magnitude slower than the other two methods.
This paper reviews the development of SIM imaging

technology in four parts. In the section “Basic SIM theory
and its implementation modalities”, we first introduce the
SIM principle, including the basic OS-SIM and SR-SIM
processing methods. We then review and summarize its
implementation modalities, taking linear SIM as an example.

Additionally, in the subsection “Nonlinear SIM”, we outline
the methods for realizing nonlinear SIM. In the section
“Development of SIM reconstruction methods”, we first
provide a summary of existing OS-SIM processing algo-
rithms in the subsection “Development of OS-SIM recon-
struction methods”. Then, in subsection “Development of
2D-SIM reconstruction methods”, we review the develop-
ment of 2D-SIM reconstruction methods in detail, mainly
focusing on three aspects: (1) the Fourier domain recon-
struction (FDR) algorithm, which includes parameter esti-
mation of the structured illumination pattern, generalized
Wiener filtering and its improved forms, and the
regularization-based iterative optimization algorithm; (2) the
spatial domain reconstruction (SDR) algorithm, where we
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reconstruction

Need parameter 
estimation?

Y

N

Quality 
assessment 

Input raw 
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Fig. 3 SIM reconstruction procedure and implementation methods. a Schematic diagram of the SR-SIM reconstruction process. The substeps in
the blue box are used for the Fourier domain reconstruction (FDR) algorithm. In contrast, the spatial domain reconstruction (SDR) algorithm does not
involve Fourier transform operations. The ‘iterative optimization’ box represents further optimization of the reconstruction results based on
regularization. b The first three subpictures represent different SIM implementation modalities, taking linear SIM as an example. The last subpicture is
a nonlinear SIM diagram in the Fourier domain. The symbol ‘Kex’ represents the frequency vector of the structured illumination pattern Iex
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analyse and compare the similarities and differences
between SDR and FDR based on the reconstruction proce-
dure; and (3) we summarize existing open-source 2D-SIM
image-processing software, and discuss their characteristics
and application scope to help readers access the relevant
reconstruction tools. In the subsection “Development of 3D-
SIM reconstruction methods”, we summarize and compare
some typical existing 3D-SIM reconstruction algorithms by
processing the same raw 3D-SIM image stacks. Finally, in
the subsection “Development of blind-SIM reconstruction
methods”, we review the development of blind-SIM recon-
struction algorithms. In the section “The combination of
SIM with other techniques”, we briefly discuss the combi-
nation of SIM with other superresolution technologies.
Moreover, we provide a detailed review of the development
status of SIM combined with deep-learning techniques. In
the section “Summary”, we summarize and compare some
representative commercial SIM systems. Finally, we draw
conclusions and discuss future perspectives.

Basic SIM theory and its implementation
modalities
Basic SIM theory
When two periodic patterns with slightly different fre-

quencies f0 and f1 are multiplied, a Moire ́ fringe pattern
with a frequency lower than either of the original patterns
is produced. What is more interesting is that when one of
the patterns is known, the other can be solved algebrai-
cally from the Moire ́ fringe pattern. The resolution of
optical microscopy is limited by the wave diffraction
nature, which functions as a low-pass filter during the
imaging process. As a result, a sample’s fine structure
(high-frequency component) cannot pass through the
microscope system. However, a Moire ́ fringe with fine
structure information but shifted to low frequency can be
obtained, which can be used to resolve the fine structure
of the specimen.
SIM technology is based on the phenomenon men-

tioned above and uses a series of sinusoidal illumination
patterns to illuminate an unknown sample. The emitted
patterns contain information about the fine details of the
unobservable sample structure in a diffraction-limited
image. Subsequently, a series of SIM reconstruction pro-
cedures can be adopted to determine these fine details of
the unknown sample.

Basic OS-SIM algorithm
A wide-field fluorescence microscope is typically a par-

tially coherent, low-pass filtering imaging system with an
optical transfer function (OTF) support that has a torus-
like shape 21,22. The system’s lateral and axial resolutions
can be described as 2sin(α)n/λ and [1-cos(α)]n/λ, respec-
tively, where λ is the wavelength of the emitted light, α is
the angle between the light beam and optical axis, and n is

the refractive index of the sample medium. When α= 600,
the ratio factor between the lateral and axial resolutions is
2

ffiffiffi
3

p
, indicating that the axial resolution is approximately

three times worse than the lateral resolution. Furthermore,
because of the OTF missing cone problem, when acquiring
a sequence of 2D images at different focal planes, each
image slice contains not only the in-focus information
from the corresponding section of the sample but also the
out-of-focus blur from all other sections.
To remove the out-of-focus information and obtain the

whole structure of a 3D sample, Neil et al.15,23 introduced
the OS-SIM algorithm. Unlike light-sheet micro-
scopy24–26, which uses paired orthogonal optical pathways
to confine illumination to a single plane and provides
intrinsic optical sectioning images, OS-SIM is an optical
computational sectioning imaging technique. By exploit-
ing the phenomenon of attenuating all spatial frequencies
except zero with defocus, a single spatial-frequency grid
pattern is projected onto the sample, and phase images at
different grid pattern positions are captured. A quasi-
confocal image can be reconstructed from this set of
images using the standard RMS method. If s(r) denotes
the sample, h(r) represents the point spread function
(PSF) of the optical system, and the structured illumina-
tion pattern is a cosine function:

Iθ;φðrÞ ¼ I0
2
½1þ cosð2πkθ � r þ φÞ� ð1Þ

where θ and φ represent the angular orientation and
spatial phase of the structured illumination pattern,
respectively. I0 represents conventional wide-field illumi-
nation. kθ is the frequency vector of the illumination
pattern along the angle θ. We assume the illumination
pattern modulation depth to be 1. The sample is
modulated by the illumination pattern and then con-
volved with the PSF. The fluorescence signal D(r) emitted
by the sample and detected by the camera can be
expressed as:

DðrÞ ¼ ðsðrÞ � Iθ;φðrÞÞ � hðrÞ ð2Þ
If we substitute Eq. (1) into Eq. (2), we obtain:

DðrÞ ¼ 1
2 ½sðrÞ þ sðrÞ � cosð2πkθ � rÞ � cosðφÞ
�sðrÞ � sinð2πkθ � rÞ � sinðφÞ� � hðrÞ

¼ 1
2 sðrÞ � hðrÞ þ 1

2 cosðφÞ � f½sðrÞ � cosð2πkθ � rÞ�
�hðrÞg � 1

2 sinðφÞ
�f½sðrÞ � sinð2πkθ � rÞ� � hðrÞg

¼ D0ðrÞ þ cosðφÞ � DCðrÞ � sinðφÞ � DSðrÞ
ð3Þ

where D0 represents a conventional wide-field image.
DC ¼ sðrÞ � cosð2πkθ � rÞ and DS ¼ sðrÞ � sinð2πkθ � rÞ
represent the images resulting from the cosine and sine
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modulations of the illumination pattern, respectively. The
grid pattern can be removed from the specimen image

forming IP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

C þ D2
S

q
. Typically, three images, namely,

D1, D2, and D3, are taken, corresponding to the relative
spatial phases φ ¼ 0, φ ¼ 2π=3, and φ ¼ 4π=3, respec-
tively. An optically sectioned image can be obtained by

DOS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1 � D2Þ2 þ ðD1 � D3Þ2 þ ðD3 � D2Þ2

q

ð4Þ

The OS-SIM algorithm is based on spatial heterodyning
and provides easy system alignment. It yields an optically
sectioned image without a grid pattern, but it is not a
linear reconstruction procedure. Therefore, the final
image DOS obtained as the geometric sum of the different
images is not shift-invariant. Furthermore, as relatively
coarse illumination patterns are used in the OS-SIM
system, the purpose of OS-SIM is not to improve the
lateral resolution but to add optical sectioning to wide-
field microscopy.

Basic SR-SIM algorithm
In contrast to OS-SIM, SR-SIM uses a structured illu-

mination pattern with a frequency vector close to the
optical diffraction limit. Depending on the number of
beams needed to generate the illumination pattern, SR-
SIM can be classified into 2D-SIM (two-beam) and 3D-
SIM (three-beam). Different illumination patterns are
used in SR-SIM to realize resolution enhancement in a
single direction (i.e., lateral or axial) or in two directions
(both lateral and axial). For example, in 1994, Bailey
et al.16 designed standing wave illumination microscopy,
which utilized two opposing objective lens interferences
to generate axially modulated structured illumination
patterns. Later, in 1999, Heintzmann et al.13 proposed a
method called laterally modulated excitation microscopy
(LMEM), which processes raw images based on a sample’s
information structure in Fourier space. In 2000, Gus-
tafsson11 designed a 2D-SIM system based on a diffraction
grating and proposed the widely used generalized Wiener
filtering SIM reconstruction method. In 2008, Gustafsson
et al.12 designed a 3D-SIM system with true optical sec-
tioning. The abovementioned methods follow the same
processing procedure, in which high-resolution informa-
tion is encoded into the illumination pattern and decoded
through an inverse matrix method by acquiring three or
five phase-shifted images in each focal plane. Here, we will
take 2D-SIM as an example to explain the imaging pro-
cess and reconstruction procedure.
In a 2D-SIM system, a total of nine images, including

three orientations and three phases along each orientation,
were acquired and assembled into a single reconstructed
SR-SIM image to obtain isotropic resolution along the

lateral directions27. In the Fourier domain, the multi-
plication sign ‘·’ and convolution sign ‘⊗’ in Eq. (2) become
“⊗” and “·”, respectively, which can be expressed as:

Dθ;φðkÞ ¼ ½SðkÞ � Iθ;φðkÞ� � HðkÞ
¼ I0

2 ½SðkÞ � HðkÞ þ 1
2 e

�iφSðk � kθÞ � HðkÞ þ 1
2 e

iφSðk þ kθÞ � HðkÞ�
ð5Þ

The symbol H (k) represents the Fourier transform of
h(r), which is known as the OTF. Equation (5) indicates
that the Fourier-shifted information Sðk � kθÞ and Sðk þ
kθÞ bring previously inaccessible information into the
OTF for imaging, leading to an enhancement in the
resolution of the optical system. By acquiring three spatial
phase shifts in one illumination direction, a set of ternary
linear equations can be constructed:

Dθ;φ1
ðkÞ ¼ I0

2 ½SðkÞ � HðkÞ þ 1
2 e

�iφ1Sðk � kθÞ � HðkÞ þ 1
2 e

iφ1Sðk þ kθÞ � HðkÞ�
Dθ;φ2

ðkÞ ¼ I0
2 ½SðkÞ � HðkÞ þ 1

2 e
�iφ2Sðk � kθÞ � HðkÞ þ 1

2 e
iφ2Sðk þ kθÞ � HðkÞ�

Dθ;φ3
ðkÞ ¼ I0

2 ½SðkÞ � HðkÞ þ 1
2 e

�iφ3Sðk � kθÞ � HðkÞ þ 1
2 e

iφ3Sðk þ kθÞ � HðkÞ�
ð6Þ

Integrating Eq. (6) into a matrix form, we obtain the
following:

Dθ;φ1
ðkÞ

Dθ;φ2
ðkÞ

Dθ;φ3
ðkÞ

2
64

3
75 ¼ I0

2 M

SðkÞ �HðkÞ
Sðk � kθÞ � HðkÞ
Sðk þ kθÞ � HðkÞ

2
64

3
75

M ¼
1 1
2 e

�iφ1 1
2 e

iφ1

1 1
2 e

�iφ2 1
2 e

iφ2

1 1
2 e

�iφ3 1
2 e

iφ3

2
64

3
75

ð7Þ

Then, the three frequency information components
SðkÞ � HðkÞ, Sðk � kθÞ � HðkÞ, and Sðk þ kθÞ � HðkÞ can be
separated by inverting the matrix M:

SðkÞ � HðkÞ
Sðk � kθÞ �HðkÞ
Sðk þ kθÞ �HðkÞ

2
64

3
75 ¼ 2

I0
M�1

Dθ;φ1
ðkÞ

Dθ;φ2
ðkÞ

Dθ;φ3
ðkÞ

2
64

3
75 ð8Þ

According to the Wiener deconvolution based on the
minimum mean square error criterion28,29, these sepa-
rated components are multiplied by the 2D-OTF, shifted
back to their actual positions in Fourier space according
to the illumination frequency, and then combined where
they overlap. By changing the illumination angular
orientation θ (typically, θ1= 0°, θ2= 60°, θ3= 120°), and
repeating the above procedure, all frequency content of
the specimen within a circular region with a radius
approximately twice that governed by the OTF of the
optical system can be computed (Fig. 4a). Finally, the
frequency sum is divided by the sum of the squares of the
OTFs under different positions plus a small constant. The
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small constant is related to the SNR of the reconstructed
image and approximates the inverse of the SNR. To
smooth the reconstructed spectrum and suppress the
ringing artifacts, the reassembled Fourier image is
apodized with a cosine bell and then retransformed back
to real space. Let D

_

θ;mðk þmkθÞ represent the separated
frequency information components Sðk þmkθÞ � HðkÞ,
where m=−1,0,1 is the three-component order at each
illumination angle. The generalized Wiener filter function
can be expressed as:

S
_
ðkÞ ¼

P
θ;m H�

mðk þmkθÞD
_

θ;mðk þmkθÞP
θ0;m0 jHm0 ðk þm0kθ0 Þj2 þ w2

AðkÞ ð9Þ

Where S
_
ðkÞ is the estimate of the true sample frequency

information S(k), and the sums are taken over three
illuminating angular orientations θ and three component
orders m at each orientation. w2 is the Wiener parameter,
and A(k) is the apodization function. This reconstruction
procedure can also be applied to 3D-SIM using a 3D-OTF
instead of a 2D-OTF, as illustrated in Fig. 4b.

SIM implementation modalities
OS-SIM implementation modalities
In addition to using a single spatial-frequency grid

pattern, various other illumination patterns have been
proposed: regular array of points30, square and hex-
agonal31,32, and dynamic speckle illumination (DSI)33–35.
However, DSI microscopy is relatively slow because it
needs several tens of images to generate an optically
sectioned image of reasonable quality. To speed up DSI

microscopy, Lim et al. developed a two-frame OS-SIM
system that combines speckle and uniform illumination
microscopy (Fig. 5a), also known as HiLo microscopy36. It
is worth noting that this technology can be generalized to
any type of patterned illumination, whether random (such
as speckle) or nonrandom (such as a periodic grid or
checkerboard pattern). In 2016, Philipp et al.37 proposed
an adaptive HiLo microscope that uses an electrically
tuneable lens, which can provide an axial scanning range
of 1 mm with an axial resolution of approximately 4 μm
and submicron lateral resolution. Additionally, several
single-frame OS-SIM systems have been developed and
improved.
For example, the idea of polarization-illumination-

coded structured illumination microscopy (picoSIM)
was proposed based on the homodyne OS-SIM concept,
pioneered by Wicker and Heintzmann, and later realized
by Appelt et al.38,39. In a picoSIM system (Fig. 5c), three
individual light patterns are encoded in a single polarized
illumination light distribution, allowing the acquisition of
all SIM data needed for the computational reconstruction
of a sectioned image in a single exposure. Recently, several
improved technologies have been proposed for optical
section imaging of uncleared thick tissues, including line-
scanning SIM40, HiLo endomicroscopy41, and single-scan
HiLo42. Among them, a single-scan HiLo method can
obtain a wide-field image and its HiLo image in a single
scan and is faster than the previous two methods for
acquiring multiple thick tissue images. In 2021, based on a
similar optical setup, Zhong et al.43 introduced another
optical tomography method called line-illumination
modulation microscopy (LiMo). This technology was

a

b

OTF

�1= 0° �1= 0°

�1=120° �1= 60°

�1= 0°

ky

ky ky

kz kz

ky ky
ky

kx

kx
kx
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kz
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kz
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Fig. 4 Schematic diagrams of the SIM reconstruction algorithms. a 2D-SIM reconstruction algorithm11,27 and b 3D-SIM reconstruction
algorithm12. The frequency vector of the sinusoidal illumination pattern along the angular orientation θ1= 0° is represented by ±kθ1. The observed
frequency content of the structured illuminated specimen is a linear combination of the frequency content within the circular (2D-SIM) or torus-like
shape (3D-SIM) regions. a © The IEEE
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further developed into fluorescent micro-optical section-
ing tomography (fMOST) for whole-brain optical ima-
ging. As depicted in Fig. 5b, the LiMo method can
simultaneously record signals modulated by different
intensities through multiline detection, enabling better
background suppression. However, to reconstruct a one-
line sample optical-sectioning image, LiMo needs at least
two lines, whereas the minimum readout line number of
the subarray mode is eight, limiting its maximum value to
one-eighth of the detector throughput limit. In 2022, Fu
et al.44 reported a 3D-resolved single-shot SIM system
based on a digital micromirror device (DMD), a galva-
nometric mirror, and the HiLo algorithm. By synchro-
nizing the DMD and galvanometer with an sCMOS
camera, single-shot SIM can achieve optically sectioned
imaging at a rate of 200 Hz and with lateral and axial
resolutions of 0.41 and 1.93 µm, respectively.

SR-SIM implementation modalities
The axial resolution of wide-field fluorescence micro-

scopy can also be improved by utilizing two opposite
objective lenses, including standing wave illumination
microscopy16 and I5M21,45. In these systems, the high-
resolution axial information is encoded into the axially
modulated structured illuminations generated by the
interference of two opposing objective lenses. In addition,
an I5M system utilizes two opposing objective lenses to

illuminate and observe the sample from both directions,
which results in no gaps in the effective OTF. Finally, a
sevenfold improvement in axial resolution was achieved in
3D wide-field fluorescence microscopy by combining an
I5M system with a truncated inverse filter followed by a
few Jansson–van Cittert method iterations46.
Clearly, the lateral resolution can be improved using

structured illumination patterns with lateral modulation
generated by a diffraction grating11,13. Nonetheless, uti-
lizing structured illumination patterns with either lateral
or axial modulation can only improve the corresponding
lateral or axial resolution, respectively, with no or limited
effect on the other dimension. To avoid compromising
between filling in missing cone information and main-
taining resolution, 3D-SIM12 and its modifications have
been proposed47–51. In 2008, Gustafsson et al.12 first
designed a 3D-SIM system with true optical sectioning.
As shown in Fig. 5d, three mutually coherent light beams
interfere in the sample, forming a laterally and axially
varying illumination pattern. 3D raw data are acquired
with five pattern phases spaced by 2π/5, three pattern
angles spaced 60° apart, and a focus step of 122 or 125 nm.
The focal series of images are then processed utilizing the
same generalized Wiener filtering procedure as 2D-SIM
reconstruction but using 3D-OTF rather than 2D-OTF.
Experimental results demonstrated that 3D-SIM can
exceed the conventional resolution by a factor of two in
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each direction, resulting in a resolution of ~100 nm lat-
erally and ~300 nm axially.
The limited and asymmetric range of light-gathering

angles in a typical microscope is one factor that con-
tributes to the axial resolution being several times worse
than the lateral resolution. To address this issue, Shao
et al.49 developed an I5S system by combining a 3D-SIM
structured illumination system with the two opposing
objective lens geometries of an I5M system (Fig. 5h),
achieving an ~100 nm spatial resolution in all three
dimensions. In 2020, an experimental I5S system setup
was simplified using a low NA and high working distance
objective47. In 2022, Li et al.48 placed a mirror directly
opposite the sample and realized four-beam interference
(Fig. 5g) with higher spatial frequency components than
3D-SIM, resulting in a lateral resolution of ~120 nm and
an axial resolution of ~160 nm, producing nearly isotropic
reconstructions. Additionally, in 2022, Alexandr et al.51

proposed a moving fringe SIM (MF SIM) method, which
uses a two-beam illumination pattern varying along the
optical axis instead of the standard three-beam illumina-
tion pattern to avoid restricting the fringe pattern spatial
frequencies.
Another limitation of traditional SIM systems is the

time-consuming mechanical manipulation of the diffrac-
tion grating, which makes it challenging to observe living
cells in real-time. To address this, researchers have
explored various methods to enhance SIM imaging speed
with the rapid development of optical system hardware.
For example, many optical systems now utilize spatial
light modulators (SLM) or DMD rather than physical
grating52–57 to improve speed and flexibility. Other
approaches include the instant SIM (iSIM) system, which
uses optical rather than digital image-processing opera-
tions58,59; multifocus SIM, which employs a multifocus
diffractive optical element60 to capture multiple focal
planes simultaneously; and galvanometer set61,62 or
electro-optics modulator (EOM)63 - based SIM systems.

Nonlinear SIM
As the illumination patterns of a linear SIM system are

also fundamentally limited by the Abbe ́ diffraction limita-
tion, the final resolution extension is at most twofold that of
wide-field microscopy. However, this barrier can be over-
come by using more sophisticated optical schemes or by
fundamentally exploiting nonlinear sample responses. In
NL-SIM, the nonlinear illumination intensity frequency is
not limited by the optical microscope’s NA. Similar to the
traditional linear SR-SIM reconstruction process, the gen-
eralized Wiener filtering reconstruction method64,65 is also
used for NL-SIM. However, as shown in Fig. 6, NL-SIM
generates more high-order harmonics, requiring more raw
images to decompose the high-resolution sample informa-
tion. For the highest harmonics that are not negligible, the

modulation amplitude is too low to produce reliable results.
Therefore, the theoretical complex amplitude values are
used as weighting values for the junction of the Fourier
information components56,66. A series of NL-SIM imple-
mentations are summarized and classified as follows:

Category 1: saturated SIM
Heintzmann et al.65 first developed the saturated SIM

theory in 2022, which uses fluorescence saturation as a
nonlinear process to relate emission to excitation. They
simulated a 2D extension of the nonlinear patterned
excitation technique and discussed methods to sub-
stantially reduce the number of required raw images67. In
2005, Gustafsson64 experimentally demonstrated the
saturated SIM concept and achieved <50 nm 2D point
resolution on dye-filled polystyrene beads using a total of
108 raw images (Fig. 7a). While saturated SIM can theo-
retically yield an infinite resolution, in practice, its reso-
lution is limited by factors such as the SNR and
photostability “soft” materials. In addition, extremely high
light intensity is required to saturate SIM, which can
accelerate photobleaching and even damage fixed tissues,
thus limiting its application in the study of biological
samples.

Category 2: nonlinear SIM based on fluorescent photo-
switchable proteins
In 2012, Rego et al.68 discovered that the reversible

photoswitching (Fig. 7b, c) of the fluorescent protein
Dronpa can provide the desired nonlinearity at light
intensities six orders of magnitude lower than those
required for saturated SIM. Using ultralow light powers,
they demonstrated a resolution of ~40 nm on purified
microtubules. In 2015, Li et al.56 proposed a technique
called patterned activation of photoswitchable fluor-
ophores (PA NL-SIM) that improved the resolution of
live-cell SIM to a range of 45–62 nm using approximately
20–40 frames of raw images (Fig. 7e). Additionally, they
combined PA NL-SIM with lattice light-sheet microscopy
to observe the entire volume of whole cells in 3D,
achieving an axial resolution fivefold better than that of
conventional wide-field microscopy. However, the digital
state of individual molecules in PA NL-SIM is either off or
on, which leads to hyper-Poisson noise and can degrade
the quality of the SIM reconstruction. Therefore, there is
a need to synthesize novel fluorescent dyes that can tol-
erate large numbers of on-off cycles and improve the
performance of PA NL-SIM, as anticipated by
researchers69.

Category 3: nonlinear SIM based on surface plasmons
In 2010, Wei et al. proposed a method called plasmonic

SIM (PSIM) that combines SIM with tuneable surface
plasmon interferometry to achieve the desired nonlinear
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illumination pattern70. Simulation results showed that the
PSIM technique can achieve imaging resolutions that are
three- and four-fold higher than those of conventional
wide-field images. In 2014, they experimentally demon-
strated the unique properties of PSIM71, as illustrated in
Fig. 7g. However, it is important to note that PSIM has
limitations. It can only form high-resolution images of
samples that are near the metal surface. Additionally, the
fluorescence efficiency of PSIM is lower than that of
conventional SIM, which may limit its practical utility in
some applications. In 2022, Samanta et al. proposed a new
technique called saturable absorption-assisted nonlinear
SIM (SAN-SIM) by exploring the saturable absorption
property of an absorbing material72 (Fig. 7f). They
demonstrated that SAN-SIM can achieve a resolution that
is more than twofold higher than the diffraction limit

without the need for high-power illumination or specific
fluorescent dyes.

Category 4: nonlinear SIM based on stimulated emission
depletion (STED)
This method is considered suitable for live-cell imaging

due to its speed and minimal invasiveness64. One example
is the surface plasmon resonance (SPR)-enhanced STED-
SIM73 method, which enables high-speed imaging at
30 nm resolution over a >100 µm2 area with single-
molecule sensitivity. However, this method requires
complex sample preparation, and only the sample surface
can be observed. Thus, it may not be suitable for certain
types of samples or applications that require imaging of
deeper regions within the sample. In 2015, Dake et al.74

proposed a method called structured-excitation STED-
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SIM (SSTED-SIM), which can improve the optical reso-
lution of the widefield of view to approximately λ/7 and
reduce the background fluorescence signal. In 2018, Xue
et al.75 developed a 3D SI-STED microscope that uses five
coherent beams to interfere and generate a 3D grid
depletion pattern (Fig. 7d). The 3D SI-STED technique
enables “simultaneous” 3D superresolution imaging over a
volume with 60 nm lateral resolution and 160 nm axial
resolution at a 5 Hz imaging rate. Additionally, this
technique can significantly reduce photobleaching and
photodamage, making it suitable for long-term imaging of
live cells and tissues. Notably, in the SI-STED method, the
high-order spatial frequency components contained in the
effective emission region are related to both the illumi-
nation pattern period and the depletion power. This
means that the effective emission region is decomposed
by a series of impulse functions rather than sinusoidal
waves. As a result, a correspondingly weighted summation
of the intermediate images is performed in the spatial
domain, rather than generalized Wiener filtering. This
unique approach allows for more accurate and precise
image reconstruction.

Development of SIM reconstruction methods
Development of OS-SIM reconstruction methods
In addition to commonly used RMS algorithms, there

are other OS-SIM reconstruction methods, including
projection (i.e., sum, maximum, and super-confocal),
scaled subtraction of the out-of-focus estimation, and a
modified version of Fourier-space treatment (known as
patterned excitation microscopy processing). Heintzmann
et al.30 discussed and analysed these three strategies based
on a regular array of point illumination patterns. Simu-
lation and experimental results demonstrated that while
projection methods, especially the super-confocal
method, have exceptional optical sectioning character-
istics, they also exhibit more residual patterning than the
other two methods. PEM processing can provide high
resolution but is computationally expensive. In 2014,
Schropp & Uhl31 pointed out an alternative structured
illumination microscopy employing square or hexagonal
illumination patterns (Fig. 8a–d). Rather than shifting a
regular array of point illumination patterns row by row
along the x- and y-axes, they shifted 2D illumination
patterns unidirectionally along pattern-dependent angles.
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This approach results in an isotropic power spectral
density and opens new possibilities for high-resolution
imaging in biological and materials science applications.
To streamline the measurement setup and enhance ima-

ging speed, a two-frame OS-SIM algorithm was proposed,
such as the HiLo algorithm36 or the amplitude demodula-
tion algorithm based on the Hilbert-Huang transform76,77.

HiLo microscopy employs a nonuniform (fixed-frequency or
speckle) image to provide low-resolution information with
spatial frequencies below a user-specified cut-off frequency,
while a uniform illumination image is acquired to provide
high-resolution information with a spatial frequency above
the cut-off frequency. By appropriately setting the cut-off
frequency and fusing the low- and high-resolution
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information, a full-resolution optically sectioned image can
be recovered (as shown in Fig. 8e). However, in the HiLo
algorithm, additional attention must be paid to the process
of fusing the low- and high-resolution information. More-
over, the amplitude demodulation method based on the
Hilbert-Huang transform necessitates two mutually π phase-
shifted raw structured images. However, the imaging speed
of this two-frame OS-SIM method is still constrained by the
camera’s capabilities (~34 fps). Subsequently, a single-frame
OS-SIM algorithm was proposed. In 2019, Wang et al.78

proposed a Fourier bandpass filtering algorithm to recon-
struct optical section images by shifting the in-focus signals
to the +1st order in the Fourier domain. However, this
method requires perfect separation of Fourier spectrum
components using a bandpass filter, which can reduce the
lateral resolution. In 2021, Zhong et al.43 further developed a
high-definition fluorescent micro-optical sectioning tomo-
graphy (HD-fMOST) method for whole-brain optical ima-
ging with submicrometer-voxel resolution, based on the
LiMo method (Fig. 8f).
In addition, deep learning has demonstrated its effective-

ness in OS-SIM techniques. It can be used to solve issues
such as high computational costs and oversimplification of
optical systems for some deconvolution techniques79,80

(such as Wiener filtering81 and Richardson–Lucy (RL)
deconvolution82,83). For example, in 2018, Zhang et al.84

developed a deep learning-based computational algorithm,
which only requires a single wide-field image and a corre-
sponding optical sectioning reference image to train a con-
volutional neural network (CNN). This algorithm can
reconstruct optical section images with lower noise, fewer
artifacts, and higher imaging depth at an optimized frame
rate of 14Hz. In 2021, Chai et al. proposed a one-shot
optically sectioned method called Deep-OS-SIM85, which is
based on deep-learning techniques. Unlike other methods
that use low entropy wide-field images, this approach takes
full advantage of the high entropy properties of structured
illumination images to train a CNN model. Optical-
sectioning imaging using this method only requires a sin-
gle image for decoding, thereby improving the raw image
acquisition efficiency by 50% compared to the two-frame
HiLo method. However, similar to other deep learning-
based methods, this method requires expertise in deep
learning, and it is currently restricted to specific projected
illumination patterns and samples for OS-SIM. If the sta-
tistical characteristics of samples or the illumination pattern
modes change, retraining for variations in imaging para-
meters will be necessary.

Development of 2D-SIM reconstruction methods
Parameter estimation
SR-SIM reconstruction is essentially an ill-posed

inverse problem. As mentioned in the subsection
“Basic SR-SIM algorithm”, solving and separating the

spectra of the sample and then moving them back to
their correct positions is crucial during SIM recon-
struction. This process requires precise knowledge of
structured illumination patterns, especially in those
techniques that rely on high-order harmonics to
improve resolution86,87. Even slight deviations in the
reconstruction parameters from the correct ones can
lead to noticeable artifacts in the reconstructed images,
such as ghosting and fringing.
The periodic illumination pattern parameters include

the illumination frequency vector, angle, phase, and
modulation depth. Although the illumination frequency
vector can be determined with high precision and
reproducibility using structured illumination gen-
erators such as SLM52–54 and DMD55,88, the initial
phase is difficult to determine accurately without prior
knowledge. Moreover, factors such as sample move-
ment, system-dependent optical aberrations, and pho-
tobleaching can cause the pattern position to shift in
the raw images, making it challenging to estimate the
parameters based on prior knowledge. As a result,
numerous algorithms have been proposed for post-
processing parameter estimation of periodic illumina-
tion patterns.
Based on the work of Gustafsson et al.12, the frequency

vector can be retrieved by iteratively maximizing the
cross-correlation (COR) of the overlap areas between the
first separated and zero orders, assuming an equidistant
phase distribution (Fig. 9e). The modulation depth and
phase offset can then be obtained by calculating the
absolute value and angle of the complex factor of the
overlap areas, respectively. One advantage of this method
is that the separation of orders only relies on the relative
phase between individual images. To speed up the para-
meter estimation process, a notch filter (Fig. 9d) was later
introduced to roughly extract the peak position of the +1
order-separated spectrum before optimizing the max-
imum cross-correlation89–91.
In many cases, residual orders may exist in the

spectra separated by unmixing due to imprecise indi-
vidual illumination phases, which can be minimized by
estimating the phase offset of each illumination pat-
tern. Shroff et al.92,93 proposed a Fourier domain phase
of the peak (POP) estimation method without prior
knowledge of the phase shifts, which is suitable for live-
cell imaging, as shown in Fig. 9f. However, this method
is inappropriate for high-frequency illumination pat-
terns such as those in TIRF mode. As the phase
information is directly estimated from the raw image,
three conditions should be simultaneously met: the raw
image has a high SNR, the high-frequency component
decays rapidly enough, and the illumination pattern
frequency is lower than the cut-off frequency deter-
mined by the support area for OTF detection. In 2013,
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Wicker et al.94 developed an iterative optimization
method to determine the pattern phases using the COR
between separated components in cases where the
illumination pattern was too fine to detect. Although
this method can robustly determine the relative pattern
phase in SIM raw images with a precision below λ/100,
its iterative nature inevitably results in longer compu-
tation times. In a later study, Wicker95 presented a
faster and more robust noniterative autocorrelation
reconstruction (ACR) method for determining a pat-
tern’s phase, as shown in Fig. 9g. This method calcu-
lates each illumination pattern’s phase from the
autocorrelation of its corresponding raw Fourier image
and typically achieves precision less than λ/500 at
realistic SNR levels. In 2016, Lal et al.27 provided a
comprehensive theoretical overview of 2D-SIM algo-
rithms, including determining the illumination fre-
quency vector using the ACR method and estimating
the phase offset through iterative optimization of the
correlation function between the illumination pattern
and the sample’s Fourier image.
In 2016, Zhou et al.96 proposed an image recombi-

nation transform (IRT) algorithm (Fig. 9h), which uti-
lizes the phase difference among three raw images to
obtain a high-precision initial phase. By combining this
algorithm with their own DMD-projection-based, mul-
ticolor LED-illumination SIM system, they achieved low

excitation intensity fluorescence imaging even less than
1W∕cm2. However, the IRT algorithm only considered a
phase shift of π/2 and two orientations separated by 90°,
limiting its application in general scenarios. To over-
come this problem, Zhao et al.97 reported an enhanced
IRT algorithm that can handle arbitrary phase shifts. It
should be noted that the POP, ACR, or IRT algorithms
cannot guarantee accurate phase estimation when the
raw images have low SNR or weak modulation depth. In
addition, for certain periodic samples, the ACR algo-
rithm requires the modulation vector to be distinct from
the spatial frequency vector. To address these issues,
Cao et al.98 proposed a noniterative phase estimation
method based on an inverse matrix by incorporating
extra matrices into the phase estimation algorithm.
However, since the parameters of the inverse matrix can
affect the phase estimation error, it is essential to select
an appropriate parameter set to decrease the average
phase error, which lacks objectivity. In 2022, Qian
et al.99,100 introduced principal component analysis
(PCA) into SIM for the first time to identify the fre-
quency vectors and pattern phases of the illumination
pattern (Fig. 10). They demonstrated that PCA-SIM can
achieve fast and accurate noniterative parameter esti-
mation (with frequency vector precision below 0.01
pixels and relative phase precision of 0.1% of 2π under
typical noise levels) that is also robust at low SNRs. This
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allows for real-time superresolution imaging of live cells
in complicated experimental scenarios.

Fourier domain reconstruction algorithms
FDR algorithms, also known as direct methods, are

the most used methods for SIM reconstruction. As
mentioned earlier, the first proposed FDR algorithm
was the generalized Wiener filtering algorithm. How-
ever, this algorithm is not only affected by imprecise
parameter estimation but also vulnerable to systematic
aberrations and the SNR of raw images101. In addition,
its reconstruction speed does not meet the require-
ments of real-time imaging. To address these issues,

various improved FDR algorithms have been proposed,
which can be classified into the following three parts.

Part 1: SIM reconstruction for suppression of optical
aberrations Optical aberrations, such as systematic
spherical aberration and sample-induced aberrations,
not only cause artifacts, loss of resolution, and reduced
image contrast in SIM-reconstructed images but also limit
the technique’s application to samples thinner than a
single cell102,103. Even small optical aberrations, which
have minimal influence on a diffraction-limited image,
can cause severe artifacts in SIM-reconstructed images.
Moreover, the degree of image distortion caused by
spherical aberration is influenced by a range of physical
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parameters, including cover glass thickness, a refractive
index of the sample embedding medium/immersion oil,
and sample temperature, all of which are empirical and
add to the complexity of the problem. Typically, there are
two physical ways to improve spherical aberration:
choosing an appropriate immersion oil or adding adaptive
optics in the imaging path87,104–107. In recent years,
algorithms have been proposed to improve SIM imaging
quality, including PSF engineering91,108 and tiled recon-
struction methods109,110.
In 2016, Perez et al.108 proposed an RL-based
deconvolution111 filtering step for both raw and
reconstructed images. This method depends only on
unbiased filtering steps during reconstruction, without
requiring any parameter tuning. However, it does not
suppress the effects of out-of-focus background and
spectral inhomogeneity on the reconstructed image. In
2020, Wen et al.91 presented a high-fidelity SIM (HiFi-
SIM) reconstruction algorithm, which engineers the
effective PSF into an ideal form. By combining a
normalized cross-correlation method with a spectrum
notch, HiFi-SIM can automatically estimate the

illumination pattern parameters. Furthermore, it can
effectively reduce common artifacts without sacrificing
delicate structures and improve axial sectioning for
samples with a strong background.
Here, we present schematic diagrams of two FDR
reconstruction procedures, the generalized Wiener filter-
ing method (OpenSIM)27 and HiFi-SIM (Fig. 11).
Apparently, the spectrum reconstructed by HiFi-SIM is
flatter and smoother than that reconstructed by Open-
SIM. Additionally, the reconstructed image produced by
HiFi-SIM has higher contrast while preserving details.
In 2020, Hoffman et al.109 developed a tiled reconstruc-
tion method to achieve artifact-free whole-slide imaging
with a large field-of-view in SIM, which can alleviate many
common SIM reconstruction artifacts caused by global
parameter estimation errors. In this method, each raw
image was divided into overlapping tiled subsets, and each
subset was reconstructed using independently measured
or user-optimized parameters. These subsets were then
reassembled into a composite superresolution image
covering the original field of view. Furthermore, Johnson
et al.110 proposed a Bayesian estimation-based SIM
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reconstruction method that combined SIM with image-
stitching and devignetting methods to provide artifact-
free stitched images with optical sectioning and super-
resolution properties. The results of five different samples
demonstrated that the stitched SIM images were useful
for intraoperative histology.

Part 2: SIM reconstruction under a low SNR situation
When acquiring raw SIM images, using a higher signal
level can result in better-quality reconstructed images.
However, this can accelerate sample photobleaching and
limit the number of time points for live-cell images. On
the other hand, acquiring raw images at low signal levels
can result in considerable noise, leading to artifacts in the
reconstructed image. To minimize these artifacts, the
parameters in the Wiener filter27 are typically set
manually, which is user-dependent and lacks objectivity.
Subsequently, a series of regularization-based iterative
optimization methods were proposed based on the prior
knowledge of structured illumination patterns. For
example, in 2014, Chu et al.112 introduced a total variation
(TV) constraint for SIM reconstruction. The algorithm
can image at least 15 times more time points than a
traditional Wiener filtering reconstruction method. How-
ever, the reconstructed image contains stepped artifacts
due to the overcorrection of edge information. Lukeš
et al.113 proposed a SIM method based on the maximum a
posteriori (MAP) probability. Combined with homodyne
detection, this method can suppress out-of-focus infor-
mation, improve spatial resolution, and enable the
reconstruction of 2D and 3D images of cells, even with
weak signals. They later developed an open-source,
modular function set, SIM-Toolbox for MATLAB, which
supports OS-SIM and SR-SIM image reconstruction114.
In 2018, Huang et al.115 reported a deconvolution
method for SIM, called Hessian-SIM, which utilized prior
knowledge of the continuity of multidimensional biologi-
cal structures based on Hessian matrices. This method
enabled ultrafast live-cell superresolution imaging (such
as structural dynamics of mitochondrial cristae) with a
spatiotemporal resolution of 88 nm and 188 Hz. More-
over, compared with TV-SIM, Hessian-SIM can retain
more image details while reducing noise. In the same year,
Boulanger et al.116 proposed a nonsmooth convex
optimization method for SIM reconstruction. However,
this method requires heavy computation and takes a long
time to converge. In 2020, Yu et al.117 implemented a
second-order optimally regularized SIM (sorSIM)
method, which utilizes second-order partial derivatives
to suppress the stepped artifacts that appear in TV-SIM.
This method achieves a balance between resolution
enhancement and noise immunity. In 2021, Zhao
et al.118 added the sparsity of biological structures to
Hessian-SIM and proposed a Sparse-SIM deconvolution

algorithm, which can achieve a resolution of ~60 nm at a
frame rate of up to 564 fps. This method also enables
four-color, 3D live-cell superresolution imaging at
~90 nm resolution. However, the resolution enhancement
of Sparse-SIM will depend on factors such as the image
SNR and optimal parameter selection, which can be
cumbersome for different biological samples. In 2022,
Zhou et al.119 established a nonuniform sCMOS noise
model and proposed a corresponding noise-corrected
SIM reconstruction algorithm based on the stable
biconjugate gradient descent algorithm (Bi-CGSTAB)120

and split Bergman algorithm121. Simulation results
indicated that this noise-corrected SIM reconstruction
algorithm can effectively suppress sCMOS noise-related
reconstruction artifacts. Recently, Hou et al.122 developed
an MRA deconvolution algorithm for fluorescence
images, which uses framelet and curvelet domain sparsity
to regularize the solution. This algorithm allows fine
detail recovery even with a negative SNR and provides
more than twofold physical resolution enhancement with
fewer artifacts than maximum likelihood estimation
(MLE) methods. Furthermore, they developed a
DeepMRA deconvolution algorithm, which can address
severer backgrounds and better preserves high-frequency
and low-intensity details that are commonly disrupted by
other algorithms.

Part 3: SIM reconstruction speed improvement To
enable real-time observation for live-cell imaging, various
attempts have been made to enhance the SIM imaging
speed. In addition to improvements in optical system
hardware, several algorithm optimizations have been
proposed, such as frame reduction of raw images, rolling
reconstruction, and GPU acceleration.
Preliminary results have demonstrated that a super-
resolution image can be reconstructed from four raw
images123,124. In 2017, Ströhl and Kaminski proposed
acquiring three raw images under different illumination
orientations, and indicated that the frame rate can be
doubled by using the joint RL deconvolution algo-
rithm125. However, in 2018, Lal et al.126 found only
approximately a 1.5× resolution enhancement in the
final image reconstructed using three raw images and
concluded that at least four raw images are required to
double the resolution. In 2022, Zeng et al.127 introduced
polarization modulation to the frame reduction imaging
model, proposing a complete and versatile imaging
model called PRSIM. They indicated that for polarized
samples, polarization-related artifacts can be reduced
by combining a Fourier domain iterative reconstruction
algorithm. However, these frame reduction methods
rely on assumptions about the image-formation pro-
cess, and the final reconstructed results are limited by
the type of noise.
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In 2017, Ma et al.128 proposed the combination of SIM
with an interleaved reconstruction strategy (SIMILR) to
maximize the use of each subframe of the acquisition
series. This method enabled the observation of highly
dynamic structures, such as the endoplasmic reticulum,
which undergoes continuous rapid growth or shape
changes. Later, in 2018, Guo et al.129 employed SIMILR
in grazing incidence SIM, which utilizes highly inclined
laminar illumination130. This method achieved dynamic
imaging of events near the basal cell cortex at 97 nm
resolution and 266 fps over thousands of time points. In
addition, combining Hessian-SIM with a ‘rolling’ recon-
struction procedure allowed for a maximum number of
frames in time-lapse imaging of up to 291 fps115. Similarly,
Sparse-SIM achieved a frame rate of 564 fps118.
In terms of GPU acceleration, various SIM reconstruc-
tion methods have been developed using programming
languages such as CUDA C++, Java, and Python89,131–133.
For example, in 2019, Markwirth et al.132 proposed a
video-rate immediate GPU-accelerated open-source
reconstruction (VIGOR) method by recreating, modify-
ing, and extending the fastSIM134 approach and image
reconstruction software. The results demonstrated that
multicolor SR-SIM can be reconstructed at video frame
rates (25 reconstructed fps or more), with a delay of less
than 250 ms between measurement and reconstructed
image display. In 2021, Gong et al.131 presented a GPU-
accelerated SIM method using a hexagonal illumination
pattern based on the Python language. This method can
process over 239 input raw images (512 × 512 pixels)
per second and generate over 34 superresolution frames
per second at 1024 × 1024 pixels. However, it should be
noted that in these GPU acceleration methods, the
illumination parameters are estimated and calibrated in
advance (e.g., using the COR algorithm) and then reused
in the subsequent reconstruction, making it challenging
to address complex dynamic operating environments,
such as artificial interference and environmental pertur-
bations, which can lead to drift in illumination patterns.

Spatial domain reconstruction
The SDR approach was initially proposed by Cragg & So

during the development of SIM135,136. They created an
enhanced 2D image by taking images at different phases
and directions of a structured illumination pattern and
forming a weighted sum. SDR requires the same number
of raw images as the generalized Wiener filtering algo-
rithm but is faster because it does not require Fourier
transform operations. In 2021, Manton et al.137 reported
an equivalent AM signal demodulation method that used
the structured illumination pattern as the carrier signal,
the sample as the message signal, and the recorded data as
the product of these two, i.e., the AM signal. They then

heterodyned the AM signal with another sinusoidal pat-
tern with the same phase and period as the carrier signal,
realizing spectrum separation and recombination.
Inspired by the series expansion of a function in mathe-
matics136, Dan et al.138 proposed another SDR method by
computing the coefficient matrix (Fig. 12, second row).
Their results showed that this method reconstructed a
superresolution image sevenfold faster than the FDR
algorithm. However, this method did not address out-of-
focus backgrounds. In 2022, Wang et al.139 developed a
joint space and frequency reconstruction (JSFR)-SIM by
combining spatial domain processing with optical sec-
tioning superresolution SIM implemented in the fre-
quency domain (Fig. 12, third row). By utilizing
multithreading, they were able to reduce the execution
time of reconstruction to 10.2 ms for raw images that
were 512 × 512 pixels in size. Recently, the JSFR algorithm
has been integrated with HiFi-SIM to form the joint
space-frequency reconstruction-based artifact reduction
algorithm for SR-SIM (JSFR-AR-SIM)140. However, all
three SDR methods require parameter estimation, which
is the most time-consuming step in the reconstruction
process.
In contrast to these methods, Tu et al.141 developed a

parameter-free algorithm called shifting phase SIM (SP-
SIM), which directly reconstructs superresolution images
in the spatial domain (Fig. 12, last raw). However, similar
to the OS-SIM algorithm, the SP-SIM algorithm only
preserves first-order spectral band information and dis-
cards the zero-order spectral band information during the
derivation process. Consequently, low-frequency compo-
nents of the reconstructed superresolution image using
SP-SIM may be lost, resulting in lower image contrast
compared to the FDR algorithm.

Open-source software
Open-source and open-access software packages for

SR-SIM reconstruction have become more prevalent, and
the once-opaque algorithms are now accessible to
ordinary users. In this section, we provide a summary of
existing 2D-SIM open-source reconstruction algorithms
in Table 1, which includes information on the number of
raw images needed, achievable resolution, implementa-
tion methods, and more.
Although some of the 2D-SIM reconstruction algo-

rithms listed in Table 1 can reconstruct a single 3D image
slice using a 2D-OTF, this does not constitute a true 3D-
SIM image stack. This is because 3D-SIM reconstruction
requires a system-specific 3D-OTF, preferably experi-
mentally measured, to achieve high spatial resolution
along the vertical axis. Without this information, the
spatial resolution along the vertical direction may be
limited.
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In addition, several open-source ImageJ plugins offer
tools for assessing the quality of SIM images. For example,
SIMcheck can analyse both SIM raw and reconstructed
data, providing system calibration to help users acquire
optimum raw data for successful image reconstruction142.
Another plugin, NanoJ-SQUIRREL (superresolution
quantitative image rating and reporting of error loca-
tions), can quantify artifacts in SIM-reconstructed ima-
ges143. By comparing a reference image (generally
diffraction-limited) with a superresolution image, a
quantitative map of localized image artifacts can be gen-
erated and used to guide researchers in optimizing ima-
ging parameters.
Regarding resolution assessment methods, Koho et

al.144 proposed a method based on Fourier ring corre-
lation (FRC) analysis, where a single image is divided

into four subsets (i.e., two-image pairs) and used to
estimate the effective PSF in Wiener and iterative RL
deconvolution. In 2019, Descloux et al.145 proposed a
rapid image resolution estimation method called dec-
orrelation analysis, which also uses a single image
without prior knowledge. This method explores the
highest frequency from the local maxima of the dec-
orrelation functions, avoiding user-defined parameters.
However, these methods may not be suitable for images
with low SNR or artifacts, which could be interpreted as
detailed information of the samples, leading to inac-
curate estimated resolution.
To analyse and compare the advantages and dis-

advantages of several open-source algorithms listed in
Table 1, we processed two sets of raw data of actin fila-
ments labelled with AF-568 phalloidin dye collected
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under high SNR (i.e., SNR= 7.7 dB, PSNR= 20.53 dB for
OpenSIM) and low SNR (i.e., SNR=−2.2 dB,
PSNR= 15.75 dB for OpenSIM). It is clear in Fig. 13a–c
that in the case of a high SNR of the raw images, HiFi-SIM
can better eliminate defocus information while main-
taining high image resolution. Although the fairSIM
algorithm has a faster reconstruction speed than HiFi-
SIM and OpenSIM, the reconstructed image contains
more artifacts. Regarding the SDR algorithm, JSFR-SIM
provides a resolution improvement effect comparable to
OpenSIM, but it cannot suppress defocus information as
effectively as HiFi-SIM. SP-SIM has the fastest recon-
struction speed but lacks zero-order information, causing
a discontinuity in the reconstructed images, making it
difficult to assess the resolution improvement effect. In
the case of low SNR, as shown in Fig. 14a–c, noise
introduced during the reconstruction process can reduce
the resolution of the final reconstructed image. Overall,
the FDR algorithm is more robust to noise than the SDR
algorithm.

A regularization-based iterative algorithm is applied
based on the reconstruction output of OpenSIM. In the
case of a high raw image SNR (Fig. 13d–f), TV-SIM
results in reduced resolution due to stepped artifacts,
while Hessian-SIM maintains the resolution of the origi-
nal OpenSIM output. Sparse-SIM, MRA, and DeepMRA
can further enhance image resolution. In addition, Sparse-
SIM and DeepMRA can effectively suppress defocus
information. When the raw image SNR is low (Fig. 14d–f),
denoising reduces the resolution of the final image,
regardless of the algorithm used. There is a trade-off
between noise suppression and contrast enhancement.
We organize the evaluation results of the above various
methods in Appendix 3.

Development of 3D-SIM reconstruction methods
Recently, the problem of multilayer 3D-SIM image

reconstruction has been addressed and implemented. For
example, in 2015, based on the generalized Wiener
reconstruction theory mentioned in ref. 12, Shao et al.

Table 1 Open-source reconstruction algorithms for the 2D-SIM

Method N/frames Language Resolution in X, Y/nm, or t/Hz Property Categories

OpenSIM27 9 MATLAB ~2-fold of the diffraction limit Classical 2D-SIM FDR

OpenSIM-4126 4 MATLAB ~2-fold of the diffraction limit Frame reduction FDR

Hessian-SIM115 9 MATLAB A spatiotemporal resolution of 88 nm and 188 fps Ultrafast and hour-long dynamic

superresolution imaging

Iterative

algorithm

Sparse-SIM118 9 MATLAB ~60 nm resolution at a frame rate of up to 564 fps Sparse deconvolution Iterative

algorithm

fairSIM89,90 9/15-3D

slice

Java ~2-fold of the diffraction limit Classical 2D-SIM with notch filter FDR

VIGOR132 9/15-3D

slice

Java Multicolor SR-SIM imaging at video frame- rates

(25 reconstructed fps or more)

GPU-accelerated FDR

HexSIM131 7 Python Over 239 input raw images per second at

512 × 512 pixels, generating over 34 SR fps at

1024 × 1024 pixels

GPU-accelerated

Frame reduction

Hexagon illumination

SDR+ FDR

SP-SIM141 9 MATLAB ~2-fold of the diffraction limit No parameter estimation

Suitable for speckle illumination

pattern

SDR

JSFR-SIM139 9 MATLAB The reconstruction time is 10.2 ms for raw images

with 512 × 512 pixels

OS-SR-SIM SDR+ FDR

SIM-Toolbox114 9 MATLAB ~2-fold of the diffraction limit classical OS-SIM

2D-SIM with homodyne

detection

Iterative

algorithm

HiFi-SIM91 9/15-3D

slice

MATLAB ~2-fold of the diffraction limit High fidelity

PSF engineering

FDR

MRA122

&DeepMRA

9 MATLAB ~70 nm fidelity-ensured resolution High fidelity

Suppression of defocus

background

FDR
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developed and shared the 3D-SIM reconstruction soft-
ware with CUDA acceleration133. This method has been
widely applied in biological study146,147. In 2021, Smith
et al.148 presented a physically realistic noise model and
provided three complementary reconstruction methods:
true-Wiener-filtered SIM, flat-noise SIM, and notch-
filtered SIM. Experimental results demonstrated that
introducing notch filtering can partly overcome the trade-
off between increasing contrast and suppressing noise. In
the same year, Zhu et al. proposed an iterative algorithm

called NGD-SIM based on gradient descent and a non-
linear optimizer RMSprop149. However, this algorithm is
time-consuming. In 2022, Cai et al. proposed a TV-
FISTA-SIM algorithm that combines TV with the fast
iterative shrinkage threshold algorithm (FISTA)150 to
further improve imaging speed. Compared to the NGD-
SIM algorithm, this algorithm achieves faster convergence
speed and higher reconstruction fidelity when the SNR is
as low as 5 dB. Additionally, in 2022, Cao et al.151 pro-
posed an Open-3DSIM algorithm by introducing
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spectrum filtering to further optimize the reconstruction
results of traditional 3D-SIM and improve its friendliness
to general users. They provided a MATLAB code, ImageJ
version, and Exe application simultaneously. Experi-
mental results demonstrated that Open-3DSIM has
superior performance in suppressing artifacts and
removing defocus information.
It is important to consider the effect of motion artifacts

on the quality of a reconstructed image if the sample is

moving during imaging54. In wide-field microscopy, small
sample movements may go unnoticed if they are smaller
than the resolution limit. However, in SIM reconstruc-
tion, even low velocities may introduce artifacts, leading
to a reduction in resolution and potentially misleading
interpretations. Thus, Förster et al. proposed a frame
difference method (FDM) 152 and its improved versions153

to detect and locate motion artifacts in SIM images.
However, these methods require 3D-stack data and are
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not executable for two-beam methods, such as nonlinear
SIM. Furthermore, to reduce artifacts resulting from
optical aberrations and enable 3D-SIM imaging in thick
tissues, Lin et al.105 proposed the AO-3DSIM system,
which combines adaptive optics with 3D-SIM and pro-
cesses 3D-stack data using the generalized Wiener filter-
ing method. The AO-3DSIM system achieved a resolution
of 150 nm laterally and 570 nm axially, along with optical
sectioning, at a depth of 80 μm through Caenorhabditis
elegans, compared to a resolution of 280 nm laterally and
930 nm axially in wide-field imaging. Table 2 summarizes
the corresponding 3D-SIM open-source reconstruction
methods for 3D-SIM.
We compared and analysed three open-source 3D-

SIM reconstruction algorithms, AO-3DSIM, SIMnoise
(i.e., true-Wiener-filtered SIM), and Open-3DSIM, by
testing another actin filament sample obtained from the
open-source data of ref. 105. As shown in Fig. 15, the
image reconstructed under the AO-3DSIM algorithm
contained some artifacts caused by out-of-focus infor-
mation (Fig. 15a). Although these artifacts can be
effectively removed by using SIMnoise, some details of
the sample are also lost (Fig. 15b). Open-3DSIM can
better retain the detailed information of the sample
while suppressing the defocus information (Fig. 15c).
However, it should be noted that the comparison
results may vary depending on the specific sample and
imaging conditions. Therefore, users should choose the
appropriate algorithm based on their own requirements
and considerations, such as speed, accuracy, noise
suppression, and artifact reduction. Moreover, further
development and optimization of 3D-SIM reconstruc-
tion algorithms are still needed to achieve higher
resolution, faster computation, and higher robustness.

Development of blind-SIM reconstruction methods
If the raw image SNR is too low, or the illumination

patterns are distorted due to the inhomogeneity of the
sample refraction index, parameter estimation-based

reconstruction algorithms may fail to work. To overcome
this problem, Mudry et al.154 developed a blind-SIM
reconstruction method in 2012 for illuminating samples
with random light speckles. This method dramatically sim-
plifies the experimental setup by not requiring knowledge of
the illumination pattern. However, the temporal average of
speckle illumination must be roughly homogeneous over the
sample for it to work, limiting its wide application. In 2013,
Min et al.155 presented another speckle illumination
microscopy by implementing a multiple sparse Bayesian
learning (M-SBL) algorithm156. A threefold resolution gain
was reported under the joint support constraints. Moreover,
Ayuk et al.157 extended the application of blind-SIM to
periodic illumination patterns by introducing an additional
Gaussian filter during the inversion procedure. It was shown
that this filtered blind-SIM is as efficient as traditional SIM
when the illumination pattern is periodic. Additionally, it is
robust to distortion and misalignment.
In 2014, by improving the Fourier ptychography (FP)

algorithm proposed by Zheng et al.158, Dong et al.159

proposed a pattern-illumination Fourier ptychography
(piFP) method. This method is applicable to any unknown
illumination pattern and has been used in computational
photography and image-based rendering160. In 2015,
Ströhl et al.161 presented a jRL-MSIM plan to suppress
out-of-focus signals. Later, Chakrova et al.162 compared
the piFP and jRL algorithms by formulating a generalized
maximum likelihood estimation (MLE). They found that
the piFP method can resolve periodic and isolated struc-
tures equally well, while the jRL method is more suitable
for processing isolated objects.
In a similar fashion to the piFP method, subsequent

methods such as PE-SIMS163 (a self-calibration strategy
for SIM) and TIRF-piFPM164 were proposed. However,
these methods require prior knowledge of the illumina-
tion pattern. In 2021, Samanta et al.165 envisaged the
utility of optical lattice illumination patterns generated by
phase-engineered interference of coplanar beams166 and
presented a blind reconstruction approach combined with

Table 2 Open-source reconstruction algorithms for the 3D-SIM

Method Categories Language Property

3D-SIM133 FDR CUDA C++ acceleration Classical 3D-SIM

AO-3DSIM105 Python Classical 3D-SIM

Open-3DSIM151 Fiji/MATLAB Suppression of noise artifacts

Spectrum optimization

True-Wiener-filtered SIM148 MATLAB High contrast imaging

Flat-noise SIM148 Suppression of structural noise artifacts

Notch filtered SIM148 Higher image contrast than flat-noise SIM

TV-FISTA-SIM150 Iterative algorithm Fast convergence speed
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a multiple signal classification algorithm (MUSICAL)167.
The results demonstrated that using sinusoidal and
multiperiodic illumination patterns, a maximum of three-
and six-fold resolution enhancement beyond the diffrac-
tion limit could be obtained, respectively.
While out-of-focus signals can be addressed by

introducing OTF attenuation89 or RL deconvolu-
tion161,162, they are only suitable for imaging relatively
thin samples. To address out-of-focus in thicker sam-
ples, several blind-SIM algorithms have been pro-
posed168–171. For example, Jost et al.168 proposed the
thick slice blind-SIM algorithm, which considers sev-
eral additional planes to collect out-of-focus light and
processes monofocal layer data to bridge 2D- and 3D-
SIM reconstructions. In 2019, Soubies et al.171

improved upon this method by proposing an inner-
loop-free alternating-direction method of multipliers

(ADMM)172, which relies on a specific formulation of
the optimization problem and closed-form expressions
of proximal operators, resulting in faster computation.
By considering additional planes in the model, they
demonstrated improved image quality for slice-by-slice
computational sectioning.

The combination of SIM with other techniques
Although SIM technology provides unprecedented

access to the inner world of cells and various biological
processes, it relies on relatively sophisticated optical set-
ups and rigorous experimental conditions. Other super-
resolution imaging modalities that can be combined with
SIM have been proposed to reduce the cost for research
labs and further improve the quality of SIM reconstruc-
tions, as well as increase imaging speed, depth, and
resolution.

xoy

xoz

a b c

a1

a2

b1

b2

c1

c2

a1

a2

b1

b2

c1

c2

Fig. 15 Reconstruction results under three typical 3D-SIM algorithms. a AO-3DSIM, b True-Wiener-filtered SIM, and c Open-3DSIM. a1–c1
Magnified images from the orange box in (a–c); a2–c2 Magnified images from the green box shown in (a–c)
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Combination with other SR optical systems
In addition to TIRF, surface plasmons, STED, and

other techniques, combining SIM with two-photon
excitation enables deeper imaging depth and better
contrast compared to single-photon excitation in thick
scattering samples, such as Drosophila melanogaster
larval salivary glands and mouse liver tissue173–175. For
example, two-photon instant SIM (2P-ISIM)175 can
provide a spatial resolution of ~150 nm laterally and
~400 nm axially and a frame rate of ~1 Hz at depths
exceeding 100 μm from the coverslip surface in thick
samples. In addition, in 2017, Gregor et al.173 improved
the frame rate of 2P-SIM to 30 Hz by incorporating
nonlinear excitation and a single resonant scanner.
However, the high peak intensity in 2 P excitation
results in increased phototoxicity, limiting the long-
duration imaging of 2P-SIM. Additionally, 2P-SIM is
challenging to use for multicolor imaging owing to the
spectral matching limitation between laser sources and
fluorescent probes176.
In 2017, Chang et al.177 introduced SIM to light-

sheet-based fluorescence microscopy (LSFM) and
achieved sub-100 nm lateral resolution while sig-
nificantly enhancing axial resolution. The lateral reso-
lution can be further enhanced by combining 2D-SIM
with intensity correlation microscopy (ICM)178 or
SOFI179. Classen et al. also demonstrated that by con-
necting with ICM180, the axial resolution of a 3D-SIM
system was improved. In 2018, Wang et al.181 proposed
the ExM-SIM method, which combines expansion
microscopy with SIM. They also presented protocol
details and steps to analyse protein localization using
ExM-SIM and analysed the 3D organization of multi-
protein complexes with ~30 nm lateral resolution. In
2020, Helle et al.182 proposed a chip-based SIM (cSIM)
method using a photonic integrated circuit (PIC) chip
to create standing wave interference patterns. As the
cSIM frequency shift is governed by the interference
angle and the refractive index of the waveguide material
itself, it can further extend the resolution provided by
conventional SIM.
In 2021, Pilger et al.183 developed striped-illumination

patterns in two-photon laser scanning microscopy (2P-
LSM) using an sCMOS camera and a customized scan-
ning protocol. This technique can be exploited to achieve
optical superresolution and contrast enhancement. In
2022, Wang et al.184 proposed a multiphoton SIM (mP-
SIM) method utilizing a nonsinusoidal structured illu-
mination pattern and associated reconstruction algo-
rithm. Their results on nanoparticles and bovine
pulmonary artery endothelial (BPAE) cells with stained
F-actin demonstrated an 86 nm lateral resolution for 2P-
SIM and a 72 nm lateral resolution for second-harmonic-
generation (SHG)-SIM.

Combination with deep learning techniques
SR-SIM reconstruction typically requires extensive

computational postprocessing of acquired image data and
a physical model of the image-formation process. As a
result, it is usually time-consuming with high computa-
tional expenses. While more accurate models yield
higher-quality results, there is often a trade-off between
the level of accuracy and the exhaustive parameter search
and computational cost. The advent of deep learning,
particularly deep convolutional neural networks (CNNs),
has provided new solutions for image analysis. In micro-
scopy, CNNs can tackle the pseudoinverse imaging pro-
blem of image transformation processes. Moreover, they
can learn the stochastic characteristics of optimal solu-
tions by leveraging paired end-to-end transformation
images185,186. Recently, researchers have explored the
potential of CNNs to augment SIM in terms of speed and
low SNR.
In 2019, Wang et al.187 presented a deep learning-based

framework to achieve superresolution and cross-modality
image transformations in fluorescence microscopy by
training a generative adversarial network (GAN) model.
This framework can learn pixel-to-pixel transformations
and enhance resolution while avoiding potential artifacts
by incorporating a highly accurate multistage image
registration and alignment process. However, GANs are
generally challenging to train because they require deli-
cate balancing of a generator (G) and discriminator (D),
and more input images and training epochs than con-
ventional CNNs. In 2020, Jin et al.188 proposed U-Net-
based frameworks, namely, U-Net-SIM3 and U-Net-
SIM15, which reduced the number of raw images by
5-fold and retrieved superresolution information from
low-light samples. Compared to other CNNs, U-Net-
based frameworks are more user-friendly for biologists
and users with less deep learning experience.
In 2021, Qiao et al.189 developed a deep Fourier channel

attention network (DFCAN) and its derivative DFGAN,
which were trained using a GAN strategy. Unlike other
methods that use structural differences in the spatial
domain, DFCAN and DFGAN leverage frequency content
differences across distinct features in the Fourier domain
to learn hierarchical representations of high-frequency
information. The experimental results demonstrated that
DFCAN and DFGAN can infer superresolution images of
diverse biological structures more precisely than U-Net-
based frameworks. In addition, they can reconstruct high-
quality superresolution live-cell images that capture the
dynamic interactions between intracellular organelles and
the cytoskeleton over a tenfold longer duration relative to
conventional SIM. The authors suggest that non-GAN
models (i.e., DFCAN) are more appropriate for low- to
medium-fluorescence imaging conditions, generating
superresolution images with good quantifiability. In
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contrast, a GAN model (i.e., DFGAN) may be preferable
for specimens with high structural complexity, provided it
offers comparable results to conventional SIM. However,
the disadvantage is that multiple Fourier transform
operations demand significant computing resources and
time, especially when applied to 3D-SIM data.
Shah et al.190 presented two robust end-to-end deep-

learning workflows, SR-REDSIM and RED-fairSIM, uti-
lizing a residual encoding-decoding convolutional neural
network (RED-Net). These networks were robust against
different noise intensities without needing preprocessing
image procedures. However, the final output denoised raw
image barely exhibits Moiré fringes, leading to a failure to
reconstruct superresolution information in SIM images.
To address this, several approaches have been proposed to
improve the robustness of SIM reconstruction to noise
and illumination pattern irregularities. These include a
transfer learning-based generality end-to-end deep resi-
dual neural network ML-SIM191, a custom convolutional
neural network architecture BS-CNN for blind-SIM
reconstruction192, and a modified residual channel
attention network (RCAN)193 by Boland et al.194. The
RCAN was able to reconstruct 3D-SIM image stacks with
double the axial resolution of existing 2D-SIM recon-
structions without compromising lateral resolution or
structural fidelity.
To improve imaging speed by reducing the number of

raw images, several methods have been proposed. One
approach is to use the cycle-consistent generative adver-
sarial network (cycleGAN)195, which can reconstruct a
superresolution image through the single-direction phase
shift of only three raw SIM frames instead of the tradi-
tional nine. Another method is the channel attention
generative adversarial network (caGAN) based on the
spatial channel attention mechanism196, which can
achieve a comparable or higher quality of 3D-SIM
reconstruction under low SNR and high out-of-focus
background conditions while using axially downsampled
raw images compared to the conventional algorithm.
Single-shot SIM reconstruction methods based on mul-
tiple networks have also been proposed, such as the
combination of a GAN and DU-Net197, where the GAN
generates other structured illumination images from a
single raw image, and DU-Net reconstructs super-
resolution images from these generated images. Addi-
tionally, a fast and lightweight SIM superresolution
network (FLSN) has been developed198, including a noise
estimation subnetwork and Haar wavelet-based bandpass
attention modules. The experimental results demon-
strated that SF-SIM is almost 14 times faster than tradi-
tional SIM methods while achieving similar results.
Note that image transformation in deep learning

superresolution models is an ill-posed problem.
Although these models leverage a large amount of well-

registered data to learn good statistical transformation, it
is theoretically impossible for network inference to
obtain ground truth images in every detail. This poses a
great challenge in replacing superresolution microscopy
entirely with computational-only approaches189. In 2022,
Qiao et al.199 developed rationalized deep learning (rDL)
for SIM by incorporating prior knowledge of illumina-
tion patterns into network training and inference,
reducing the ill-posedness of the final superresolution
image. Compared to GAN-based models such as
DFGAN, rDL reduced model uncertainty by fivefold. The
experimental results demonstrated that rDL SIM could
eliminate spectral bias effects and improve the resolution
of reconstructed superresolution images. Moreover, rDL
SIM enhanced the modulation depth of illumination
patterns and was robust to unexpected variations, such
as initial phase error and spherical aberrations, when
compared to conventional SIM reconstruction algo-
rithms such as Hessian-SIM. According to the functions
and characteristics of the networks, we have summarized
the aforementioned methods, as presented in Table 3.

Summary
Comparison of off-the-shelf SIM systems
We have benchmarked the state-of-the-art performance

of a typically accessible technique using commercially
available systems. In addition, we have summarized and
compared several representative off-the-shelf SIM sys-
tems based on their resolution, imaging speed, imaging
FOV, and multicolor imaging capabilities200–205, as shown
in Fig. 16.
Among these systems, Elyra 7 stands out for its faster

imaging speed and lower phototoxicity owing to the use of
a lattice illumination pattern205. The reconstruction
resolution is further improved in the ‘HiS-SIM’ system,
which combines a sparse deconvolution algorithm203. It is
worth noting that the ‘Airy Polar-SIM’ system200 intro-
duces polarization imaging206, while the “Multi-SIM”
system204 offers nonlinear imaging, both of which
demonstrate distinct features for resolving subcellular
organelle structures. The diversified development of
unique SIM systems also offers a promising avenue for
addressing critical problems that cannot be answered
using conventional techniques.

Conclusion and perspective
SIM, a revolutionary concept borrowed from electric

signal processing to optical super-resolution microscopy,
has emerged as a novel imaging technology with
remarkable capabilities in terms of field-of-view, speed,
and compatibility with fluorescent dyes. In this article, we
present an overview of two SIM algorithms, namely, OS-
SIM and SR-SIM, and their implementation modalities
using linear SIM as an example. We also briefly review
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existing OS-SIM processing algorithms before delving
into the development of SR-SIM reconstruction algo-
rithms. While it is nearly impossible to cover all algo-
rithms, we have included representative methods for each
SR-SIM reconstruction category in each domain. The
methods are categorized into 2D-SIM, 3D-SIM, and
blind-SIM. Regarding 2D-SIM, we subdivide it into three
parts: parameter estimation, FDR (generalized Wiener
filtering, regularization-based iterative optimization
methods), and SDR. Finally, we summarize various com-
binations of SIM with other techniques to optimize the
imaging strategy for better spatial/temporal resolution,
deeper image depth, and faster imaging speed.
When imaging thin biological samples (<10 μm), SR-

SIM algorithms with careful postprocessing provide
superior spatial resolution. On the other hand, OS-SIM
algorithms are suitable for suppressing out-of-focus

information in thick biological samples (~10–~100 μm).
However, for thicker (>100 μm) biological samples or
those with higher levels of scattering, it may be necessary
to use multiphoton illumination and adaptive optical
correction. Given the vast number of SR-SIM recon-
struction algorithms available—both open-source and
commercial—choosing the “right algorithm for processing
data from a sample” can be a challenging task. Never-
theless, after surveying the numerous techniques, some
general trends have become clear (Figs. 13–15).
For fixed biological samples with high SNR, e.g.,

probing the fine structure of the actin cytoskeleton in the
cell, HiFi-SIM outperforms other algorithms based on
Wiener filtering. It can effectively remove out-of-focus
information, improve the resolution of the reconstructed
image, and retain sample details. However, it should be
noted that a single 3D image slice reconstructed using

Table 3 SIM combined with deep-learning techniques

Framework Functionality Features

GAN187 Superresolution and cross-modality image

transformations

It learns a pixel-to-pixel transformation and resolution enhancement

while avoiding potential artifacts.

U-Net-SIM3188 Speed up SIM reconstruction Fivefold reduction in the number of raw images

U-Net-SIM15188 Robust to noise Superresolution information is retrieved from the low-light sample

DFCAN & DFGAN189 Infer superresolution images of diverse biological

structures more precisely than the U-Net network

It captures dynamic interactions between intracellular organelles over a

tenfold longer duration relative to conventional SIM

SR-RED-SIM190 Robust to noise

Low training costs

It is robust against different noise intensities without needing a

preprocessing image procedure

RED-fairSIM190 A combination of fairSIM and RED-Net Any retraining or fine-tuning is not needed, even if the SNR differs

between training and application.

ML-SIM191 Robust to noise and irregularities in the illumination

patterns

SIM reconstruction is based on transfer learning without fine-tuning or

necessary retraining

BS-CNN192 blind-SIM reconstruction It outperforms other deconvolution algorithms and is robust in cross-

database variability

Modified RCAN194 3D-SIM reconstruction Axial resolution doubles that of current 2D-SIM reconstructions without

loss of lateral resolution

cycleGAN195 Speed up SIM reconstruction It has higher training efficiency than U-Net-SIM3

caGAN196 Robust to noise

Requires fewer computing resources

It can reconstruct high-quality 3D-SIM images using the axially

downsampled raw images under low SNR and high out-of-focus

background.

GANs and DU-

Net197
Single-frame SIM reconstruction GANs were trained to generate other structured illumination images

from a single raw image, and DU-Net was trained to reconstruct

superresolution image

FLSN198 Single-frame SIM reconstruction SIM reconstruction using extreme low-light and short-exposure frames

is 14 times faster than traditional SIM methods when achieving similar

results

rDL199 Robust to noise, model uncertainty, and estimation

error of illumination pattern parameters

It can be applied to rationally denoise the raw images, mainly to reduce

the ill-posedness of the final superresolution image
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HiFi-SIM is not a true 3D-SIM image. To achieve
simultaneous improvement in axial and lateral resolu-
tion, multilayer 3D-SIM reconstruction algorithms are
needed, such as Open-3DSIM and AO-3DSIM. How-
ever, these methods require a more complex hardware
setup and more raw images (taken at several focal
planes) for reconstruction. Hence, new SIM systems and

innovative reconstruction algorithms are needed to
simplify the experimental constraints of 3D-SIM and
speed up the reconstruction process. Additionally, NL-
SIM can be utilized to further enhance the resolution of
the reconstructed image. However, saturated SIM
requires the extremely high light intensity to accelerate
photobleaching, and photoswitchable fluorophores can

Type Functions
Lateral 

resolution
Axial 

resolution
Temporal resolution FOV

Multi-color
imaging

300 nm
(×100, 488 nm)

China
Multi-
SIM

GI/3D 
Single-
slice/

nonlinear/
TIRF
SIM

84 nm
in TIRF-SIM

60 nm 
in nonlinear 

SIM
100 nm

in 3D-SIM
(×100, 488 nm)

266 fps in GI-SIM @512×2048 px
687 fps in ultrahigh speed GI-SIM

@512×2048 px
[Reconstructed]

5

China
HiS-SIM

85 nm
in 2D-SIM

60 nm in 2D 
Sparse-SIM

(×100, 488 nm)
[Computation]

2D/
TIRF/3D 

slice
SIM

300 nm
(100×, 488 nm)

150 nm
Sparse-SIM

(×100, 488 nm)
[Computation]

66 × 66 μm2

(×100)
110 × 110 μm2

(×60)

6

China
Airy 
Ploar 
SIM

2D/TIRF
SIM

/pSIM
HiLo/
pHiLo 90 nm 

(×100, 488 nm)
300 nm

(×100, 488 nm)

67 × 67 μm2

(×100)
221x173 μm2

(×60)

94 × 94 μm2

(×100)
235 × 235 μm2

(×40)

4

Lattice 
SIM

Lattice 
SIM2

SIM2

Apotome 

120 nm 
(×63, 488 nm)

300 nm
(×63, 488 nm)

2D-SIM: 28 fps
@512×512 px 

3D-SIM: 17 fps
@512×512 px

81.25 × 81.25
μm2 (×63) 

4
60 nm 

(×63, 488 nm)
[Computation]

140 nm 
(×63, 488 nm)

200 nm
(×63, 488 nm)
[Computation]

275 nm
(×63, 488 nm)

255 fps 
under leap mode 

and
burst mode

@512×512 px

Leap mode 
increases the 

frame rate by a 
factor of 3 for 3D 
image acquisition

126 × 126 μm2

(×40)

Germany
Zeiss 
Elyra7

66 × 66 μm2

(×100)
6

Japan
Nikon 

N-SIM S

2D/3D/
TIRF
SIM

86 nm
in TIRF-SIM

115 nm
in 3D-SIM

(×100, 488 nm)

269 nm
(×100, 488 nm)

2D-SIM: 15 fps
@512×512 px

3D-SIM:
0.5 fps

@512×512×10

4
2D/3D/
TIRF
SIM

120 nm 
(×60, 488 nm)

340 nm 
(×60, 488 nm)

2D-SIM: 15 
reconstructed fps

@512×512 px

3D-SIM: 0.8s/
1 μm stack of 120 

images
@512×512 px

Germany
Leica
(GE) 
OMX 

83.96 × 83.96
μm2

(×60)

Grid-
confocal

2D-SIM:

565fps @128×4096 px

96 fps @ 2048×4096 Px

[Reconstructed]

2D-SIM:
565 fps @128×4096 px
96 fps @2048×4096 Px

[Reconstructed]

2D-SIM:
65.6 fps@ 2048×2048 px
564 fps@ 144×2048 px

[Reconstructed]

Fig. 16 Comparison of representative commercial SIM systems. Compare the following parameters of the system: resolution, imaging speed,
imaging FOV and multi-color imaging capability. The term [computation] refers to the resolution achieved through postprocessing algorithms
applied to the traditional reconstruction results

Chen et al. Light: Science & Applications          (2023) 12:172 Page 27 of 34



make sample preparation more cumbersome in an
application. Therefore, developing novel fluorescent dyes
that can tolerate many on-off cycles or exploring SAN-
SIM without specific fluorescent dyes, as well as
enhancing STED-SIM with low depletion laser power,
could be promising areas of future research.
Faster imaging speed implies shorter signal accumu-

lation time and lower SNR in acquired images. To
improve the observation of the high-speed movement
of samples such as mitochondria and endoplasmic
reticulum, as well as the dynamics of interaction
between mitochondria and the actin cytoskeleton in
cells, it may be beneficial to use regularization-based
iterative optimization methods. Techniques that
incorporate rolling reconstruction, such as Hessian-
SIM, Sparse-SIM, MRA, and DeepMRA, are worth
considering. However, these methods rely on ad hoc
tuning of parameters for different samples, which can
be challenging for beginners. In addition, when the
reconstructed image has relatively low SNR (i.e.,
SNR=−2.2 dB), their spatial resolution is often com-
promised for improved SNR. A physically realistic noise
model that can explain noise propagation through SIM
reconstruction and compensate for image noise is
needed to improve the approach. Furthermore,
although an SDR algorithm can incorporate GPU
acceleration for dynamic measurements, its recon-
struction quality is not as good as FDR results.
Exploring the potential of SDR algorithms and devel-
oping novel algorithms could bridge the gap and
enhance imaging speed.
If a biological sample is tested under complicated

experimental scenarios, such as illumination pattern
drift or constant adjustment of the region of interest
and focus, GPU-accelerated reconstruction methods
that estimate illumination parameters in advance and
reuse them in subsequent reconstruction may no
longer be applicable. In contrast, PCA-SIM, as a non-
iterative, fast parameter estimation method, can run
and update the illumination parameter estimation in
real-time. However, if the illumination patterns are
distorted due to the inhomogeneity of the sample’s
refractive index, blind-SIM reconstruction methods
should be considered. A drawback of these methods is
that they are typically slower than the regularization-
based iterative optimization methods due to the need
for complex and computationally expensive deconvo-
lution algorithms to ensure the convergence of the
iterative algorithm. Thus, it is necessary to explore
more simplified blind-SIM reconstruction algorithms
for dynamic live-cell measurements.
Recently, neural network-based deep-learning models

have been developed and demonstrated to augment SR-
SIM in terms of speed and low SNR. Although some

papers and researches have demonstrated the out-
standing performance of learning-based super-
resolution microscopy in various image transformation
tasks, such as denoising and image super-
resolution187,207, these tasks are essentially ill-posed
problems186, indicating that several solutions exist for a
given input in the high-dimensional manifold of all
possible inferences. Enough datasets for generalized
network performance is thus needed and the acquisi-
tion of high-quality ground truth (GT) for training
DNNs is not trivial in most bioimaging applications.
Moreover, it is still unclear to what extent the infor-
mation conveyed by deep learning superresolution
images can be leveraged for quantitative analysis, and
under what conditions these approaches are superior to
conventional superresolution microscopy. Recent stu-
dies on rDL methods have demonstrated that combin-
ing physical models can decrease uncertainty and yield
physically feasible inferences. As a result, we anticipate
further improvements in rDL techniques to bridge the
gap between deep learning-based and physically rea-
listic models.
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Appendix 1
Cell Maintenance and Preparation
U2OS and COS7 cells were cultured in complete cell

culture medium composed of high glucose medium DMEM
(Gibco, 11995-040) supplemented with 10% foetal bovine
serum (Gibco, 10099) and 1% penicillin-streptomycin anti-
biotics (10,000U/mL, Gibco, 15140148). The cells were
incubated at 37 °C and 5% CO2 until they reached 75%
confluency. For fixed-cell imaging experiments, cells were
seeded onto coverslips (Thorlabs, CG15CH2). For live-cell
imaging experiments, cells were seeded in μ-Slide 8 Well
(Ibidi, 80827).
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Labeling Actin in Fixed U2OS Cells
U2OS cells were fixed with 4% formaldehyde (Invitrogen,

R37814) for 15min at room temperature when they reached
75% confluency. After that, the cells were permeabilized with
0.1% Triton™ X-100 (Invitrogen, HFH10) in PBS for 5min,
rinsed with PBS, and then stained with Alexa Fluor 568
Phalloidin (Invitrogen, A12380)/Alexa Fluor 488 Phalloidin
(Invitrogen, A12379) dyes to label the actin filaments for 1 h
at room temperature. The samples were washed twice with
PBS to remove excess dye, and the coverslips were air-dried
in the dark. Finally, 30 µL of Prolong (Invitrogen, P36984)
mounting medium was added to the coverslips and left to
air-dry overnight at 4 °C before observation.

Appendix 2

Abbreviation Full description

SIM structured illumination microscopy

OS-SIM optical sectioning SIM

SR-SIM superresolution SIM

SMLM single-molecule localization microscopy

STED stimulated emission depletion microscopy

TIRF total internal reflection fluorescent

HiLo hybrid illumination

fps frames per second

2D-SIM two-dimension/two-beam SR-SIM

FDR Fourier domain reconstruction algorithm

SDR spatial domain reconstruction algorithm

HiFi-SIM high-fidelity SIM

TV total variation

MAP maximum a posteriori

sorSIM second-order optimally regularized SIM

Bi-CGSTAB Biconjugate gradient descent algorithm

MLE maximum likelihood estimation

SIMILR SIM with an interleaved reconstruction strategy

JSFR-SIM joint space and frequency reconstruction SIM

SP-SIM shifting phase SIM

3D-SIM three- dimension/three-beam SR-SIM

NL-SIM nonlinear SIM

RMS root mean square

SNR signal-to-noise ratio

DSI dynamic speckle illumination

picoSIM polarization-illumination-coded SIM

LiMo line-illumination modulation microscopy

fMOST fluorescent micro-optical sectioning tomography

continued

Abbreviation Full description

DMD digital micromirror device

MF SIM moving fringe SIM

SLM spatial light modulators

iSIM instant SIM

EOM electro-optics modulator

PA NL-SIM patterned activation of photoswitchable fluorophores NL-

SIM

PSIM plasmonic SIM

SAN-SIM saturable absorption-assisted nonlinear SIM

STED stimulated emission depletion

SPR surface plasmon resonance

SSTED-SIM structured-excitation STED-SIM

RL Richardson–Lucy

CNN convolutional neural network

COR cross-correlation

POP phase of peak

ACR autocorrelation

IRT image recombination transform

PCA principal component analysis

TV total variation

MAP maximum a posteriori probability

FRC Fourier ring correlation

FISTA fast iterative shrinkage threshold algorithm

FP Fourier ptychography

ADMM alternating-direction method of multipliers

ICM intensity correlation microscopy

GAN generative adversarial network

Appendix 3: Evaluation of reconstructed results

Method High SNR Low SNR

FDR-

generalized

Wiener

filtering

HiFi-SIM No defocus

information while

maintaining sample

detail

The quality and

resolution of the

reconstructed images

are degraded by noise

Open-SIM Cannot suppress

defocus information

fairSIM Can suppress defocus

information, but has

more artifacts
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continued

Method High SNR Low SNR

SDR JSFR-SIM Can achieve the same

resolution as

OpenSIM, but the

ability to suppress

defocus information is

not as good as HiFi-

SIM

More susceptible to

noise, reconstruction

results are almost

completely

submerged in noise

SP-SIM Reconstruction results

are low contrast and

discontinuous

FDR-

regularization-

based

iterative

algorithm

TV-SIM Reduced resolution of

reconstructed image

due to stair-step

artifacts

Reduced resolution of

reconstructed image

due to stair-step

artifacts

Hessian-

SIM

Maintains the

resolution of the

original OpenSIM

output

The quality of the

reconstructed images

is degraded by noise

Sparse-

SIM

Can further enhance

the image resolution

and effectively

suppress defocus

information

There is a trade-off

between noise

suppression and

contrast

enhancement

MRA Can further enhance

the image resolution

DeepMRA Can further enhance

the image resolution

and effectively

suppress defocus

information
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