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Abstract
The concept of synthetic dimensions in photonics provides a versatile platform in exploring multi-dimensional physics.
Many of these physics are characterized by band structures in more than one dimensions. Existing efforts on band
structure measurements in the photonic synthetic frequency dimension however are limited to either one-
dimensional Brillouin zones or one-dimensional subsets of multi-dimensional Brillouin zones. Here we theoretically
propose and experimentally demonstrate a method to fully measure multi-dimensional band structures in the
synthetic frequency dimension. We use a single photonic resonator under dynamical modulation to create a multi-
dimensional synthetic frequency lattice. We show that the band structure of such a lattice over the entire multi-
dimensional Brillouin zone can be measured by introducing a gauge potential into the lattice Hamiltonian. Using this
method, we perform experimental measurements of two-dimensional band structures of a Hermitian and a non-
Hermitian Hamiltonian. The measurements reveal some of the general properties of point-gap topology of the non-
Hermitian Hamiltonian in more than one dimensions. Our results demonstrate experimental capabilities to fully
characterize high-dimensional physical phenomena in the photonic synthetic frequency dimension.

Introduction
In the synthetic dimensions in photonics1–20, different

internal degrees of freedom of photons are coupled to
form extra dimensions in addition to the dimensions of
the real space. Using this concept, one can experimen-
tally study novel physical phenomena unique to high-
dimensional systems with low-dimensional platforms,
which are of less complexity in engineering and control.
Recent experimental accomplishments in photonic
synthetic dimensions include the demonstration of
photonic analogs of quantum Hall effect and topological
insulators5,8,9,11,16, as well as the realization of the skin
effect and eigenvalue topologies in non-Hermitian
systems21–23.
In the experimental demonstration of many of these

physical phenomena, band structure measurements are
essential since much of the nontrivial physics of the

systems manifests in the band structure11,22–27. In the
synthetic frequency dimension7, current experimental
band structure measurements are carried out in either the
one-dimensional Brillouin zone11,22–25,27–29 or a one-
dimensional subset of the two- or three-dimensional
Brillouin zone30. In this paper, we propose and demon-
strate the method of multi-dimensional band structure
spectroscopy in the synthetic frequency dimension. We
demonstrate that the band structure over the entire multi-
dimensional Brillouin zone can be probed, by exploiting a
modulation phase which introduces a gauge potential in
the Hamiltonian. As examples, we measure the two-
dimensional band structures of both a Hermitian
Hamiltonian and a non-Hermitian Hamiltonian. Our
measurement reveals some of the general properties of
point-gap topology of the non-Hermitian Hamiltonian in
more than one dimensions. The results here demonstrate
experimental capabilities to fully characterize high-
dimensional physical phenomena in the photonic syn-
thetic frequency dimension.

© The Author(s) 2023
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Shanhui Fan (shanhui@stanford.edu)
1Ginzton Laboratory and Department of Electrical Engineering, Stanford
University, Stanford, CA 94305, USA
2Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

www.nature.com/lsa
http://orcid.org/0000-0002-5207-0225
http://orcid.org/0000-0002-5207-0225
http://orcid.org/0000-0002-5207-0225
http://orcid.org/0000-0002-5207-0225
http://orcid.org/0000-0002-5207-0225
http://orcid.org/0000-0002-8895-4313
http://orcid.org/0000-0002-8895-4313
http://orcid.org/0000-0002-8895-4313
http://orcid.org/0000-0002-8895-4313
http://orcid.org/0000-0002-8895-4313
http://orcid.org/0000-0002-0081-9732
http://orcid.org/0000-0002-0081-9732
http://orcid.org/0000-0002-0081-9732
http://orcid.org/0000-0002-0081-9732
http://orcid.org/0000-0002-0081-9732
http://creativecommons.org/licenses/by/4.0/
mailto:shanhui@stanford.edu


Results
Theory of multi-dimensional Brillouin zone sampling
We here describe the theory of multi-dimensional band

structure measurements in the synthetic frequency
dimension. As an illustration we consider a Hamiltonian
that describes a two-dimensional square lattice:

H ¼ 1
2

X
x;y

gayxþ1;yax;y þ κayx;yþ1ax;y þH:c:
� �

; x; y2Z

ð1Þ
Here, ayx;y and ax;y are creation and annihilation operators
on the x; yð Þ lattice site, respectively. g and κ are real
coupling constants along the x and y directions. The
corresponding band structure is

E kx; ky
� � ¼ g cos kx þ κ cos ky ð2Þ

Strictly speaking, the band structure of Eq. (2) is
applicable only when the lattice is of infinite size along
both x and y directions, in which case the wavevectors kx
and ky each occupies the entire interval of �π; πð �.
Our objective is to experimentally create and fully

characterize multi-dimensional band structures such as
Eq. (2) using the approach of synthetic frequency
dimensions. We first review the approach to create and
measure a one-dimensional band structure in the syn-
thetic frequency dimension. As shown in Fig. 1a, one uses
a photonic ring resonator under dynamical modulation.

The resonator by itself, without the modulation, supports
a set of longitudinal modes that are equally spaced by the
free spectral range ΩR ¼ 2π=TR, where TR is the round-
trip time of light propagation inside the resonator. Here
we assume that both polarizations are degenerate in the
resonator, that the group velocity dispersion is absent, and
that the sizes of the modulators are negligible compared
to the circumference of the resonator. When the reso-
nator is modulated at ΩR, resonator modes separated in
frequency by ΩR are coupled. Taking each mode as a
lattice site, the dynamics of the mode amplitudes can be
modeled by a one-dimensional tight-binding lattice along
the synthetic frequency dimension7. To probe the band
structure of this one-dimensional lattice, the resonator is
excited by a continuous wave (CW) laser input with
tunable frequency ωCW ¼ ω0 þ nΩR þ δω, through an
input-output waveguide that couples to the ring with
power coupling ratio γ. Here ω0 is the central frequency,
n2Z and δω is the frequency detuning. For each detuning
δω, the light intensity ξ at an output port can be measured
as a function of t, where t 2 �TR=2; TR=2ð � is the time
variable within each round-trip. By interpreting the time
variable t as the wavevector k along the frequency axis,
the band structure of this one-dimensional lattice can be
extracted from the resonant features in the output
intensity ξ δω; tð Þ24.
Yuan et al. theoretically proposed that multi-

dimensional Hamiltonians can also be synthesized using
a single resonator as shown in Fig. 1a31. To implement the
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Fig. 1 Concept of the multi-dimensional synthetic frequency lattice and Brillouin zone sampling. a The experimental platform of a photonic
resonator under dynamical modulation. τ tð Þ is the transmission coefficient of the modulation. b The tight-binding lattice with both 1st- and Mth-
order coupling in the one-dimensional synthetic frequency space, and the equivalent square lattice with nearest-neighbor coupling and twisted
boundary condition in the two-dimensional synthetic frequency space. c The sets of line segments S0 and Sref

30 in the two-dimensional Brillouin zone
at which the wavevectors are sampled
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Hamiltonian in Eq. (1), Yuan et al. considered a phase
modulator with the transmission coefficient:

τref tð Þ ¼ ei gTR cos ΩRtð ÞþκTR cos MΩRtð Þ½ � ð3Þ
Here M>1 is an integer. Since the modulation waveform
contains bothΩR andMΩR frequency components, themth

frequency mode in the resonator is coupled to both ðm± 1Þ
th mode and m±Mð Þth mode. The corresponding picture of
a one-dimensional lattice in the synthetic frequency
dimension is shown in Fig. 1b on the left, with M ¼ 5.
The 1st-order andMth-order couplings are shown in brown
and red, respectively. In this lattice, the Mth-order coupling
can be viewed as the hopping along an additional synthetic
frequency dimension. By rearranging the positions of the
lattice sites, one can see that the one-dimensional lattice in
Fig. 1b on the left is equivalent to a two-dimensional square
lattice with nearest-neighbor coupling in Fig. 1b on the
right. This square lattice is infinite along the y direction and
has a finite size ofM lattice sites along the x direction with a
twisted boundary condition imposed on the edges14,31. In
this way, one can synthesize multi-dimensional lattices in a
single resonator by additional modulation frequencies,
although such lattices are in nature of finite size along all
synthetic frequency dimensions except one.

In such multi-dimensional synthetic lattices with a
twisted boundary condition as shown in Fig. 1b, the
allowed wavevectors form a one-dimensional subset of the
two-dimensional Brillouin zone of the corresponding
infinite two-dimensional lattice. Consider an eigenstate
ψ x; yð Þ in the two-dimensional lattice in Fig. 1b on the
right, with 1 � x � M and x; y2Z. We define the trans-
lation operators along x and y directions:

T̂ xψ x; yð Þ ¼ ψ xþ 1; yð Þ; x≠M

ψ 1; yþ 1ð Þ; x ¼ M

�
T̂ yψ x; yð Þ ¼ ψ x; yþ 1ð Þ

ð4Þ

According to Bloch’s Theorem, we can write ψ x; yþ 1ð Þ
in terms of ψ x; yð Þ in two alternative ways: ψ x; yþ 1ð Þ ¼
T̂ yψ x; yð Þ ¼ eikyψ x; yð Þ, and ψ x; yþ 1ð Þ ¼ T̂

M
x ψ x; yð Þ ¼

eiMkxψ x; yð Þ. Here kx and ky are wavevectors along the x
and y directions of the corresponding infinite two-
dimensional lattice. Therefore ky ¼ Mkx ðmod 2πÞ. In
such a two-dimensional synthetic lattice under twisted
boundary condition, the allowed wavevectors sample the
first Brillouin zone of the corresponding infinite two-
dimensional lattice at a set of line segments:

S0 ¼ kx; ky
� � j ky ¼ Mkx mod 2πð Þ; �π < kx; ky � π

� �
ð5Þ

Thus, this twisted boundary condition does not affect the
two-dimensional band structure except for discretizing the

allowed wavevectors. We notice that the multi-dimensional
lattices proposed in ref. 31 has been realized experimentally
in ref. 30 with a largeM on the order of 100. Ref. 30 provided
results on the allowed wavevectors (dashed lines in Fig. 1c,
Sref ) that differ from Eq. (5) (solid lines in Fig. 1c, S0), but
the differences vanish in the large-M limit. Our result here
is applicable for any value of M.
As can be seen from Eq. (5) above, a key limitation of

the existing scheme for multi-dimensional band structure
measurements is that the high-dimensional Brillouin zone
is not fully probed. Here we show that this limitation can
be overcome by introducing a reconfigurable gauge
potential into the Hamiltonian. As an illustration, to fully
measure the band structure of Eq. (2) over the entire two-
dimensional Brillouin zone, instead of Eq. (3), we set the
transmission coefficient of the phase modulator as

τ tð Þ ¼ eiV tð Þ ¼ ei gTR cos ΩRtð ÞþκTR cos MΩRtþφð Þ½ � ð6Þ

We show that the entire two-dimensional Brillouin zone
can be fully sampled by varying both the time variable t
and the modulation phase φ which operates as a gauge
potential in the Hamiltonian32. In the weak-coupling limit
γ � 1, the steady-state transmission function can be
expressed as23

ξ δω; tð Þ � 1� 2γRe
1

eγ0ei δωTR�V tð Þ½ � � 1

� 	
ð7Þ

where γ0>0 represents the round-trip intrinsic loss of the
resonator. The transmission function reaches minima
when δωTR � V tð Þ ¼ 0, i.e.,

δω ¼ g cos ΩRtð Þ þ κ cos MΩRt þ φð Þ ð8Þ

By comparing Eq. (2) and Eq. (8), we see that the
locations of the minima of the transmission function
correspond to the band energies E kx; ky

� �
, if we make the

substitution

kx ¼ ΩRt; ky ¼ MΩRt þ φ mod 2πð Þ ð9Þ

By measuring the transmission function ξ δω; tð Þ, for a
given φ, one probes the band structure at a set of line
segments:

Sφ ¼ kx; ky
� � j ky ¼ Mkx þ φ mod 2πð Þ; �π < kx; ky � π

� �
ð10Þ

Figure 2a shows in the Brillouin zone the sets Sφ with
M ¼ 5 and φ ¼ 0;π. Note that S0 is a special case of Sφ
with φ ¼ 0, as the gauge potential φ was not introduced in
the derivation of Eq. (5). Since the modulation phase φ is a
continuous variable that can be externally controlled, by
continuously varying the values of φ over the range 0; 2π½ Þ
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and by performing the time-dependent measurements as
outlined above for each value of φ, we can reconstruct the
band energy at every point in the Brillouin zone:[

φ2 0; 2π½ Þ
Sφ ¼ �π; πð � � �π; πð � ð11Þ

Experimental measurement of a two-dimensional
Hermitian band structure
Based on the theory above, here we provide an experi-

mental demonstration of measurement of a two-
dimensional Hermitian band structure in the synthetic
frequency dimension. Our setup is similar to those in
refs. 22–24. More detailed discussions can be found in the
section of Materials and methods. The resonator is an
optical fiber cavity with the free spectral range ΩR ¼
2π ´ 6MHz. The resonator is excited by a narrow-
linewidth continuous wave laser through a fiber coupler,
and the laser frequency can be tuned within a range much
larger than ΩR. Inside the resonator, we incorporate
lithium-niobate-based electro-optic modulators (EOMs),

and an erbium-doped fiber amplifier (EDFA) to partially
compensate for the cavity loss. The light intensity ξ at the
transmission port is measured by a large-bandwidth
photodiode as a function of laser frequency and time.
Using the experimental setup, we perform band struc-

ture measurements on the two-dimensional lattice in
Fig. 1b. Here we take gTR ¼ 2κTR ¼ 0:12, and the band
structure of our interest is E1 kx; ky

� � ¼ 2κcoskx þ κcosky.
Based on the theory in the previous section, to synthesize
and measure this band structure, we choose the trans-
mission coefficient of the phase modulator as

τ1 tð Þ ¼ eiκTR 2 cos ΩRtð Þþ cos MΩRtþφð Þ½ � ð12Þ

Given a specific value of φ, the measured transmission
function ξ δω; tð Þ reveals the band energies sampled at Sφ.
By taking multiple measurements with different values of
φ, we can characterize the two-dimensional band struc-
ture E1 kx; ky

� �
over the entire first Brillouin zone in two

dimensions.
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� �

. M ¼ 5 in this figure
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The right panels in Fig. 2b, c show the transmission
function ξ δω; tð Þ at φ ¼ 0 and φ ¼ π, respectively. The
left panels show the corresponding line plots for
ξ δω; t ¼ 0ð Þ. At each t, the transmission function exhi-
bits a periodic set of resonant features, and the frequency
difference between the neighboring transmission minima
is ΩR. The periodic behavior here arises from the
translational symmetry of the lattice in Fig. 1b along
the synthetic frequency dimension. Figure 2d shows the
frequency locations of the transmission minima as a
function of t for φ ¼ 0 and φ ¼ π. We see that these
locations shift as φ varies. These locations, as mentioned
above, correspond to the band energy E1 kx; ky

� �
sampled

at Sφ. In Fig. 2e, we reconstruct the measured band
structure in the two-dimensional Brillouin zone
according to Eq. (10). The measured band structure
agrees well with the theoretical value represented by the
gray surface.

Experimental measurement of a two-dimensional non-
Hermitian band structure and its point-gap topology
We now use the capability, as demonstrated above, to

explore novel topological features of non-Hermitian band
structures in two dimensions. Non-Hermitian systems
can manifest many intriguing properties that have no
counterparts in Hermitian systems33–41. A key novel
aspect of the non-Hermitian band structure is that the
eigenvalues, being complex, exhibit nontrivial topology in
the wavevector space42–45. In one-dimension, non-
Hermitian systems can exhibit point-gap topology where
the eigenvalues form nontrivial contours as the wave-
vector varies across the first Brillouin zone. This point-
gap topology was first experimentally demonstrated in the
synthetic frequency dimension in22, and is related to the
non-Hermitian skin effect44,46–48 when the lattice is
truncated due to the bulk-boundary correspondence. It
was also noted theoretically that such point-gap topology
can also exist in higher dimensional systems49–53, with
additional constraints due to the geometry of the Brillouin
zone. Here we provide an experimental demonstration of
point-gap topology in two-dimensional systems which has
not been previously carried out.
We consider the non-Hermitian Hamiltonian

H2 ¼ μþiη
2

P
x;y ayxþ1;yax;y þ ayx�1;yax;y
� �

þ μ�iη
2

P
x;y ayx;yþ1ax;y þ ayx;y�1ax;y
� �

; x; y2Z
ð13Þ

where μ; η are real coupling constants. This Hamiltonian
is described by a complex symmetric matrix and hence is
reciprocal. This Hamiltonian also has the RT symmetry,
where R is the reflection operation against the line x ¼ y,
and T is the time-reversal operation. The band structure

of this Hamiltonian is

E2 kx; ky
� � ¼ μ cos kx þ cos ky

� �þ iη cos kx � cos ky
� �

ð14Þ

Such band structure can exhibit nontrivial point-gap
topology. In the two-dimensional Brillouin zone, we
define a set of line segments

L α; δkð Þ ¼ kx; ky
� � j ky ¼ αkx þ δk mod 2πð Þ;�

α2Q∪ f1g; δk2R;�π < kx; ky � π
�
ð15Þ

where α is the direction (slope) of the line segments and is
assumed to be a rational number. These line segments are
connected at the edges of the Brillouin zone, and
topologically, L α; δkð Þ forms a closed loop in the two-
dimensional Brillouin zone T2. Associated with L α; δkð Þ
we can define the winding number43,51

w L α; δkð Þ;E0ð Þ 	 1
2πi

I
L α;δkð Þ

dk
∂

∂k
log E2 kð Þ � E0½ �

ð16Þ
where E02C is the reference energy. A non-zero winding
number indicates a nontrivial point-gap topology along
the loop.

As was noted in refs. 51,52, in high dimensions
there are general theoretical results about these
winding numbers, depending on the nature of the
loops. For a reciprocal Hamiltonian, its band
structure satisfies E �kx;�ky

� � ¼ E kx; ky
� �

, and there-
fore

w L; E0ð Þ ¼ �wðeL; E0Þ ð17Þ
where eL is the time-reversal partner of L. And for a time-
reversal invariant loop with L ¼ eL, the winding number is
zero. The aim of our experiments in this section is to
demonstrate these theoretical observations.

To implement the non-Hermitian band structure
E2 kx; ky

� �
, we incorporate both phase and amplitude

modulations in the resonator. The transmission coeffi-
cients of the modulators are

τphs2 tð Þ ¼ eiμTR cos ΩRtð Þþcos MΩRtþφð Þ½ �;
τamp
2 tð Þ ¼ e�ηTR cos ΩRtð Þ�cos MΩRtþφð Þ½ � ð18Þ

where μTR ¼ 0:09 and ηTR ¼ 0:08. With different values
of φ, we take multiple measurements of the transmission
function ξ δω; tð Þ to reconstruct E2 kx; ky

� �
. Note that the

imaginary part of the band energy is associated with the
linewidth of the resonant features in the spectrum
ξ δω; tð Þ for a given t22.
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Figure 3 presents the measured band structure with the
modulation Eq. (18). Figure 3a shows the transmission
function with φ ¼ π, with ξ δω; t ¼ �0:45TRð Þ and
ξ δω; t ¼ 0:05TRð Þ displayed on the left as examples. With
dynamic amplitude modulation, the instantaneous loss
rate inside the resonator is not a constant, and in this
example the spectrum ξ δω; t ¼ �0:45TRð Þ has a sharper
line shape than ξ δω; t ¼ 0:05TRð Þ. By extracting the
locations and linewidths of the resonant features as a
function of t, we obtain ReðE2Þ and ImðE2Þ along the set
of line segments Sφ in the two-dimensional Brillouin zone.
In Fig. 3b, we plot the real and imaginary parts of the
reconstructed band structure E2 kx; ky

� �
, in agreement

with the theoretical values represented by the gray
surfaces.
To demonstrate Eq. (17), we choose the loop L descri-

bed by E0 ¼ 0 and α ¼ 1 in Eq. (16). Here we write
w L α ¼ 1; δkð Þ;E0 ¼ 0ð Þ as w δkð Þ for convenience. From
Eq. (17) we have

w �δkð Þ ¼ �w δkð Þ ð19Þ

And for time-reversal invariant loops, i.e., δk ¼ 0 or δk ¼
π, the winding number is zero. In Fig. 4, we demonstrate
the winding property stated by Eq. (19). For a given δk, we
extract from Fig. 3b the complex energy at each point
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this figure
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along the loop L α ¼ 1; δkð Þ, and the trajectory of the
complex energies form the winding diagram. In Fig. 4, we
notice that when δk ¼ 0 or δk ¼ π, the complex energies
lie on a line and thus the winding number is indeed zero.
For other values of δk, the winding is nontrivial. In
particular, for δk ¼ �π=2 and δk ¼ π=2, the windings are
of the same geometric shape but in opposite directions.
This agrees with Eq. (19). In fact, for this Hamiltonian H2,
we always have w δkð Þ ¼ 1 when 0<δk<π, and w δkð Þ ¼
�1 when �π<δk<0.

Discussion
In this paper, we have proposed and demonstrated the

method of multi-dimensional band structure spectro-
scopy in the photonic synthetic frequency dimension. By
varying the modulation phase, we can fully reconstruct
the band structure at each point in the multi-dimensional
Brillouin zone. As examples, we create and fully char-
acterize the band structures of both a Hermitian and a
non-Hermitian tight-binding Hamiltonian on two-
dimensional square lattices. We also observe some of
the general properties of point-gap topology of the non-
Hermitian Hamiltonian in more than one dimensions. To
generalize the method to three- or higher-dimensional
systems, one can incorporate more frequency compo-
nents in the modulation signal. By tuning the gauge
potential associated with each frequency component, the
entire high-dimensional Brillouin zone can be accessible.
Our method can also be applied to models of more
complexity, for example, models with multiple bands in
higher dimensions and with more complicated con-
nectivity between the lattice sites.

Materials and methods
Experimental setup
The schematic of our experimental platform is shown in

Fig. 5. The setup is based on optical fibers. The resonator
has a free spectral range of ΩR ¼ 2π ´ 6MHz. Our light
source is a grade 3 Orion laser from Redfern integrated
optics, a continuous wave laser in the telecommunication
C-band with a center wavelength of 1542.057 nm and a
linewidth of 2.8 kHz. The frequency of the laser is tunable
and controlled by a function generator, which generates a
ramp voltage signal of 600 mVpp amplitude and 100 Hz
frequency. The laser frequency is thus swept in a range of
approximately 13ΩR. The coupling between the input-
output waveguide and the resonator is implemented by a
2 × 2 fiber coupler (beam splitter) of 95:5 power coupling
ratio. Inside the resonator, light goes through phase and
amplitude modulators, a polarization controller, an
erbium-doped fiber amplifier (EDFA), and a dense
wavelength-division multiplexing (DWDM) band-pass
filter. The modulators are based on the electro-optic
modulation in lithium niobate waveguides. The
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modulation signals are generated by Red Pitaya STEMlab
field-programmable gate arrays (FPGAs) with 60 mVpp

amplitude, and then amplified by Mini-Circuits ZHL-3A+
coaxial radiofrequency (RF) amplifiers and applied to the
modulators. The polarization controller ensures that the
light polarization remains unchanged after one round-trip
propagation inside the resonator. The EDFA is used to
partially compensate for the intrinsic loss in the resonator.
We use a lower gain in the experiment to avoid gain
saturation of the EDFA and lasing of the cavity. The band-
pass filter, in channel 44, has a center wavelength of
1542.14 nm and a bandwidth of 26.5 GHz. It is used to
suppress the amplified spontaneous emission noise of the
EDFA, and supports ~4.4 × 103 frequency modes in its
transmission bandwidth. Finally, light at the transmission
port is pre-amplified by a semiconductor optical amplifier
(SOA) to improve the signal-to-noise ratio, and then
detected by a photodiode (PD) with 5 GHz bandwidth.
The detected signal is collected by an oscilloscope with a
sampling rate of 2 GSa/s.

Data processing
The transmission function ξ δω; tð Þ is dependent on

both the laser detuning δω and the time variable t. By
making δω linearly dependent on time, we can obtain the
entire ξ δω; tð Þ function within a single-shot measure-
ment24 where we sweep the laser frequency by a ramp
signal. When processing the detected signal from the
oscilloscope, we sequentially truncate the temporal signal
into time intervals of length TR. We assume that the laser
frequency is unchanged within each time interval, but is
different for different time intervals. Such approximation
is valid since the laser frequency only changes by
2 ´ 10�4ΩR between neighboring time intervals. In Figs. 2
and 3, for each φ we take a measurement of ξ δω; tð Þ.

Given a time t, we use the Lorentzian line shape to fit the
spectrum ξ as a function of δω, and obtain the locations of
the transmission minima and the linewidth22. The
intrinsic loss γ0 of the resonator contributes to the fitted
linewidth, and is removed as a background constant when
calculating the imaginary part of the band structure. We
also take into consideration the delay times that the RF
signals propagate from the output ports of the FPGA to
the input ports of the modulators, and the frequency-
dependent phase responses of the RF amplifiers.
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